Facile Green Synthesis of α-Bismuth Oxide Nanoparticles: Its Photocatalytic and Electrochemical Sensing of Glucose and Uric Acid in an Acidic Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of α-BONPs
Fabrication of Working Electrode
2.2. Characterization
3. Results and Discussion
3.1. PXRD Analysis
3.2. FTIR Analysis
3.3. DRS Studies
3.4. SEM Analysis
3.5. TEM Analysis
3.6. Photocatalytic Studies
3.7. Electrochemical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhuang, Z.; Huang, A.; Tan, X.; Sun, K.; Chen, C.; Peng, Q.; Zhuang, Z.; Han, T.; Xiao, H.; Zeng, Y.; et al. p-Block-metal bismuth-based electrocatalysts featuring tunable selectivity for high-performance oxygen reduction reaction. Joule 2023, 7, 1003–1015. [Google Scholar] [CrossRef]
- Alam, M.W.; Khalid, N.R.; Naeem, S.; Niaz, N.A.; Mir, T.A.; Nahvi, I.; Souayeh, B.; Zaidi, N. Novel Nd-N/TiO2 Nanoparticles for Photocatalytic and Antioxidant Applications Using Hydrothermal Approach. Materials 2022, 15, 6658. [Google Scholar] [CrossRef]
- Alam, M.W.; BaQais, A.; Mir, T.A.; Nahvi, I.; Zaidi, N.; Yasin, A. Effect of Mo doping in NiO nanoparticles for structural modification and its efficiency for antioxidant, antibacterial applications. Sci. Rep. 2023, 13, 1328. [Google Scholar] [CrossRef]
- Viruthagiri, G.; Kannan, P.; Indhumathi, V.K. Photocatalytic activity of α-phase bismuth oxide nanoparticles under visible light. Int. J. Adv. Sci. Res. 2017, 2, 1–7. [Google Scholar]
- Gandhi, A.C.; Lai, C.-Y.; Wu, K.-T.; Ramacharyulu, P.V.R.K.; Koli, V.B.; Cheng, C.-L.; Ke, S.-C.; Wu, S.Y. Phase transformation and room temperature stabilization of various Bi2O3 nano-polymorphs: Effect of oxygen-vacancy defects and reduced surface energy due to adsorbed carbon species. Nanoscale 2020, 12, 24119. [Google Scholar] [CrossRef]
- Li, W. Facile synthesis of monodisperse Bi2O3 nanoparticles. Mater. Chem. Phys. 2006, 99, 174–180. [Google Scholar] [CrossRef]
- Janani, B.; Swetha, S.; Syed, A.; Elgorban, A.M.; Zaghloul, N.S.S.; Thomas, A.M.; Raju, L.L.; Khan, S.S. Spinel FeV2O4 coupling on nanocube-like Bi2O3 for high performance white light photocatalysis and antibacterial applications. J. Alloys Compd. 2021, 887, 161432. [Google Scholar] [CrossRef]
- Al-Saeedi, S.I.; Areej, A.; Qamar, M.T.; Alhujaily, A.; Iqbal, S.; Alotaibi, M.T.; Aslam, M.; Qayyum, M.A.; Bahadur, A.; Awwad, N.S.; et al. Isotherm and kinetic studies for the adsorption of methylene blue onto a novel Mn3O4-Bi2O3 composite and their antifungal performance. Front. Environ. Sci. 2023, 11, 1156475. [Google Scholar] [CrossRef]
- Xu, D.; Shi, L.; Wu, Z.; Zhong, Q.; Wu, X. Microstructure and electrical properties of ZnO–Bi2O3-based varistor ceramics by different sintering processes. J. Eur. Ceram. Soc. 2009, 29, 1789–1794. [Google Scholar] [CrossRef]
- Nurmalasari, N.; Yulizar, Y.; Apriandanu, D.O.B. Bi2O3 nanoparticles: Synthesis, characterizations, and photocatalytic activity. Mater. Sci. Eng. 2020, 763, 012036. [Google Scholar] [CrossRef]
- Kong, L.B.; Li, Z.W.; Lin, G.Q.; Gan, Y.B. Electrical and magnetic properties of magnesium ferrite ceramics doped with Bi2O3. Acta Mater. 2007, 55, 6561–6572. [Google Scholar] [CrossRef]
- Dong, W.; Zhu, C. Optical properties of surface-modified Bi2O3 nanoparticles. J. Phys. Chem. Solids 2003, 64, 265–271. [Google Scholar] [CrossRef]
- Flayyih, A.O.; Mahdi, W.K.; Zaid, Y.I.M.A.; Musa, F.H. Biosynthesis, Characterization, and Applications of Bismuth Oxide Nanoparticles Using Aqueous Extract of Beta Vulgaris. Chem. Methodol. 2022, 6, 620–628. [Google Scholar]
- Harwig, H.A.; Weenk, J.W. Phase Relations in Bismuth sesquioxide. Z. Anorg. Allg. Chem. 1978, 444, 167–177. [Google Scholar] [CrossRef]
- Harwig, H.A.; Gerards, A.G. The polymorphism of bismuth sesquioxide. Thermochim. Acta 1979, 28, 121–131. [Google Scholar] [CrossRef]
- Madanakumara, H.; Jayanna, H.S.; Yelamaggad, C.V.; Soundeswaran, S.; Vishwas, M.; Shamala, K.S.; Surendra, B.S.; Basavaraju, N. Enhanced electrochemical sensor and photodegradation of industrial wastewater by Almond gum assisted synthesis of Bi2O3/MgO/Fe2O3 nanocomposites. Sens. Int. 2022, 3, 100193. [Google Scholar] [CrossRef]
- Hamid, Z. Synthesis of bismuth oxide nano powders via electrolysis method and study the effect of change voltage on the size for it. Aust. J. Basic Appl. Sci. 2017, 7, 97–101. [Google Scholar]
- Das, T.R.; Patra, S.; Madhuri, R.; Sharma, K.P. Bismuth oxide decorated graphene oxide nanocomposites synthesized via sonochemical assisted hydrothermal method for adsorption of cationic organic dyes. J. Colloid Interface Sci. 2018, 509, 82–93. [Google Scholar] [CrossRef]
- Kumari, L.; Lin, J.-H.; Ma, Y.-R. One-dimensional Bi2O3 nanohooks: Synthesis, characterization and optical properties. J. Phys. Condens. Matter 2007, 19, 406204. [Google Scholar] [CrossRef]
- Leontie, L.; Caraman, M.; Alexe, M.; Harnagea, C. Structural and optical characteristics of bismuth oxide thin films. Surf. Sci. 2002, 507, 480–485. [Google Scholar] [CrossRef]
- Sammes, N.M.; Tompsett, G.A.; Naafe, H.; Aldinger, F. Bismuth based electrolytes structure and ionic conductivity. J. Eur. Ceram. Soc. 1999, 19, 1801–1826. [Google Scholar] [CrossRef]
- Cabot, A.; Marsal, A.; Arbiol, J.; Morante, J.R. Bi2O as a selective sensing material for NO detection. Sens. Actuators B Chem. 2004, 99, 74–89. [Google Scholar] [CrossRef]
- Pang, Y.; Li, Y.; Xu, G.; Hu, Y.; Kou, Z.; Feng, Q.; Lv, J.; Zhang, Y.; Wang, J.; Wu, Y. Z-scheme carbon-bridged Bi2O3/TiO2 nanotube arrays to boost photoelectrochemical detection performance. Appl. Catal. B Environ. 2019, 248, 255–263. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Mohamed, W.S. α-Bi2O3 nanorods: Synthesis, characterization and UV-photocatalytic activity. Mater. Res. Express 2017, 4, 035039. [Google Scholar] [CrossRef]
- Rashid, N.C.A.; Ngajikin, N.H.; Azmi, A.I.; Arsat, R.; Isaak, S.; Cholan, N.A.; Azmi, N.E. Spectrophotometer with enhanced sensitivity for uric acid detection. Chin. Opt. Lett. 2019, 17, 081701. [Google Scholar] [CrossRef]
- Lu, J.; Xiong, Y.; Liao, C.; Ye, F. Colorimetric detection of uric acid in human urine and serum based on peroxidase mimetic activity of MIL-53(Fe). Anal. Methods 2015, 7, 9894–9899. [Google Scholar] [CrossRef]
- Washko, P.W.; Welch, R.W.; Dhariwal, K.R.; Wang, Y.; Levine, M. Ascorbic acid and dehydroascorbic acid analyses in biological samples. Anal. Biochem. 1992, 204, 1–14. [Google Scholar] [CrossRef]
- Kumar, A.; Rana, A.; Guo, C.; Sharma, G.; Katubi, K.M.M.; Alzahrani, F.M.; Naushad, M.; Sillanpää, M.; Dhiman, P.; Stadler, F.J. Acceleration of photoreduction and oxidation capabilities of Bi4O5I2[email protected] alginate by metallic Ag: Wide spectral removal of nitrate and azithromycin. Chem. Eng. J. 2021, 423, 130173. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, G.; Kumari, A.; Guo, C.; Naushad, M.; Vo, D.V.N.; Iqbal, J.; Stadler, F.J. Construction of dual Z-scheme g-C3N4/Bi4Ti3O12/Bi4O5I2 heterojunction for visible and solar powered coupled photocatalytic antibiotic degradation and hydrogen production: Boosting via I−/I3− and Bi3+/Bi5+ redox mediators. Appl. Catal. B Environ. 2021, 284, 119808. [Google Scholar] [CrossRef]
- Dhiman, P.; Kumar, A.; Shekh, M.; Sharma, G.; Rana, G.; Vo, D.V.N.; AlMasoud, N.; Naushad, M.; ALOthman, Z.A. Robust magnetic ZnOFe2O3 Z-scheme hetereojunctions with in-built metal-redox for high performance photo-degradation of sulfamethoxazole and electrochemical dopamine detection. Environ. Res. 2021, 197, 111074. [Google Scholar] [CrossRef]
- Astuti, Y.; Fauziyah, A.; Nurhayati, S.; Wulansari, A.D.; Andianingrum, R.; Hakim, A.R.; Bhaduri, G. Synthesis of α-bismuth oxide using solution combustion method and its photocatalytic properties. IOP Conf. Ser. Mater. Sci. Eng. 2016, 107, 012006. [Google Scholar] [CrossRef]
- Dimitriev, Y.; KrupchanskaIvanova, M.Y.; Staneva, A. Sol-gel synthesis of material in the system Bi2O3-SiO2. J. Univ. Chem. Technol. Metall. 2010, 45, 39–42. [Google Scholar]
- Kusuma, K.B.; Manju, M.; Ravikumar, C.R.; Dileepkumar, V.G.; Kumar, A.N.; Santosh, M.S.; Murthy, H.C.A.; Gurushantha, K. Probe Sonicated Synthesis of Bismuth Oxide (Bi2O3): Photocatalytic Application and Electrochemical Sensing of Ascorbic Acid and Lead. J. Nanomater. 2022, 2022, 3256611. [Google Scholar] [CrossRef]
- Proffit, D.L.; Bai, G.R.; Fong, D.D.; Fister, T.T.; Hruszkewycz, S.O.; Highland, M.J.; Baldo, P.M.; Fuoss, P.H.; Mason, T.O.; Eastman, J.A. Phase stabilization of δ-Bi2O3-Bi2O3 nanostructures by epitaxial growth onto single crystal SrTiO3SrTiO3 or DyScO3DyScO3 substrates. Appl. Phys. Lett. 2010, 96, 021905. [Google Scholar] [CrossRef]
- Fan, H.T.; Pan, S.S.; Teng, X.M.; Ye, C.; Li, G.H.; Zhang, L.D. δ-Bi2O3 thin films prepared by reactive sputtering: Fabrication and characterization. Thin Solid Film. 2006, 513, 142–147. [Google Scholar] [CrossRef]
- Iyyapushpam, S.; Nishanthi, S.T.; Pathinettam Padiyan, D. Synthesis of room temperature bismuth oxide and its photocatalytic activity. Mater. Lett. 2012, 86, 25–27. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Yang, J.; Chen, Z.; Zhang, W.; Zhou, L.; Liu, S. Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst. Appl. Catal. A Gen. 2006, 308, 105–110. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, W.; Xu, H.; Sun, S.; Shang, M. Bi2O3 Hierarchical Nanostructures: Controllable Synthesis, Growth Mechanism, and their Application in Photocatalysis. Chem. Eur. J. 2009, 15, 1776–1782. [Google Scholar] [CrossRef]
- Wu, C.; Shen, L.; Huang, Q.; Zhang, Y.-C. Hydrothermal synthesis and characterization of Bi2O3 nanowires. Mater. Lett. 2011, 65, 1134–1136. [Google Scholar] [CrossRef]
- Alam, M.W.; Aamir, M.; Farhan, M.; Albuhulayqah, M.; Ahmad, M.M.; Ravikumar, C.R.; Dileep Kumar, V.G.; Ananda Murthy, H.C. Green Synthesis of Ni-Cu-Zn Based Nanosized Metal Oxides for Photocatalytic and Sensor Applications. Crystals 2021, 11, 1467. [Google Scholar] [CrossRef]
- Ahmad, M.M.; Kotb, H.M.; Mushtaq, S.; Waheed-Ur-Rehman, M.; Maghanga, C.M.; Alam, M.W. Green Synthesis of Mn + Cu Bimetallic Nanoparticles Using Vinca rosea Extract and Their Antioxidant, Antibacterial, and Catalytic Activities. Crystals 2022, 12, 72. [Google Scholar] [CrossRef]
- Kusuma, K.B.; Manju, M.; Ravikumar, C.R.; Raghavendra, N.; Kumar, T.N.; Anilkumar, M.R.; Nagaswarupa, H.P.; Shekhar, T.R.S.; Murthy, H.C.A.; Aravind, K.U. Synthesis of strontium oxide nanoparticles by probe sonication method: Its photocatalytic activity and electrochemical sensor studies. Sens. Int. 2023, 4, 100231. [Google Scholar] [CrossRef]
- Kumar, A.N.; Naik, R.; Revathi, V.; Murthy, H.C.A.; Nagaswarupa, H.P.; Ravikumar, C.R.; Reddy, G.V.A.; Pothu, R.; Boddula, R.; Lokesh, H.B.; et al. Multifunctional La10Si6O27:Tb3+ tailored material for photoluminescence, photocatalysis and electrochemical sensing applications. Appl. Surf. Sci. Adv. 2023, 14, 100392. [Google Scholar] [CrossRef]
- Sood, S.; Umar, A.; Mehta, S.K.; Kansal, S.K. α-Bi2O3 nanorods: An efficient sunlight active photocatalyst for degradation of rhodamine B and 2,4,6 trichlorophenol. Ceram. Int. 2015, 41, 3355–3364. [Google Scholar] [CrossRef]
- Pereira, A.L.J.; Errandonea, D.; Beltrán, A.; Gracia, L.; Gomis, O.; Sans, J.A.; Garcia-Domene, B.; Miquel-Veyrat, A.; Manjón, F.J.; Muñoz, A.; et al. Structural study of α-Bi2O3 under pressure. J. Phys. Condens. Matter 2013, 25, 475402. [Google Scholar] [CrossRef]
- Klug, P.; Alexander, L.E. X-ray Diffraction Procedure; Wiley: New York, NY, USA, 1954. [Google Scholar]
- Gondal, M.; Saleh, A.; Tawfik, A. Optical Properties of Bismuth Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquids. Sci. Adv. Mater. 2012, 4, 507–510. [Google Scholar] [CrossRef]
- Kubelka, P.; Munk, F. Ein beitragzuroptik der farbanstriche. Z. Tech. Phys. 1931, 12, 593–601. [Google Scholar]
- Rani, S.; Sanghi, S.; Agarwal, A.; Ahlawat, N. Influence of Bi2O3 on optical properties and structure of bismuth lithium phosphate glasses. J. Alloys Compd. 2009, 477, 504–509. [Google Scholar] [CrossRef]
- Ai, Z.; Huang, Y.; Lee, S.; Zhang, L. Monoclinic α-Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation. J. Alloys Compd. 2011, 509, 2044–2049. [Google Scholar] [CrossRef]
- Reddy, B.C.; Manjunatha, H.C.; Vidya, Y.S.; Sridhar, K.N.; Pasha, U.M.; Seenappa, L.; Sadashivamurthy, B.; Dhananjaya, N.; Sathish, K.V.; Gupta, P.S.D. X-ray/gamma ray radiation shielding properties of α-Bi2O3 synthesized by low temperature solution combustion method. Nucl. Eng. Technol. 2022, 54, 1062–1070. [Google Scholar] [CrossRef]
- Raghupathy, D.A.; Ramgopal, G.; Ravikumar, C.R. Photocatalytic degradation of direct green & fast orange red dyes: Electrochemical sensor of lead using cupric oxide nanoparticles synthesized via sonochemical route. Sens. Int. 2022, 3, 100204. [Google Scholar]
- Basavaraju, N.; Prashantha, S.C.; Nagabhushana, H.; Chandrasekhar, M.; Kumar, A.N.; Shekhar, T.R.S.; Ashwini, S.; Anantharaju, K.S. A benign approach for novel synthesis of Eu3+ doped MgNb2O6: Its photoluminescence and photocatalytic studies. Ceram. Int. 2021, 47, 14899–14906. [Google Scholar] [CrossRef]
- Basavaraju, N.; Prashantha, S.C.; Nagabhushana, H.; Pratapkumar, C.; Ravikumar, C.R.; Kumar, M.R.A.; Surendra, B.S.; Shekhar, T.R.S.; Premkumar, H.B.; Nagaswarupa, H.P. MgNb2O6:Dy3+ nanophosphor: A facile preparation, down conversion photoluminescence and UV driven photocatalytic properties. Ceram. Int. 2021, 47, 10370–10380. [Google Scholar] [CrossRef]
- Kumar, M.R.A.; Nagaswarupa, H.P.; Anantharaju, K.S.; Gurushantha, K.; Pratapkumar, C.; Prashantha, S.C.; Shashishekar, T.R.; Nagabhushana, H.; Sharma, S.C.; Vidya, Y.S. Banyan latex: A facile fuel for the multifunctional properties of MgO nanoparticles prepared via auto ignited combustion route. Mater. Res. Express 2015, 2, 095004. [Google Scholar] [CrossRef]
- Dinamani, M.; Surendra, B.S.; Murthy, H.C.A.; Basavaraju, N.; Shanbhag, V.V. Green engineered synthesis of PbxZn1−xO NPs: An efficient electrochemical sensor and UV light-driven photocatalytic applications. Environmental Nanotechnology. Monit. Manag. 2023, 20, 100822. [Google Scholar] [CrossRef]
- Kumar, M.R.A.; Mahendra, B.; Nagaswarupa, H.P.; Surendra, B.S.; Ravikumar, C.R.; Shetty, K. Photocatalytic Studies of MgO Nano Powder; Synthesized by Green Mediated Route. Mater. Today Proc. 2018, 5, 22221–22228. [Google Scholar] [CrossRef]
- Basavaraju, N.; Prashantha, S.C.; Nagabhushana, H.; Kumar, A.N.; Chandrasekhar, M.; Shekhar, T.R.S.; Ravikumar, C.R.; Kumar, M.R.A.; Surendra, B.S.; Nagaswarupa, H.P. Luminescent and thermal properties of novel orange–red emitting MgNb2O6:Sm3+ phosphors for displays, photo catalytic and sensor applications. SN Appl. Sci. 2021, 3, 54. [Google Scholar] [CrossRef]
- Basavaraju, N.; Prashantha, S.C.; Surendra, B.S.; Shekhar, T.R.S.; Kumar, M.R.A.; Ravikumar, C.R.; Raghavendra, N.; Shashidhara, T.S. Structural and optical properties of MgNb2O6 NPs: Its potential application in photocatalytic and pharmaceutical industries as sensor. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100581. [Google Scholar] [CrossRef]
- Surendra, B.S.; Gurushantha, K.; Anantharaju, K.S.; Rudresh, M.; Basavaraju, N.; Raghavendra, N.; Jahagirdar, A.A.; Somashekar, H.M.; Murthy, H.C.A. Effective paracetamol sensor activity, thermal barrier coating (TBC), and UV-light-driven photocatalytic studies of ZrxO2:Mg2+(1_x) Nanoparticles. New J. Chem. 2023, 47, 3978. [Google Scholar] [CrossRef]
- Raghavendra, N.; Nagaswarupa, H.P.; Shekhar, T.R.S.; Mylarappa, M.; Surendra, B.S.; Prashantha, S.C.; Ravikumar, C.R.; Kumar, M.R.A.; Basavaraju, N. Development of clay ferrite nanocomposite: Electrochemical, sensors and photocatalytic studies. Appl. Surf. Sci. Adv. 2021, 5, 100103. [Google Scholar] [CrossRef]
- Ravikumar, C.R.; Santosh, M.S.; Nagaswarupa, H.P.; Prashantha, S.C.; Yallappa, S.; Kumar, M.R.A. Synthesis and characterization of β-Ni(OH)2 embedded with MgO and ZnO nanoparticles as nanohybrids for energy storage devices. Mater. Res. Express 2017, 4, 065503. [Google Scholar] [CrossRef]
- Ravi kumar, C.R.; Kotteeswaran, P.; BheemaRaju, V.; Murugan, A.; Santosh, M.S.; Nagaswarupa, H.P.; Prashantha, S.C.; Kumar, M.R.A.; Shivakumar, M.S. Influence of zinc additive and pH on the electrochemical activities of β-nickel hydroxide materials and its applications in secondary batteries. J. Energy Storage 2017, 9, 12–24. [Google Scholar] [CrossRef]
- Girish, K.M.; Prashantha, S.C.; Nagabhushana, H.; Ravikumar, C.R.; Nagaswarupa, H.P.; RamachandraNaik; Premakumar, H.B.; Umesh, B. Multi-functional Zn2TiO4:Sm3+ nanopowders: Excellent performance as an electrochemical sensor and an UV photocatalyst. J. Sci. Adv. Mater. Dev. 2018, 3, 151–160. [Google Scholar]
- Ravikumar, C.R.; Kumar, M.R.A.; Nagaswarupa, H.P.; Prashantha, S.C.; Bhatt, A.S.; Santosh, M.S.; Kuznetsov, D. CuO embedded β-Ni(OH)2 nanocomposite as advanced electrode materials for supercapacitors. J. Alloys Compd. 2018, 738, 332–339. [Google Scholar] [CrossRef]
- Nithyadharseni, P.; Abhilash, K.P.; Petnikota, S.; Anilkumar, M.R.; Jose, R.; Ozoemena, K.I.; Vijayaraghavan, R.; Kulkarni, P.; Balakrishna, G.; Chowdari, B.V.R.; et al. Synthesis and Lithium Storage Properties of Zn, Co and Mg doped SnO2 Nano Materials. Electron. Acta 2017, 247, 358–370. [Google Scholar] [CrossRef]
- Darbar, D.; Anilkumar, M.R.; Rajagopalan, V.; Bhattacharya, I.; IzaacElim, H.; Ramakrishnappa, T.; Ezema, F.I.; Jose, R.; Reddy, M.V. Studies on spinel cobaltites, MCo2O4 (M = Mn, Zn, Fe, Ni and Co) and their functional properties. Ceramic. Int. 2017, 44, 4630–4639. [Google Scholar] [CrossRef]
- Pratapkumar, C.; Prashantha, S.C.; Nagabhushana, H.; Anilkumar, M.R.; Ravikumar, C.R.; Nagaswarupa, H.P.; Jnaneshwara, D.M. White light emitting magnesium aluminate nanophosphor: Near ultra violet excited photoluminescence, photometric characteristics and its UV photocatalytic activity. J. Alloys Compd. 2017, 728, 1124–1138. [Google Scholar] [CrossRef]
- Avinash, B.; Ravikumar, C.R.; Kumar, M.R.A.; Nagaswarupa, H.P.; Santosh, M.S.; Bhatt, A.S.; Kuznetsov, D. Nano CuO: Electrochemical sensor for the determination of paracetamol and D-glucose. J. Phys. Chem. Solids 2019, 134, 193–200. [Google Scholar] [CrossRef]
Rate Constant (k) min−1 | % Degradation | |
---|---|---|
DG (sunlight) | 0.00849 | 66.08 |
DG (UV light) | 0.02102 | 88.02 |
FOR (sunlight) | 0.01067 | 67.95 |
FOR (UV light) | 0.02562 | 94.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.W.; Allag, N.; Utami, M.; Waheed-Ur-Rehman, M.; Al Saleh Al-Othoum, M.; Sadaf, S. Facile Green Synthesis of α-Bismuth Oxide Nanoparticles: Its Photocatalytic and Electrochemical Sensing of Glucose and Uric Acid in an Acidic Medium. J. Compos. Sci. 2024, 8, 47. https://doi.org/10.3390/jcs8020047
Alam MW, Allag N, Utami M, Waheed-Ur-Rehman M, Al Saleh Al-Othoum M, Sadaf S. Facile Green Synthesis of α-Bismuth Oxide Nanoparticles: Its Photocatalytic and Electrochemical Sensing of Glucose and Uric Acid in an Acidic Medium. Journal of Composites Science. 2024; 8(2):47. https://doi.org/10.3390/jcs8020047
Chicago/Turabian StyleAlam, Mir Waqas, Nassiba Allag, Maisari Utami, Mir Waheed-Ur-Rehman, Mohd Al Saleh Al-Othoum, and Shima Sadaf. 2024. "Facile Green Synthesis of α-Bismuth Oxide Nanoparticles: Its Photocatalytic and Electrochemical Sensing of Glucose and Uric Acid in an Acidic Medium" Journal of Composites Science 8, no. 2: 47. https://doi.org/10.3390/jcs8020047
APA StyleAlam, M. W., Allag, N., Utami, M., Waheed-Ur-Rehman, M., Al Saleh Al-Othoum, M., & Sadaf, S. (2024). Facile Green Synthesis of α-Bismuth Oxide Nanoparticles: Its Photocatalytic and Electrochemical Sensing of Glucose and Uric Acid in an Acidic Medium. Journal of Composites Science, 8(2), 47. https://doi.org/10.3390/jcs8020047