Assessment of Adhesion in Woven Fabric-Reinforced Laminates (FRLs) Using Novel Yarn Pullout in Laminate Test
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Fabric Structure Parameters
2.3. Laminates Formation
2.4. Testing and Characterization
3. Results and Discussions
3.1. T-Peel Test
3.2. Correlation between Peel and Pullout in Laminate Test
3.3. Yarn Pullout in FRL Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Litteken, D.A. Inflatable Technology: Using Flexible Materials to Make Large Structures. In Proceedings of the Electroactive Polymer Actuators and Devices (EAPAD) XXI, Denver, CO, USA, 4–7 March 2019. [Google Scholar] [CrossRef]
- Mandlekar, N.; Joshi, M.; Butola, B.S. A Review on Specialty Elastomers Based Potential Inflatable Structures and Applications. Adv. Ind. Eng. Polym. Res. 2022, 5, 33–45. [Google Scholar] [CrossRef]
- Abramowitch, A. The Advantages of Inflatable Structures. Giant Inflatables Industrial. Available online: https://www.industrysearch.com.au/the-advantages-of-inflatable-structures/f/19393 (accessed on 8 April 2022).
- Veldman, S.L.; Vermeeren, C.A.J.R. Inflatable Structures in Aerospace Engineering—An Overview. Compos. Mater. Struct. 2001, 468, 93. [Google Scholar]
- Li, A. Evaluation of Laminated Hull Material for High Altitude Airship. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2018. [Google Scholar]
- Smith, M.; Rainwater, L. Applications of Scientific Ballooning Technology to High Altitude Airships. Aerosp. Res. Cent. 2012, 17–19. [Google Scholar] [CrossRef]
- Li, H.; Hu, Y.; Fu, X.; Zheng, X.; Liu, H.; Tao, J. Effect of Adhesive Quantity on Failure Behavior and Mechanical Properties of Fiber Metal Laminates Based on the Aluminum–Lithium Alloy. Compos. Struct. 2016, 152, 687–692. [Google Scholar] [CrossRef]
- Čuk, M.; Bizjak, M.; Kočevar, T.N. Influence of Simple and Double-Weave Structures on the Adhesive Properties of 3D Printed Fabrics. Polymers 2022, 14, 755. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.-C.; Lou, C.-W.; Lin, J.-Y.; Lin, T.A.; Lin, J.-H. Mechanical Property Evaluations of Flexible Laminated Composites Reinforced by High-Performance Kevlar Filaments: Tensile Strength, Peel Load, and Static Puncture Resistance. Compos. Part B Eng. 2019, 166, 139–147. [Google Scholar] [CrossRef]
- Macchi, P.; Sironi, A. Chemical Bonding in Transition Metal Carbonyl Clusters: Complementary Analysis of Theoretical and Experimental Electron Densities. Coord. Chem. Rev. 2003, 238–239, 383–412. [Google Scholar] [CrossRef]
- Grabowski, S.J.; Leszczynski, J. Hydrogen Bonding—New Insights; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Chowdhury, S.C.; Sockalingam, S.; Gillespie, J.W., Jr. Inter-molecular interactions in ultrahigh molecular weight polyethylene single crystals. Comput. Mater. Sci. 2020, 172, 109306. [Google Scholar] [CrossRef]
- Deshpande, V.S. Ultra-Strong Molecules, Ballistic Performance of Ultra-High Molecular Weight Polyethylene Composites. In High-Entropy Materials, Ultra-Strong Molecules, and Nanoelectronics; National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2019; pp. 3–4. [Google Scholar] [CrossRef]
- Abbott, S. Sticking Together: The Science of Adhesion; Royal Society of Chemistry: London, UK, 2020. [Google Scholar]
- Chhetri, S.; Bougherara, H. A comprehensive review on surface modification of UHMWPE fiber and interfacial properties. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106146. [Google Scholar] [CrossRef]
- Galuszynski, S. Structure and Tightness of Woven Fabrics. Indian J. Text. Res. 1987, 12, 71–77. [Google Scholar] [CrossRef]
- Peirce, F.T. Geometry of Cloth Structure. Text. Res. J. 1937, 28, 45–96. [Google Scholar] [CrossRef]
- El Messiry, M.; Mito, A.-B.; Al-Oufy, A.; El-Tahan, E. Effect of Fabric Material and Tightness on the Mechanical Properties of Fabric–Cement Composites. Alex. Eng. J. 2014, 53, 785–801. [Google Scholar] [CrossRef]
- ASTM Standard D1876; Standard Test Method for Peel Resistance of Adhesives (T-Peel Test). ASTM International: West Conshohocken, PA, USA, 2016.
- Hussain, M.; Imad, A.; Saouab, A.; Kanit, T.; Nawab, Y.; Herbelot, C.; Kashif, M. Properties and Characterization of Novel 3D Jute Reinforced Natural Fibre Aluminium Laminates. J. Compos. Mater. 2020, 55, 1879–1891. [Google Scholar] [CrossRef]
- Broughton, W.R.; Mera, R.D.; Hinopoulos, G. Creep Testing of Adhesive Joints T-Peel Test; National Physical Laboratory: Teddington, UK, 1999. [Google Scholar]
- Dhaliwal, G.S.; Newaz, G.M. Effect of Resin Rich Veil Cloth Layers on the Uniaxial Tensile Behavior of Carbon Fiber Reinforced Fiber Metal Laminates. J. Compos. Sci. 2018, 2, 61. [Google Scholar] [CrossRef]
- Adekunle, F. Evaluation and Enhancement of Adhesion in Fiber-Reinforced Laminated Structures. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2024. [Google Scholar]
- Nilakantan, G.; Gillespie, J.W., Jr. Yarn Pull-out Behavior of Plain Woven Kevlar Fabrics: Effect of Yarn Sizing, Pullout Rate, and Fabric Pre-Tension. Compos. Struct. 2013, 101, 215–224. [Google Scholar] [CrossRef]
No. | Fiber Type | Fabric Areal Density (g/m2) | Woven Fabric ID | Yarn Linear Density (tex, g/km) | Fabric Count (ends/cm × picks/cm) |
---|---|---|---|---|---|
1 | Kevlar | 36 | KP36 | 21.5 | 8 × 8 |
2 | Kevlar | 60 | KP60 | 21.5 | 13.5 × 13.5 |
3 | Kevlar | 140 | KP140 | 150 | 5.3 × 5.3 |
4 | Kevlar | 170 | KP170 | 127 | 6.5 × 6.5 |
5 | UHMWPE | 66 | UP66 | 24.5 | 15.7 × 11.8 |
6 | UHMWPE | 80 | UP80 | 24.5 | 19.7 × 13.8 |
Sample ID | Cover Fabric | Cover Weft | Cover Warp |
---|---|---|---|
KP36 | 0.92 | 0.69 | 0.74 |
KP60 | 0.97 | 0.84 | 0.84 |
KP140 | 0.97 | 0.81 | 0.83 |
KP170 | 0.98 | 0.85 | 0.88 |
UP66 | 0.92 | 0.61 | 0.80 |
UP80 | 0.98 | 0.66 | 0.94 |
No. | Fiber Type | Fabric Areal Density (g/m2) | Yarn Linear Density (tex, g/km) | Fabric Count (ends/cm × picks/cm) | Adhesive | Laminate ID |
---|---|---|---|---|---|---|
1 | Kevlar | 36 | 21.5 | 8 × 8 | EVOH | KP36_EVOH |
2 | EVA | KP36_EVA | ||||
3 | TPU | KP36_TPU | ||||
4 | Kevlar | 60 | 21.5 | 13.5 × 13.5 | EVOH | KP60_EVOH |
5 | EVA | KP60_EVA | ||||
6 | TPU | KP60_TPU | ||||
7 | Kevlar | 140 | 150 | 5.3 × 5.3 | EVOH | KP140_EVOH |
8 | EVA | KP140_EVA | ||||
9 | TPU | KP140_TPU | ||||
10 | Kevlar | 170 | 126.7 | 6.7 × 6.5 | EVOH | KP170_EVOH |
11 | EVA | KP170_EVA | ||||
12 | TPU | KP170_TPU | ||||
13 | UHMWPE | 66 | 24.5 | 15.7 × 11.8 | EVA | UP66_EVA |
14 | TPU | UP66_TPU | ||||
15 | UHMWPE | 80 | 24.5 | 19.7 × 13.8 | EVA | UP80_EVA |
16 | TPU | UP80_TPU |
Sample ID | Weft | Warp |
---|---|---|
KP36_EVA | No difference | No difference |
KP36_TPU | Ad to fab > Ad to film | Ad to fab > Ad to film |
KP60_EVA | No difference | No difference |
KP60_TPU | No difference | Ad to fab > Ad to film |
KP140_EVA | No difference | No difference |
KP140_TPU | Ad to fab > Ad to film | Ad to film > Ad to fab |
KP170_EVA | Ad to fab > Ad to film | No difference |
KP170_TPU | Ad to film > Ad to fab | Ad to film > Ad to fab |
UP66_EVA | Ad to film > Ad to fab | No difference |
UP66A_TPU | Ad to fab > Ad to film | Ad to fab > Ad to film |
UP80_EVA | Ad to fab > Ad to film | Ad to fab > Ad to film |
UP80_TPU | Ad to film > Ad to fab | Ad to fab > Ad to film |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adekunle, F.; Li, A.; Vallabh, R.; Seyam, A.-F.M. Assessment of Adhesion in Woven Fabric-Reinforced Laminates (FRLs) Using Novel Yarn Pullout in Laminate Test. J. Compos. Sci. 2024, 8, 242. https://doi.org/10.3390/jcs8070242
Adekunle F, Li A, Vallabh R, Seyam A-FM. Assessment of Adhesion in Woven Fabric-Reinforced Laminates (FRLs) Using Novel Yarn Pullout in Laminate Test. Journal of Composites Science. 2024; 8(7):242. https://doi.org/10.3390/jcs8070242
Chicago/Turabian StyleAdekunle, Feyi, Ang Li, Rahul Vallabh, and Abdel-Fattah M. Seyam. 2024. "Assessment of Adhesion in Woven Fabric-Reinforced Laminates (FRLs) Using Novel Yarn Pullout in Laminate Test" Journal of Composites Science 8, no. 7: 242. https://doi.org/10.3390/jcs8070242
APA StyleAdekunle, F., Li, A., Vallabh, R., & Seyam, A. -F. M. (2024). Assessment of Adhesion in Woven Fabric-Reinforced Laminates (FRLs) Using Novel Yarn Pullout in Laminate Test. Journal of Composites Science, 8(7), 242. https://doi.org/10.3390/jcs8070242