Effects of a Novel Three-Dimensional-Printed Wood–Polylactic Acid Interlayer on the Mode II Delamination of Composites
Abstract
:1. Introduction
2. Manufacturing and Experimental Setup
2.1. Three-Dimensional-Printed Interlayer
2.2. ENF Specimens
2.3. Mode II Interlaminar Fracture Toughness Test
3. Result and Discussion
3.1. Mode II Interlaminar Fracture Toughness
3.2. Fractography
4. Conclusions
- The load-bearing capacity and displacement experienced in the samples with the interlayer significantly improved compared to the samples without the interlayer.
- Using the wood–PLA 3D-printed interlayer led to an 80.3% and 43.5% improvement in mode II initiation and propagation ILFT compared to the samples without an interlayer.
- The presence of the desired interlayer resulted in a 22.9% increase in the and a more gradual crack growth in the samples with the interlayer.
- The application of the 3D-printed interlayer changed the fracture behavior from adhesive failure to a combination of adhesive and cohesive failure in samples with the interlayer, compared to those without.
- The resin-rich region was significantly enhanced by the presence of rhomboidal cell-shaped structures within the 3D-printed interlayer. This enhancement improves interfacial adhesion between the fibers and resin and increases surface friction at the delamination interfaces of samples with the interlayer.
- The presence of wood–PLA filament introduces mechanisms such as crack front pinning and crack path deflection during the delamination process in the reinforced samples.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blythe, A.; Fox, B.; Nikzad, M.; Eisenbart, B.; Chai, B.X.; Blanchard, P.; Dahl, J. Evaluation of the Failure Mechanism in Polyamide Nanofibre Veil Toughened Hybrid Carbon/Glass Fibre Composites. Materials 2022, 15, 8877. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, E. Failure Analysis and Fractography of Polymer Composites; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Kim, J.-K.; Sham, M.-L. Impact and delamination failure of woven-fabric composites. Compos. Sci. Technol. 2000, 60, 745–761. [Google Scholar] [CrossRef]
- Zhang, C.; He, E.; Zhu, K.; Li, Y.; Yan, L.; Zheng, X. Delamination propagation manipulation of composite laminates under low-velocity impact and residual compressive strength evaluation. Eng. Fract. Mech. 2024, 307, 110333. [Google Scholar] [CrossRef]
- Saikia, P.J.; Kumar, A.; Kumar, M.; Muthu, N. Cohesive zone parameters to predict mixed-mode delamination in CFRP reinforced with hydroxyl functionalized MWCNTs: Experimental and numerical investigations. Eng. Fail. Anal. 2024, 164, 108656. [Google Scholar] [CrossRef]
- Saadati, Y.; Chatelain, J.-F.; Lebrun, G.; Beauchamp, Y.; Bocher, P.; Vanderesse, N. A Study of the Interlaminar Fracture Toughness of Unidirectional Flax/Epoxy Composites. J. Compos. Sci. 2020, 4, 66. [Google Scholar] [CrossRef]
- de Morais, A.B. Analysis of the adhesively bonded composite double cantilever beam specimen with emphasis on bondline constraint, adherend through-thickness flexibility and fracture process zone relative size. J. Adhes. 2024, 100, 468–491. [Google Scholar] [CrossRef]
- Boon, Y.D.; Joshi, S.C. A review of methods for improving interlaminar interfaces and fracture toughness of laminated composites. Mater. Today Commun. 2020, 22, 100830. [Google Scholar] [CrossRef]
- Porras, A.; Tellez, J.; Casas-Rodriguez, J. Delamination toughness of ultra high molecular weight polyethylene (UHMWPE) composites. EPJ Web Conf. 2012, 26, 02016. [Google Scholar] [CrossRef]
- Moazzami, M.; Akhavan-Safar, A.; Ayatollahi, M.R.; Poulis, J.A.; da Silva, L.F.M.; Teixeira De Freitas, S. A degradable mode I cohesive zone model developed for damage and fracture analysis of dissimilar composite/metal adhesive joints subjected to cyclic ageing conditions. Theor. Appl. Fract. Mech. 2023, 127, 104076. [Google Scholar] [CrossRef]
- Ejaz, H.; Awan, M.A.; Muzzammil, H.M.; Ullah, M.; Akhavan-Safar, A.; daSilva, L.F.M.; Tanveer, A. Strength improvement/optimization methods in adhesively bonded joints: A comprehensive review of past and present techniques. Mech. Adv. Mater. Struct. 2024, 1–29. [Google Scholar] [CrossRef]
- Davidson, B.D.; Krüger, R.; König, M. Effect of stacking sequence on energy release rate distributions in multidirectional dcb and enf specimens. Eng. Fract. Mech. 1996, 55, 557–569. [Google Scholar] [CrossRef]
- Monticeli, F.M.; Fuga, F.R.; Arbelo, M.A.; Donadon, M.V. The effect of fibre orientation on fatigue crack propagation in CFRP: Finite fracture mechanics modelling for open-hole configuration. Eng. Fail. Anal. 2024, 161, 108278. [Google Scholar] [CrossRef]
- Ozdil, F.; Carlsson, L.A.; Davies, P. Beam analysis of angle-ply laminate end-notched flexure specimens. Compos. Sci. Technol. 1998, 58, 1929–1938. [Google Scholar] [CrossRef]
- Kotaki, M.; Hamada, H. Effect of interfacial properties and weave structure on mode I interlaminar fracture behaviour of glass satin woven fabric composites. Compos. Part A Appl. Sci. Manuf. 1997, 28, 257–266. [Google Scholar] [CrossRef]
- Ogasawara, T.; Yoshimura, A.; Ishikawa, T.; Takahashi, R.; Sasakib, N.; Ogawa, T. Interlaminar Fracture Toughness of 5 Harness Satin Woven Fabric Carbon Fiber/Epoxy Composites. Adv. Compos. Mater. 2012, 21, 45–56. [Google Scholar] [CrossRef]
- Davies, P.; Casari, P.; Carlsson, L.A. Influence of fibre volume fraction on mode II interlaminar fracture toughness of glass/epoxy using the 4ENF specimen. Compos. Sci. Technol. 2005, 65, 295–300. [Google Scholar] [CrossRef]
- Akhavan-Safar, A.; Salamat-Talab, M.; Delzendehrooy, F.; Barbosa, A.Q.; da Silva, L.F.M. Mode II fracture energy of laminated composites enhanced with micro-cork particles. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 490. [Google Scholar] [CrossRef]
- Kazemi, H.; Salamat-Talab, M.; Ghanbari, D. Enhancing Mechanical and Thermal Properties of Nanocomposites Using Novel Silica/Mg(OH)2 Green Composite Nanoparticles. J. Inorg. Organomet. Polym. Mater. 2024. [Google Scholar] [CrossRef]
- Akhavan-Safar, A.; Salamat-Talab, M.; Delzendehrooy, F.; Zeinolabedin-Beygi, A.; da Silva, L.F.M. Effects of natural date palm tree fibres on mode II fracture energy of E-glass/epoxy plain-woven laminated composites. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 457. [Google Scholar] [CrossRef]
- Liu, Q.; Tao, M.; Yu, J.; Zou, Y.; Jia, Z. Effect of graphene nanoplatelets on mode I fracture Toughness of epoxy adhesives under water aging conditions. J. Adhes. 2024, 100, 267–289. [Google Scholar] [CrossRef]
- Rao, C.A.; Murthy, K.S.R.K.; Chakraborty, D. Improving resistance to embedded delaminations by adding CNTs to epoxy in carbon/(epoxy + CNT) composites. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2024, 238, 1714–1729. [Google Scholar] [CrossRef]
- Salamat-Talab, M.; Kazemi, H. Investigation of interlayering effect on the mechanical properties and interlaminar fracture toughness of laminated composites: A review. J. Nanostruct. 2024; in press. [Google Scholar]
- Xu, Z.; Huang, Y.; Min, C.; Chen, L.; Chen, L. Effect of γ-ray radiation on the polyacrylonitrile based carbon fibers. Radiat. Phys. Chem. 2010, 79, 839–843. [Google Scholar] [CrossRef]
- Jiang, G.; Zhou, X. Effect of laser surface texture on the adhesion performance of CFRP/Mg laminates. J. Adhes. 2024, 100, 426–445. [Google Scholar] [CrossRef]
- Ebeling, T.; Hiltner, A.; Baer, E.; Fraser, I.; Orton, M. Delamination failure of a woven glass fiber composite. J. Compos. Mater. 1997, 31, 1318–1333. [Google Scholar] [CrossRef]
- Funk, J.G.; Deaton, J.W. The Interlaminar Fracture Toughness of Woven Graphite/Epoxy Composites; National Aeronautics and Space Administration: Washington, DC, USA, 1989. [Google Scholar]
- Alif, N.; Carlsson, L.A.; Boogh, L. The effect of weave pattern and crack propagation direction on mode I delamination resistance of woven glass and carbon composites. Compos. Part B Eng. 1998, 29, 603–611. [Google Scholar] [CrossRef]
- Briscoe, B.J.; Court, R.S.; Williams, D.R. The effects of fabric weave and surface texture on the interlaminar fracture toughness of aramid/epoxy laminates. Compos. Sci. Technol. 1993, 47, 261–270. [Google Scholar] [CrossRef]
- Kazemi, H.; Salamat-Talab, M.; Ghanbari, D. Investigating the mode II critical strain energy release rate of glass/epoxy laminated composites reinforced with polyvinyl alcohol interlayer. Iran. J. Manuf. Eng. 2024, 11, 51–62. [Google Scholar] [CrossRef]
- Mathew, E.; Joshi, S.C.; Manikandan, P. Enhancement in Interply Toughness of BMI Composites Using Micro-Thin Films. J. Compos. Sci. 2021, 5, 49. [Google Scholar] [CrossRef]
- Palmieri, B.; Siviello, C.; Petriccione, A.; Espresso, M.; Giordano, M.; Martone, A.; Cilento, F. Mechanical and Viscoelastic Properties of Carbon Fibre Epoxy Composites with Interleaved Graphite Nanoplatelet Layer. J. Compos. Sci. 2023, 7, 235. [Google Scholar] [CrossRef]
- Qian, X.; Kravchenko, O.G.; Pedrazzoli, D.; Manas-Zloczower, I. Effect of polycarbonate film surface morphology and oxygen plasma treatment on mode I and II fracture toughness of interleaved composite laminates. Compos. Part A Appl. Sci. Manuf. 2018, 105, 138–149. [Google Scholar] [CrossRef]
- Jia, J.; Du, X.; Chen, C.; Sun, X.; Mai, Y.-W.; Kim, J.-K. 3D network graphene interlayer for excellent interlaminar toughness and strength in fiber reinforced composites. Carbon 2015, 95, 978–986. [Google Scholar] [CrossRef]
- Liu, B.; Cao, S.; Gao, N.; Cheng, L.; Liu, Y.; Zhang, Y.; Feng, D. Thermosetting CFRP interlaminar toughening with multi-layers graphene and MWCNTs under mode I fracture. Compos. Sci. Technol. 2019, 183, 107829. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.-d.; Shen, Y.; Blackie, E.; He, L. Mode-II Fracture Toughness of Carbon Fiber Reinforced Polymer Composites Interleaved with Polyethersulfone (PES)/Carbon Nanotubes (CNTs). Compos. Struct. 2023, 320, 117214. [Google Scholar] [CrossRef]
- Beylergil, B.; Duman, V. Enhancing Mode-I and Mode-II fracture toughness of carbon fiber/epoxy laminated composites using 3D-printed polyamide interlayers. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2023, 238, 578–591. [Google Scholar] [CrossRef]
- ASTM D7905/D7905M; Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM: West Conshohocken, PA, USA, 2019; p. 18. [CrossRef]
- de Moura, M.F.S.F.; Silva, M.A.L.; de Morais, A.B.; Morais, J.J.L. Equivalent crack based mode II fracture characterization of wood. Eng. Fract. Mech. 2006, 73, 978–993. [Google Scholar] [CrossRef]
- Yan, X.; Gao, Y.; Guo, Y.; Lin, Y.; Zhang, N.; Zhao, Q. Mode-II Fracture Toughness and Crack Propagation of Pultruded Carbon Fiber-Epoxy Composites. Eng. Fract. Mech. 2023, 279, 109042. [Google Scholar] [CrossRef]
- Kazemi, H.; Salamat-Talab, M. Enhancing Mode II Interlaminar Fracture Toughness in Glass/Epoxy Composites Using 3D-Printed Polyvinyl Alcohol Interlayer. Mech. Adv. Smart Mater. 2024, 4, 256–271. [Google Scholar] [CrossRef]
- Salamat-talab, M.; Zeinolabedin Beygi, A.; Seyyednejad, M. Experimental investigation of the effect of interface fiber angle on the fracture toughness of woven laminated composites under mode II loading. Modares Mech. Eng. 2021, 21, 225–233. [Google Scholar]
- Ozdil, F.; Carlsson, L.; Li, X. Characterization of mode II delamination growth in glass/epoxy composite cylinders. J. Compos. Mater. 2000, 34, 274–298. [Google Scholar] [CrossRef]
- Ozdil, F.; Carlsson, L. Characterization of mode I delamination growth in glass/epoxy composite cylinders. J. Compos. Mater. 2000, 34, 398–419. [Google Scholar] [CrossRef]
- Zeiler, R.; Kuttner, C.; Khalid, U.; Kothmann, M.H.; Dijkstra, D.J.; Altstädt, V. The role of multi-walled carbon nanotubes in epoxy nanocomposites and resin transfer molded glass fiber hybrid composites: Dispersion, local distribution, thermal, and fracture/mechanical properties. Polym. Compos. 2017, 38, 1849–1863. [Google Scholar] [CrossRef]
- Prasad, V.; Sekar, K.; Varghese, S.; Joseph, M.A. Enhancing Mode I and Mode II interlaminar fracture toughness of flax fibre reinforced epoxy composites with nano TiO2. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105505. [Google Scholar] [CrossRef]
3D-Printer Parameter | Value | 3D-Printer Parameter | Value |
---|---|---|---|
Extruder temperature (°C) | 220 | Build platform temperature (°C) | 60 |
Nozzle diameter (mm) | 0.4 | Printing speed () | 40 |
Colling fan speed (%) | 100 |
(N) | (N) | |
---|---|---|
Reference Sample | ||
Reinforced Sample |
Reference Sample | 124.7 ± 7.9 | 845.7 ± 35.7 | 6.4 ± 0.3 |
Reinforces Sample | 224.9 ± 32.3 | 1213.5 ± 50.2 | 7.9 ± 0.2 |
Gain in parameter, (%) | 80.3 | 43.5 | 22.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salamat-Talab, M.; Kazemi, H.; Akhavan-Safar, A.; Malekinejad, H.; Carbas, R.J.C.; da Silva, L.F.M. Effects of a Novel Three-Dimensional-Printed Wood–Polylactic Acid Interlayer on the Mode II Delamination of Composites. J. Compos. Sci. 2024, 8, 489. https://doi.org/10.3390/jcs8120489
Salamat-Talab M, Kazemi H, Akhavan-Safar A, Malekinejad H, Carbas RJC, da Silva LFM. Effects of a Novel Three-Dimensional-Printed Wood–Polylactic Acid Interlayer on the Mode II Delamination of Composites. Journal of Composites Science. 2024; 8(12):489. https://doi.org/10.3390/jcs8120489
Chicago/Turabian StyleSalamat-Talab, Mazaher, Hossein Kazemi, Alireza Akhavan-Safar, Hossein Malekinejad, Ricardo J. C. Carbas, and Lucas F. M. da Silva. 2024. "Effects of a Novel Three-Dimensional-Printed Wood–Polylactic Acid Interlayer on the Mode II Delamination of Composites" Journal of Composites Science 8, no. 12: 489. https://doi.org/10.3390/jcs8120489
APA StyleSalamat-Talab, M., Kazemi, H., Akhavan-Safar, A., Malekinejad, H., Carbas, R. J. C., & da Silva, L. F. M. (2024). Effects of a Novel Three-Dimensional-Printed Wood–Polylactic Acid Interlayer on the Mode II Delamination of Composites. Journal of Composites Science, 8(12), 489. https://doi.org/10.3390/jcs8120489