Evaluation of the Effect of the Composition of the Foam Glass Concrete on Its Flammability and Moisture Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Specimens Preparation
2.3. Test Methods
3. Results and Discussions
3.1. Short-Term and Capillary Water Absorption
3.2. Analysis of the Water Vapour Permeability
3.3. Analysis of the Flammability
3.4. Analysis of the Thermal Stability
3.5. Analysis of the Microstructure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sidney, M.; Young, J.F.; Darwin, D. Concrete, 2nd ed.; Prentice Hall, Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Kurpińska, M.; Ferenc, T. Effect of porosity on physical properties of lightweight cement composite with foamed glass aggregate. In Proceedings of the II International Conference of Computational Methods in Engineering Science, Gdańsk, Poland, 15 December 2017. [Google Scholar] [CrossRef]
- Bumanis, G.; Bajare, D.; Korjakins, A. Mechanical and Thermal Properties of Lightweight Concrete Made from Expanded Glass. J. Sustain. Archit. Civ. Eng. 2013, 2, 19–25. [Google Scholar] [CrossRef]
- Polat, R.; Demirboğa, R.; Karakoç, M.B.; Türkmen, I. The infuence of lightweight aggregate on the physicomechanical properties of concrete exposed to freeze-thaw cycles. Cold Reg. Sci. Technol. 2010, 60, 51–56. [Google Scholar] [CrossRef]
- Yu, R.; Van Onna, D.V.; Spiesz, P.; Yu, Q.L.; Brouwers, H.J.H. Development of ultra-lightweight fibre reinforced concrete applying expanded waste glass. J. Clean. Prod. 2016, 112, 690–701. [Google Scholar] [CrossRef]
- Adhikary, S.K.; Rudžionis, Ž. Influence of expanded glass aggregate size, aerogel and binding materials volume on the properties of lightweight concrete. Mater. Today Proc. 2020, 32, 712–718. [Google Scholar] [CrossRef]
- Dias, N.; Garrinhas, I.; Maximo, A.; Belo, N.; Roque, P.; Carvalho, M.T. Recoveryof glass fromthe inert fraction refused by MBT plants in a pilot plant. Waste Manag. 2015, 46, 201–211. [Google Scholar] [CrossRef]
- Vanitha, S.; Natrajan, V.; Praba, M. Utilization of waste plastics as a partial replacement of coarse aggregate in concrete blocks. Indian. J. Sci. Technol. 2015, 8, 1–6. [Google Scholar] [CrossRef]
- Kristalya, F.; Szabob, R.; Madaic, F.; Debreczeni, A.; Mucsie, G. Lightweight composite from fly ash geopolymer and glass foam. J. Sustain. Cem.-Based Mater. 2020, 10, 1–22. [Google Scholar] [CrossRef]
- Souza, M.T.; Maia, B.G.O.; Teixeira, L.B.; de Oliveira, K.G.; Teixeira, A.H.B.; de Oliveira, A.P.N. Glass foams produced from glass bottles and eggshell wastes. Process Saf. Environ. Prot. 2017, 111, 60–64. [Google Scholar] [CrossRef]
- Petersen, R.R.; König, J.; Yue, Y. The viscosity window of the silicate glass foam production. J. Non-Cryst. Solids 2017, 456, 49–54. [Google Scholar] [CrossRef]
- Mohajerani, A.; Vajna, J.; Cheung, T.H.; Kurmus, H.; Arulrajah, A.; Horpibulsuk, S. Practical recycling applications of crushed waste glass in construction materials: A review. Constr. Build. Mater. 2017, 156, 443–467. [Google Scholar] [CrossRef]
- Lakov, L.; Jivov, B.; Aleksandrova, M.; Ivanova, Y.; Toncheva, K. An innovative composite material based on sintered glass foam granules. J. Chem. Technol. Metall. 2018, 53, 1081–1086. [Google Scholar]
- Dixit, A.; Pang, S.D.; Kang, S.-H.; Moon, J. Lightweight structural cement composites with expanded polystyrene (EPS) for enhanced thermal insulation. Cem. Concr. Compos. 2019, 102, 185–197. [Google Scholar] [CrossRef]
- Šeputytė, J. Impact of Additives and Lightweight Aggregates on the Structure and Properties of Thermal Insulating Cementitious Composite. Doctoral Dissertation, Vilnius Gediminas Technical University, Vilnius, Lithuania, 2016; p. 129. [Google Scholar]
- Demirel, B. Optimization of the composite brick composed of expanded polystyrene and pumice blocks. Constr. Build. Mater. 2013, 40, 306–313. [Google Scholar] [CrossRef]
- Raps, D.; Hossieny, N.; Park, C.B.; Altstadt, V. Past and present developments in polymer bead foams and bead foaming technology. Polymer 2015, 56, 5–19. [Google Scholar] [CrossRef]
- Wang, S.; Lim, J.L.G.; Tan, K.H. Performance of lightweight cementitious composite incorporating carbon nanofibers. Cem. Concr. Compos. 2020, 109, 103561. [Google Scholar] [CrossRef]
- Šeputytė-Jucikė, J.; Vėjelis, S.; Kizinievič, V.; Kairytė, A.; Vaitkus, S. The Effect of Expanded Glass and Crushed Expanded Polystyrene on the Performance Characteristics of Lightweight Concrete. Appl. Sci. 2023, 13, 4188. [Google Scholar] [CrossRef]
- Adhikary, S.K.; Ashish, D.K. Turning waste expanded polystyrene into lightweight aggregate: Towards sustainable construction industry. Sci. Total Environ. 2022, 837, 155852. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, E. Properties of Lightweight Concrete Using Expanded Polystyrene as Aggregate. Int. J. Environ. Rural Dev. 2019, 10, 8–13. [Google Scholar] [CrossRef]
- Kadhim, F.J.; Muammar, A.; Almusawi, J.K.; Abed, M.S. A study of characteristics of man-made lightweight aggregate and lightweight concrete made from expanded polystyrene (eps) and cement mortar. Open Eng. 2023, 13, 20220432. [Google Scholar] [CrossRef]
- Sayadi, A.A.; Tapia, J.V.; Neitzert, T.R.; Clifton, G.C. Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete. Construct. Build. Mater. 2016, 112, 716–724. [Google Scholar] [CrossRef]
- Pundienė, I.; Pranckevičienė, J.; Kligys, M.; Kizinievič, O. The synergetic interaction of chemical admixtures on the properties of eco-friendly lightweight concrete from industrial technogenic waste. Construct. Build. Mater. 2020, 256, 119461. [Google Scholar] [CrossRef]
- Adhikary, S.K.; Ashish, D.K.; Rudžionis, Ž. Expanded glass as. light-weight aggregate in concrete—A review. J. Clean. Prod. 2021, 313, 127848. [Google Scholar] [CrossRef]
- Kazmina, O.V.; Tokareva, A.Y.; Vereshchagin, V.I. Using quartzofeldspathic waste to obtain foamed glass material. Resour. Technol. 2016, 2, 23–29. [Google Scholar] [CrossRef]
- Chakartnarodom, P.; Ineure, P. Foam glass development using glass cullet and fly ash or rice husk ash as the raw materials. Key Eng. Mater. 2014, 608, 73–78. [Google Scholar] [CrossRef]
- Yio, M.H.N.; Xiao, Y.; Ji, R.; Russell, M.; Cheeseman, C. Production of foamed glass-ceramics using furnace bottom ash and glass. Ceram. Int. 2020, 47, 8697–8706. [Google Scholar] [CrossRef]
- Šeputytė-Jucikė, J.; Sinica, M. The effect of expanded glass and polystyrene waste on the properties of lightweight aggregate concrete. Eng. Struct. Technol. 2016, 8, 31–40. [Google Scholar] [CrossRef]
- Adhikary, S.K.; Rudžionis, Ž.; Tučkutė, S.; Ashish, D.K. Effects of carbon nanotubes on expanded glass and silica aerogel based lightweight concrete. Sci. Rep. 2021, 11, 2104. [Google Scholar] [CrossRef]
- Pichor, W.; Kaminski, A.; Szoldra, P.; Frac, M. Lightweight cement mortars with granulated foam glass and waste perlite addition. Adv. Civ. Eng. 2019, 2019, 1705490. [Google Scholar] [CrossRef]
- Spiesz, P.; Yu, Q.L.; Brouwers, H.J.H. Development of cement-based lightweight composites—Part 2: Durability-related properties. Cement Concr. Compos. 2013, 44, 30–40. [Google Scholar] [CrossRef]
- Torres, M.L.; García-Ruiz, P.A. Lightweight pozzolanic materials used in mortars: Evaluation of their influence on density, mechanical strength and water absorption. Cem. Concr. Compos. 2009, 31, 114–119. [Google Scholar] [CrossRef]
- Carsana, M.; Bertolini, L. Durability of lightweight concrete with expanded glass and silica fume. ACI Mater. J. 2017, 114, 207–213. [Google Scholar] [CrossRef]
- Gülengül, S.; Kar, F. Evaluation of the expanded glass as a light concrete aggregate. Innov. Infrastruct. Solut. 2022, 7, 149. [Google Scholar] [CrossRef]
- Namsone, E.; Sahmenko, G.; Namsone, E.; Korjakins, A. Reduction of the capillary water absorption of foamed concrete by using the porous aggregate. IOP Conf. Ser. Mater. Sci. Eng. 2017, 251, 12030. [Google Scholar] [CrossRef]
- Du, H. Properties of ultra-lightweight cement composites with nano-silica. Construct. Build. Mater. 2019, 199, 696–704. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Sikora, P.; Kim, D.J.; El Madawy, M.E.; Abd Elrahman, M. Effect of different expanded aggregates on durability-related characteristics of lightweight aggregate concrete. Mater. Charact. 2021, 173, 110907. [Google Scholar] [CrossRef]
- Ducman, V.; Mirtic, B. Water vapour permeability of lightweight concrete prepared with different types of lightweight aggregates. Construct. Build. Mater. 2014, 68, 314–319. [Google Scholar] [CrossRef]
- EN 196-2; Method of Testing Cement—Part 2: Chemical Analysis of Cement. European Committee for Standardization: Brussels, Belgium, 2013.
- EN 1097-6; Tests for Mechanical and Physical Properties of Aggregates—Part 6: Determination of Particle Density and Water Absorption. European Committee for Standardization: Brussels, Belgium, 2022.
- EN 29767; Thermal Insulating Products for Building Applications—Determination of Short-Term Water Absorption by Partial Immersion. European Committee for Standardization: Brussels, Belgium, 2016.
- EN 772-11; Methods of Test for Masonry Units—Part 11: Determination of Water Absorption of Aggregate Concrete, Autoclaved Aerated Concrete, Manufactured Stone and Natural Stone Masonry Units due to Capillary Action and the Initial Rate of Water Absorption of Clay Masonry Units. European Committee for Standardization: Brussels, Belgium, 2011.
- EN 12086; Thermal Insulating Products for Building Applications—Determination of Water Vapour Transmission Properties. European Committee for Standardization: Brussels, Belgium, 2013.
- EN ISO 4590; Rigid Cellular Plastics—Determination of the Volume Percentage of Open Cells and of Closed Cells. European Committee for Standardization: Brussels, Belgium, 2016.
- EN ISO 11925-2; Reaction to Fire Tests—Ignitability of Products Subjected to Direct Impingement of Flame—Part 2: Single-Flame Source Test. European Committee for Standardization: Brussels, Belgium, 2020.
- EN 13823; Reaction to Fire Tests for Building Products—Building Products Excluding Floorings Exposed to the Thermal Attack by a Single Burning Item. European Committee for Standardization: Brussels, Belgium, 2022.
- EN ISO 1182; Reaction to Fire Tests for Products—Non-Combustibility Test. European Committee for Standardization: Brussels, Belgium, 2020.
- EN ISO 1716; Reaction to Fire Tests for Products—Determination of the Gross Heat of Combustion (Calorific Value). European Committee for Standardization: Brussels, Belgium, 2018.
- Data Science Textbook. 2020. Available online: https://docs.tibco.com/data-science/textbook (accessed on 15 December 2023).
- EN 13501-1; Fire Classification of Construction Products and Building Elements—Part 1: Classification Using Data from Reaction to Fire Tests. European Committee for Standardization: Brussels, Belgium, 2018.
- Santos, T.A.; e Silva, G.A.O.; Ribeiro, D.V. Mineralogical analysis of portland cement pastes rehydrated. J. Solid Waste Technol. Manag. 2020, 46, 15–23. [Google Scholar] [CrossRef]
- Sikarskas, D. Effect of Aluminosilicate Pozzolanic Additives and Polyvinyl Alcohol Fibre on the Structure and Physical-Mechanical Properties of the Lightweight Composite. Doctoral Dissertation, Vilnius Gediminas Technical University, Vilnius, Lithuania, 2023; p. 113. [Google Scholar]
- Zenga, Q.; Fanga, R.; Lib, H.; Penga, Y.; Wang, J. Tailoring the thermal and mechanical properties of lightweight cementbased composites by macro and micro fillers. Cem. Concr. Compos. 2019, 102, 169–184. [Google Scholar] [CrossRef]
- Shao, X.; Du, Y.; Zheng, X.; Wang, J.; Wang, Y.; Shao, S.; Xin, Z.; Li, L. Reduced fire hazards of expandable polystyrene building materials via intumescent flame-retardant coatings. J. Mater. Sci. 2020, 55, 7555–7572. [Google Scholar] [CrossRef]
- El-Diadamony, H.; Amer, A.A.; Sokkary, T.M.; El-Hoseny, S. Hydration and characteristics of metakaolin pozzolanic cement pastes. HBRC J. 2018, 14, 150–158. [Google Scholar] [CrossRef]
- Li, L.; Ziyabek, N.; Jiang, Y.; Xiao, J.; Poon, C.S. Effect of carbonation duration on properties of recycled aggregate concrete. Case Stud. Constr. Mater. 2023, 19, e02640. [Google Scholar] [CrossRef]
- Abed, M.A.; Lubloy, E. Understanding the effect of recycled concrete aggregate and cementitious materials on concrete’s fire resistance. J. Struct. Fire Eng. 2022, 13, 421–432. [Google Scholar] [CrossRef]
- Vlasova, I.E.; Yapaskurt, V.O.; Averin, A.A.; Melnik, O.E.; Zolotov, D.A.; Senin, R.A.; Poliakova, T.R.; Nevolin, I.M.; Kalmykov, S.N.; Shiryaev, A.A. Nuclear Melt Glass from Experimental Field, Semipalatinsk Test Site. Energies 2022, 15, 9121. [Google Scholar] [CrossRef]
Chemical Composition of OPC, % | ||||||||
---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | SO3 | Other |
19.23 | 4.91 | 3.50 | 62.46 | 3.19 | 0.94 | 0.12 | 3.10 | 2.55 |
Chemical Composition of MKW, % | |||||||
---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O + Na2O | TiO2 | Other |
46.1 | 37.2 | 1.10 | 0.20 | 0.20 | 0.70 | 0.70 | 13.8 |
Title of Additive | Properties | |||
---|---|---|---|---|
pH | Electrical Conductivity, µS/cm | Shape | The Amount of Active Substance, % | |
AEA | 8.0 | - | White powder | 94.0 |
SPL | 8.4 | 250 | Yellow powder | - |
Amount of Raw Materials per 1 m3 of Mixture, kg | Mixture Composition Number | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
OPC | 70 | 100 | 130 | 70 | 100 | 130 |
MKW | 7 | 10 | 13 | 7 | 10 | 13 |
SPL | 0.35 | 0.50 | 0.65 | 0.35 | 0.50 | 0.65 |
AEA | 0.0175 | 0.0250 | 0.0325 | 0.0175 | 0.0250 | 0.0325 |
EG (8–16) mm | 72 | |||||
EG (4–8) mm | 28 | |||||
EG (0–2) mm | 58 | – | ||||
CEPW (0–2) mm | – | 5 | ||||
W/C | 0.56 | 0.42 | 0.34 | 0.66 | 0.53 | 0.46 |
Equation | R | R2 | Adjusted R2 | F | p | |
---|---|---|---|---|---|---|
1 | ||||||
0.949 | 0.901 | 0.894 | 145.78 | 0 | ||
2 | ||||||
0.971 | 0.943 | 0.942 | 333.20 | 0 |
Coefficient | Multiple R2 | Adjusted R2 | F | p | Note |
---|---|---|---|---|---|
Coefficients for Figure 9 | |||||
(a) | 0.382 | 0.300 | 4.64 | 0.0271 | Significant |
(b) | 0.598 | 0.544 | 11.16 | 0.0107 | Significant |
(c) | 0.000210 | −0.0623 | 0.00336 | 0.955 | Non-significant |
(d) | 0.0388 | −0.0212 | 0.647 | 0.433 | Non-significant |
Coefficient | Multiple R2 | Adjusted R2 | F | p | Note |
---|---|---|---|---|---|
Coefficients for Figure 10 | |||||
(a) | 0.314 | 0.222 | 3.43 | 0.0595 | Non-significant |
(b) | 0.275 | 0.178 | 2.84 | 0.0899 | Non-significant |
(c) | 0.539 | 0.510 | 18.68 | 0.000526 | Significant |
(d) | 0.694 | 0.675 | 36.27 | 0.0000180 | Significant |
Coefficient | Multiple R2 | Adjusted R2 | F | p | Note |
---|---|---|---|---|---|
Coefficients for Figure 11 | |||||
(a) | 0.0689 | −0.0553 | 0.555 | 0.587 | Non-significant |
(b) | 0.780 | 0.766 | 56.77 | 0.000001 | Significant |
Number of Compositions | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Combustion after removing the flame source | No | No | No | No | No | No |
The flame reaches 150 mm in height | No (0 mm) | No (0 mm) | No (0 mm) | No (32 mm) | No (29 mm) | No (26 mm) |
Time when the flame reaches 150 mm height, s | - | - | - | - | - | - |
Filter paper ignition | No | No | No | No | No | No |
Smouldering | No | No | No | No | No | No |
Composition Number | Density of Specimens, kg/m3 | Heat Release Rate (HRRmean), kW | Total Heat Released (THR600s), MJ | Smoke Production Rate (SPRmean), m2/s, | Total Smoke Production (TSP600s), m2 | Smoke Generation Rate Indicator (SMOGRA), cm2/s2 | An Indicator of the Rate of Fire Growth (FIGRA (=FIGRA0.2 MJ)), W/s. |
---|---|---|---|---|---|---|---|
1 | 250 | 18.2 | 0.1 | 0.005 | 14.7 | 0 | 0 |
4 | 230 | 29.9 | 0.5 | 0.037 | 34.2 | 0 | 0 |
Composition Number | Density of Specimen, kg/m3 | Average Temperature Rise, °C | Average Duration of Continuous Burning, s | Average Mass Loss of Specimens, % |
---|---|---|---|---|
1 | 250 | 38.4 | 0 | 3.24 |
2 | 295 | 40.8 | 0 | 4.17 |
3 | 335 | 42.1 | 0 | 4.23 |
4 | 230 | 62.3 | 19 | 5.26 |
5 | 280 | 51.2 | 18 | 6.48 |
6 | 310 | 61.5 | 19 | 6.83 |
Mixture Composition Number | Tmax., °C | Char Yield at 1000 °C, wt.% | |||
---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | ||
1 | 110 | – | 440 | 690 | 91.3 |
4 | 110 | 315 | 445 | 710 | 83.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šeputytė-Jucikė, J.; Vėjelis, S.; Vaitkus, S.; Kairytė, A.; Kremensas, A. Evaluation of the Effect of the Composition of the Foam Glass Concrete on Its Flammability and Moisture Characteristics. J. Compos. Sci. 2024, 8, 105. https://doi.org/10.3390/jcs8030105
Šeputytė-Jucikė J, Vėjelis S, Vaitkus S, Kairytė A, Kremensas A. Evaluation of the Effect of the Composition of the Foam Glass Concrete on Its Flammability and Moisture Characteristics. Journal of Composites Science. 2024; 8(3):105. https://doi.org/10.3390/jcs8030105
Chicago/Turabian StyleŠeputytė-Jucikė, Jurga, Sigitas Vėjelis, Saulius Vaitkus, Agnė Kairytė, and Arūnas Kremensas. 2024. "Evaluation of the Effect of the Composition of the Foam Glass Concrete on Its Flammability and Moisture Characteristics" Journal of Composites Science 8, no. 3: 105. https://doi.org/10.3390/jcs8030105
APA StyleŠeputytė-Jucikė, J., Vėjelis, S., Vaitkus, S., Kairytė, A., & Kremensas, A. (2024). Evaluation of the Effect of the Composition of the Foam Glass Concrete on Its Flammability and Moisture Characteristics. Journal of Composites Science, 8(3), 105. https://doi.org/10.3390/jcs8030105