Development of High-Sensitivity Thermoplastic Polyurethane/Single-Walled Carbon Nanotube Strain Sensors through Solution Electrospinning Process Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Solution Preparation and Solution Electrospinning Process (SEP)
2.3. TPU/SWCNT Strain Sensor Fabrication
2.4. Flax/Epoxy Composites Fabrication
2.5. Scanning Electron Microscopy (SEM) and Microstructure Analysis
2.6. Uniaxial Tensile Tests and Electrical Resistance Measurements
2.6.1. TPU Samples
2.6.2. Flax/Epoxy Composite Samples
2.7. Porosimetry and Porosity
3. Results
3.1. Test Outline Programme
3.2. Uniaxial Tensile Properties and Electrical Resistance Measurements
3.3. Morphology Examination
3.4. Strain-Sensing Demonstration
3.4.1. Human Finger Motion Detection
3.4.2. Strain Recording during Tensile Experiments of a Flax/Epoxy Composites
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, W.; Jiang, Z.; Ribbe, A.E.; Thayumanavan, S. Smart organic two-dimensional materials based on a rational combination of non-covalent interactions. Angew. Chem. Int. Ed. 2016, 55, 10707–10711. [Google Scholar] [CrossRef] [PubMed]
- Kotrotsos, A.; Kostopoulos, V. Self-healing of structural composites containing common thermoplastics enabled or not bynanotechnology as healing agent. In Book Self-Healing Composite Materials, 1st ed.; Khan, A., Jawaid, M., Raveendran, S.N., Asiri, A.M.A., Eds.; Woodheal Publishing: Sawston, UK, 2020; Volume 18, pp. 327–374. [Google Scholar]
- Shen, H.; Li, L.; Xu, D. Preparation of one-dimensional SnO2-In2O3 nano-heterostructures and their gas-sensing property. RSC Adv. 2017, 7, 33098–33105. [Google Scholar] [CrossRef]
- Pyo, J.Y.; Cho, W.J. In-plane-gate a-IGZO thin-film transistor for high sensitivity pH sensor applications. Sens. Actuat. B-Chem. 2018, 276, 101–106. [Google Scholar] [CrossRef]
- You, M.H.; Yan, X.; Zhang, J.; Wang, X.X.; He, X.X.; Yu, M.; Ning, X.; Long, Y.Z. Colorimetric humidity sensors based on electrospun polyamide/CoCl2 nanofibrous membranes. Nanoscale Res. Lett. 2017, 12, 360. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Long, Y.Z.; Zhang, H.D.; Liu, S.L.; Liu, L.Z.; Zhang, J.C.; Liu, G.X.; Shan, F.K. Fabrication of ultrathin In2O3 hollow fibers for UV light sensing. Phys. Scr. 2014, 89, 115808. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Ju, D.D.; Li, X.; Zhang, J.C.; Yan, X.; Long, Y.Z.; Song, F. Flexible inorganic core-shell nanofibers endowed with tunable multicolor upconversion fluorescence for simultaneous monitoring dual drug delivery. Chem. Eng. J. 2018, 349, 554–561. [Google Scholar] [CrossRef]
- Darbandi, S.M.A.; Nouri, M.; Mokhtari, J. Electrospun nanostructures based on polyurethane/MWCNTs for strain sensing applications. Fibers Polym. 2012, 13, 1126–1131. [Google Scholar] [CrossRef]
- Hia, I.L.; Snyder, A.D.; Turicek, J.S.; Blanc, F.; Patrick, J.F.; Therriault, D. Electrically conductive and 3D-printable copolymer/MWCNT nanocomposites for strain sensing. Compos. Sci. Technol. 2022, 232, 109850. [Google Scholar] [CrossRef]
- Haggenmueller, R.; Guthy, C.; Lukes, J.R.; Fischer, J.E.; Winey, K.I. Single wall carbon nanotube/polyethylene nanocomposites: Thermal and electrical conductivity. Macromolecules 2007, 40, 2417–2421. [Google Scholar] [CrossRef]
- Doshi, J.; Reneker, D. Electrospinning process and applications of electrospun fibers. J. Electrost. 1995, 35, 151–160. [Google Scholar] [CrossRef]
- Kostopoulos, V.; Kotrotsos, A.; Fouriki, K. Graphene Nanoplatelet-and Hydroxyapatite-Doped Supramolecular Electrospun Fibers as Potential Materials for Tissue Engineering and Cell Culture. Int. J. Mol. Sci. 2019, 20, 1674. [Google Scholar] [CrossRef] [PubMed]
- Kostopoulos, V.; Kotrotsos, A.; Fouriki, K.; Kalarakis, A.; Portan, D. Fabrication and Characterization of Polyetherimide Electrospun Scaffolds Modified with Graphene Nano-Platelets and Hydroxyapatite Nano-Particles. Int. J. Mol. Sci. 2020, 21, 583. [Google Scholar] [CrossRef] [PubMed]
- Repanas, A.; Kotrotsos, A.; Kostopoulos, V.; Glasmacher, B. MWCNT-doped Nylon electrospun fibers as materials for increasing damage tolerance of CFRPs in structural applications. Int. J. Innov. Sci. Eng. Technol. 2016, 3, 272–400. [Google Scholar]
- Lobo, A.O.; Afewerki, S.; Machado de Paula, M.M.; Ghannadian, P.; Marciano, F.R.; Zhang, Y.S.; Webster, T.J.; Khademhosseini, A. Electrospun nanofiber blend with improved mechanical and biological performance. Int. J. Nanomed. 2018, 13, 7891–7903. [Google Scholar] [CrossRef] [PubMed]
- Frenot, A.; Chronakis, I.S. Polymer nanofibers assembled by electrospinning. Curr. Opin. Colloid Interface Sci. 2003, 8, 64–75. [Google Scholar] [CrossRef]
- Demir, M.M.; Yilgor, E.; Erman, B. Electrospun of polyurethane fibers. Polymer 2022, 43, 3303–3309. [Google Scholar] [CrossRef]
- Wang, H.; Feng, Y.; Behl, M.; Lendlein, A.; Zhao, H.; Xiao, R.; Lu, J.; Zhang, L.; Guo, J. Hemocompatible polyurethane/gelatin-heparin nanofibrous scaffolds formed by a bi-layer electrospinning technique as potential artificial blood vessels Front. Chem. Sci. Eng. 2011, 5, 392–400. [Google Scholar]
- Kim, S.E.; Heo, D.N.; Lee, J.B.; Kim, J.R.; Park, S.H.; Jeon, S.H.; Kwon, I.K. Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed. Mater. 2009, 4, 044106. [Google Scholar] [CrossRef] [PubMed]
- Gorji, M.; Jeddi, A.A.A.; Gharehaghaji, A.A. A review on emerging developments in thermal and moisture management by membrane-based clothing systems towards personal comfort. J. Appl. Polym. Sci. 2022, 139, e52416. [Google Scholar] [CrossRef]
- Mistrya, P.; Chhabraa, R.; Mukea, S.; Narvekara, A.; Sathayea, S.; Jainb, R.; Dandekar, P. Fabrication and characterization of starch-TPU based nanofibers for wound healing applications. Meter. Sci. Eng. 2021, 119, 111316. [Google Scholar] [CrossRef] [PubMed]
- Karamikamkar, S.; Abidli, A.; Tafreshi, O.A.; Ghaffari-Mosanenzadeh, S.; Buahom, P.; Naguib, H.E.; Park, C.B. Nanocomposite Aerogel Network Featuring High Surface Area and Superinsulation Properties. Chem. Mater. 2024, 36, 642–656. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.; Wu, J.; Hu, J.; Mou, J.; Li, L.; Feng, Y.; Deng, Z. Preparation of eGaIn NDs/TPU Composites for X-ray Radiation Shielding Based on Electrostatic Spinning Technology. Materials 2024, 17, 272. [Google Scholar] [CrossRef] [PubMed]
- Sáenz-Pérez, M.; Bashir, T.; Laza, J.M.; García-Barrasa, J.; Vilas, J.L.; Skrifvars, M.; León, L.M. Novel shape-memory polyurethane fibers for textile applications. Tex. Res. J. 2019, 89, 1027–1037. [Google Scholar] [CrossRef]
- Lakshman, L.R.; Shalumon, K.T.; Nair, S.V.; Jayakumar, R.; Nair, S.V.J. Preparation of Silver Nanoparticles Incorporated Electrospun Polyurethane Nano-fibrous Mat for Wound Dressing. Macromol. Sci. Part A Pure Appl. Chem. 2010, 47, 1012–1018. [Google Scholar] [CrossRef]
- Gorji, M.; Jeddi, A.A.A.; Gharehaghaji, A.A.J. Fabrication and characterization of polyurethane electrospun nanofiber membranes for protective clothing applications. Appl. Polym. Sci. 2012, 125, 4135–4141. [Google Scholar] [CrossRef]
- Wang, X.; Qu, M.; Wu, K.; Schubert, D.W.; Liu, X. High sensitive thermoplastic polyurethane/carbon nanotubes flexible strain sensor fitting via novel optimization empirical model. Adv. Compos. Hybrid Mater. 2023, 6, 63. [Google Scholar] [CrossRef]
- Xu, M.X.; Qi, J.J.; Feng, L.F.; Zhang, Y. Highly stretchable strain sensors with reduced graphene oxide sensing liquids for wearable electronics. Nanoscale 2018, 10, 5264–5271. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Luo, Y.F.; Guo, A.; Yan, L.J.; Wu, Y.; Jiang, K.L.; Li, Q.Q.; Fan, S.S.; Wang, J.P. Flexible and transparent strain sensors based on super-aligned carbon nanotube films. Nanoscale 2017, 9, 6716–6723. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.C.; Qin, Y.J.; Sun, Y.; Xu, H.G.; Schubert, D.W.; Zheng, K.; Xu, W.; Nilsson, F. Biocompatible, flexible strain sensor fabricated with polydopamine-coated nanocomposites of nitrile rubber and carbon black. ACS Appl. Mater. Interfaces. 2020, 12, 42140–42152. [Google Scholar] [CrossRef] [PubMed]
- Aly, K.; Bradford, P.D. Real-time impact damage sensing and localization in composites through embedded aligned carbon nanotube sheets. Compos. B Eng. 2019, 162, 522–531. [Google Scholar] [CrossRef]
- Stetco, C.; Sam-Daliri, O.; Faller, L.M.; Zangl, H. Piezocapacitive sensing for structural health monitoring in adhesive joints. In Proceedings of the International Instrumentation and Measurement Technology Conference, Massey University, Auckland, New Zealand, 20–23 May 2019. [Google Scholar]
- Sanchaniya, J.V.; Lasenko, I.; Kanukuntala, S.P.; Smogor, H.; Viluma-Gudmona, A.; Krasnikovs, A.; Tipans, I.; Gobins, V. Mechanical and Thermal Characterization of Annealed Oriented PAN Nanofibers. Polymers 2023, 15, 3287. [Google Scholar] [CrossRef] [PubMed]
- Sankar, R.M.; Meera, K.S.; Mandal, A.B.; Jaisankar, S.N. Thermoplastic polyurethane/single-walled carbon nanotube composites with low electrical resistance. High Perform. Polym. 2013, 25, 135–146. [Google Scholar] [CrossRef]
- Wang, X.; Xue, R.; Li, M.; Guo, X.; Liu, B.; Xu, W.; Wang, Z.; Liu, Y.; Wang, G. Strain and stress sensing properties of the MWCNT/TPU nanofiber film. Surf. Interfaces 2022, 32, 102132. [Google Scholar] [CrossRef]
- Farcau, C.; Sangeetha, N.M.; Moreira, H.; Viallet, B.; Grisolia, J.; Ciuculescu-Pradines, D.; Ressier, L. High-Sensitivity Strain Gauge Based on a Single Wire of Gold Nanoparticles Fabricated by Stop-and-Go Convective Self-Assembly. ACS Nano 2011, 5, 7137–7143. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotrotsos, A.; Syrmpopoulos, N.; Gavathas, P.; Moica, S.; Kostopoulos, V. Development of High-Sensitivity Thermoplastic Polyurethane/Single-Walled Carbon Nanotube Strain Sensors through Solution Electrospinning Process Technique. J. Compos. Sci. 2024, 8, 213. https://doi.org/10.3390/jcs8060213
Kotrotsos A, Syrmpopoulos N, Gavathas P, Moica S, Kostopoulos V. Development of High-Sensitivity Thermoplastic Polyurethane/Single-Walled Carbon Nanotube Strain Sensors through Solution Electrospinning Process Technique. Journal of Composites Science. 2024; 8(6):213. https://doi.org/10.3390/jcs8060213
Chicago/Turabian StyleKotrotsos, Athanasios, Nikolaos Syrmpopoulos, Prokopios Gavathas, Sorina Moica, and Vassilis Kostopoulos. 2024. "Development of High-Sensitivity Thermoplastic Polyurethane/Single-Walled Carbon Nanotube Strain Sensors through Solution Electrospinning Process Technique" Journal of Composites Science 8, no. 6: 213. https://doi.org/10.3390/jcs8060213
APA StyleKotrotsos, A., Syrmpopoulos, N., Gavathas, P., Moica, S., & Kostopoulos, V. (2024). Development of High-Sensitivity Thermoplastic Polyurethane/Single-Walled Carbon Nanotube Strain Sensors through Solution Electrospinning Process Technique. Journal of Composites Science, 8(6), 213. https://doi.org/10.3390/jcs8060213