Development of Foam Composites from Flax Gum-Filled Epoxy Resin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Reagents
2.2. Oxidation of Flax Gum and Flax Fibers
2.3. Preparation of Flax Foams
2.4. Characterization
3. Results
3.1. Characterization of Flax Products Following TEMPO Oxidation
3.2. Characterization of Flax Gum Foams and Composites
3.3. Mechanical Analysis of Flax Gum Foams and Composites
3.4. Thermal Properties of Flax Gum Foams and Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ngo, T.D. Natural Fibers for Sustainable Bio-Composites. Nat. Artif. Fiber-Reinf. Compos. Renew. Sources 2018, 3, 107–126. [Google Scholar]
- Rouilly, A.; Vaca-Garcia, C. Bio-Based Materials. Introduction to Chemicals from Biomass, 2nd ed.; Clark, J., Deswarte, F., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Shah, D.U. Developing plant fiber composites for structural applications by optimizing composite parameters: A critical review. J. Mater. Sci. 2013, 48, 6083–6107. [Google Scholar] [CrossRef]
- Chen, J.; Nichols, B.; Norris, A.; Frazier, C.E.; Edgar, K.J. All-polysaccharide, self-healing injectable hydrogels based on chitosan and oxidized hydroxypropyl polysaccharides. Biomacromolecules 2020, 21, 4261–4272. [Google Scholar] [CrossRef] [PubMed]
- Azeredo, H.M.C.; Waldron, K.W. Crosslinking in polysaccharide and protein films and coatings for food contact—A review. Trends Food. Sci. Technol. 2016, 52, 109–122. [Google Scholar] [CrossRef]
- Varma, A.J.; Jamdade, Y.K. On the Dual Role of Starch, Cellulose and their Dialdehydes as Fillers and Accelerators in the Tertiary Amine Catalysed Curing of Epoxy Resin. Carbohydr. Polym. 1985, 5, 309–316. [Google Scholar] [CrossRef]
- Hassan, N.A.A.; Ahmad, S.; Chen, R.S.; Natarajan, V.D. Synergistically enhanced mechanical, combustion and acoustic properties of biopolymer composite foams reinforcement by kenaf fiber. Comp. Part A 2022, 155, 106826. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, Z.; Liu, Y.; Li, S.; Chen, D.; Li, Z. Biomass-based porous composites with heat transfer characteristics: Preparation, performance and evaluation—A review. J. Por. Mater. 2002, 29, 1667–1687. [Google Scholar] [CrossRef]
- Wei, X.; Ding, S.; Liu, S.; Yang, K.; Cai, J.; Li, F.; Wang, C.; Lin, S.; Tian, F. Polysaccharides-modified chitosan as improved and rapid hemostasis foam sponges. Carbohydr. Polym. 2021, 264, 118028. [Google Scholar] [CrossRef] [PubMed]
- Mello, L.R.P.F.; Mali, S. Use of malt bagasse to produce biodegradable baked foams made from cassava starch. Ind. Crops Prod. 2014, 55, 187–193. [Google Scholar] [CrossRef]
- González-García, S.; Hospido, A.; Feijoo, G.; Moreira, M.T. Life cycle assessment of raw materials for non-wood pulp mills: Hemp and flax. Res. Conserv. Recycl. 2010, 4, 923–930. [Google Scholar] [CrossRef]
- Soykeabkaew, N.; Supaphol, P.; Rujiravanit, R. Preparation and characterization of jute- and flax-reinforced starch-based composite foams. Carbohydr. Polym. 2004, 58, 53–63. [Google Scholar] [CrossRef]
- Ramesh, M. Flax (Linum usitatissimum L.) fibre reinforced polymer composite materials: A review on preparation, properties and prospects. Prog. Mat. Sci. 2019, 102, 109–166. [Google Scholar] [CrossRef]
- Musa, C.; Kervoëlen, A.; Danjou, P.-E.; Bourmaud, A.; Delattre, F. Bio-based unidirectional composite made of flax fibre and isosorbide-based epoxy resin. Mater. Lett. 2020, 258, 126818. [Google Scholar] [CrossRef]
- Alix, S.; Marais, S.; Morvan, C.; Lebrun, L. Biocomposite materials from flax plants: Preparation and properties. Comp. Part A 2008, 39, 1793–1801. [Google Scholar] [CrossRef]
- Paynel, F.; Pavlov, A.; Colasse, L.; Rihouey, C.; Follain, N.; Duriatti, D.; Bizet, L.; Allan, I.; Lebrun, L.; Marais, S.; et al. Preparation and characterization of flax biocomposites made of seed mucilage reinforced by fibers. Comp. Part A 2015, 69, 299–305. [Google Scholar] [CrossRef]
- Cui, W.; Mazza, G.; Biliaderi, C.G. Chemical structure, molecular size distribution and rheological properties of flaxseed gum. J. Agric. Food Chem. 1994, 442, 1891–1895. [Google Scholar] [CrossRef]
- Olsson, E.; Menzel, C.; Johansson, C.; Andersson, R.; Koch, K.; Järnström, L. The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid. Carbohydr. Polym. 2013, 98, 1505–1513. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Matsuo, R.; Isogai, A. Oxidation process of water-soluble starch in TEMPO-mediated system. Carbohydr. Polym. 2003, 51, 69–75. [Google Scholar] [CrossRef]
- Sbiai, A.; Maazouz, A.; Fleury, E.; Sautereau, H.; Kaddami, H. TEMPO-Mediated Oxidation of Lignocellulosic Fibers from Date Palm Leaves. Carbohydr. Polym. 2012, 86, 149–186. [Google Scholar] [CrossRef]
- Blumenkrantz, N.; Absoe-Hansen, G. New methods for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef]
- Da Silva Perez, D.; Montanari, S.; Vignon, M.R. TEMPO-mediated oxidation of cellulose III. Biomacromolecules 2003, 4, 1417–1425. [Google Scholar] [CrossRef] [PubMed]
- Feldkamp, L.A.; Davis, L.C.; Kress, J.W. Practical cone-beam algorithm. J. Opt. Soc. Am. 1984, 1, 612–619. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Arzt, M.; Deschamps, J.; Schmied, C.; Pietzsch, T.; Schmidt, D.; Tomancak, P.; Haase, R.; Jug, F. LABKIT: Labeling and Segmentation Toolkit for Big Image Data. Front. Comput. Sci. 2022, 4, 777728. [Google Scholar] [CrossRef]
- Zaidi, M.; Baillis, D.; Naouar, N.; Depriester, M.; Delattre, F. Thermal Conductivity and Microstructure of Novel Flaxseed-Gum-Filled Epoxy Resin Biocomposite: Analytical Models and X-ray Computed Tomography. Materials 2023, 16, 6318. [Google Scholar] [CrossRef]
- ASTM Standard D1621; Standard Test Method for Compressive Properties of Rigid Cellular Plastics. ASTM International: West Conshohocken, PA, USA, 2004.
- ASTM Standard D7984-21; Standard Test Method for Measurement of Thermal Effusivity of Fabrics Using a Modified Transient Plane Source (MTPS) Instrument. ASTM International: West Conshohocken, PA, USA, 2021.
- Wojtasik, W.; Kulma, A.; Kostyn, K.; Szopa, J. The changes in pectin metabolism in flax infected with Fusarium. Plant Phys. Biochem. 2011, 49, 862–872. [Google Scholar] [CrossRef]
- Dubois, F.; Musa, C.; Duponchel, B.; Tifahy, L.; Sécordel, X.; Mallard, I.; Delattre, F. Nuclear magnetic resonance and calorimetric investigations of extraction mode on flaxseed gum composition. Polymers 2020, 12, 2654. [Google Scholar] [CrossRef]
- Petera, B.; Delattre, C.; Pierre, G.; Wadouachi, A.; Elboutachfaiti, R.; Engel, E.; Poughon, L.; Michaud, P.; Fenoradosoa, T.A. Characterization of arabinogalactan-rich mucilage from Cereus triangularis cladodes. Carbohydr. Polym. 2015, 127, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Renard, C.M.G.C.; Bureau, S.; Le Bourvellec, C. Revisiting the contribution of ATR-FTIR spectroscopy to characterize plant cell wall polysaccharides. Carbohydr. Polym. 2021, 262, 117935. [Google Scholar] [CrossRef]
- Borkotoky, S.S.; Ghosh, T.; Bhagabati, P.; Katiyar, V. Poly (lactic acid)/modified gum arabic (MG) based microcellular composite foam: Effect of MG on foam properties, thermal and crystallization behavior. Int. J. Biol. Macromol. 2019, 125, 159–170. [Google Scholar] [CrossRef]
- Paladini, G.; Venuti, V.; Crupi, V.; Majolino, D.; Fiorati, A.; Punta, C. FTIR-ATR analysis of the H-bond network of water in branched polyethyleneimine/TEMPO-oxidized cellulose nano-fiber xerogels. Cellulose 2020, 27, 8605–8618. [Google Scholar] [CrossRef]
- Nie, J.; Mou, W.; Ding, J.; Chen, Y. Bio-based epoxidized natural rubber/chitin nanocrystals composites Self-healing and enhanced mechanical properties. Comp. Part B 2019, 172, 152–160. [Google Scholar] [CrossRef]
- Ferreira, E.S.; Rezende, C.A.; Cranston, E.D. Fundamentals of cellulose lightweight materials: Bio-based assemblies with tailored properties. Green Chem. 2021, 23, 3542–3568. [Google Scholar] [CrossRef]
- Liu, P.; Li, X.; Min, P.; Chang, X.; Shu, C.; Ding, Y.; Yu, Z.Z. 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 2021, 13, 22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Chen, H.; Yang, S.; Guo, Y.; Li, N.; Zhou, H.; Cao, Y. Frozen slurry-based laminated object manufacturing to fabricate porous ceramic with oriented lamellar structure. J. Eur. Ceram. Soc. 2018, 38, 4014–4019. [Google Scholar] [CrossRef]
- Prado, N.S.; Silva, I.S.V.D.; Silva, T.A.L.; Oliveira, W.J.D.; Motta, L.A.D.C.; Pasquini, D.; Otaguro, H. Nanocomposite films based on flaxseed gum and cellulose nanocrystals. Mater. Res. 2018, 21, e20180134. [Google Scholar] [CrossRef]
- Valette, V.; Kébir, N.; Tiavarison, F.B.; Burel, F.; Lecamp, L. Preparation of flexible biobased non-isocyanate polyurethane (NIPU) foams using the transurethanization approach. React. Funct. Polym. 2022, 181, 105416. [Google Scholar] [CrossRef]
- Peyrton, J.; Avérous, L. Structure-properties relationships of cellular materials from biobased polyurethane foams. Mater. Sci. Eng. Rep. 2021, 145, 100608. [Google Scholar]
- Ambli, K.G.; Dodamani, B.M.; Jagadeesh, A.; Vanarotti, M.B. Heterogeneous composites for low and medium temperature thermal insulation: A review. Energy Build. 2019, 199, 455–460. [Google Scholar] [CrossRef]
- Kymäläinen, H.R.; Sjöberg, A.M. Flax and hemp fibres as raw materials for thermal insulations. Build. Environ. 2008, 43, 1261–1269. [Google Scholar] [CrossRef]
Carboxylate (mmol/g) | Aldehyde (mmol/g) | Carboxylate (mmol/g) | Aldehyde (mmol/g) | ||
---|---|---|---|---|---|
FG | 0.59 ± 0.01 | 1.64 ± 0.45 | Fiber | 1.25 ± 0.15 | 3.41 ± 0.03 |
FGox | 1.13 ± 0.32 | 2.56 ± 0.55 | Ox. Fiber | 2.46 ± 0.08 | 4.60 ± 0.04 |
Rox | 1.90 | 1.56 | 1.97 | 1.35 |
Sample | Density (kg·m−3) | Section Indent (%) | Porosity * (%) | Sample | Density (kg·m−3) | Section Indent (%) | Porosity * (%) |
---|---|---|---|---|---|---|---|
FG-100 | 228.9 ± 9.3 | 9.8 | 68 ± 2.4 | FGox-100 | 311.4 ± 3.4 | 13.0 | 69 ± 1.1 |
FG-80 | 231.7 ± 8.2 | 7.9 | 68 ± 2.5 | FGox-80 | 286.0 ± 5.6 | 11.9 | 73 ± 1.1 |
FG-20 | 219.5 ± 3.0 | 5.6 | 61 ± 3.0 | FGox-20 | 236.7 ± 4.7 | 7.6 | 79 ± 1.1 |
FG-Comp | 194.4 ± 5.3 | 0.1 | 65 ± 1.1 | FGox-Comp | 209.4 ± 2.5 | 0.6 | 67 ± 1.1 |
Sample | Ec a (Mpa) | σ10 b (kPa) | Sample | Ec a (Mpa) | σ10 b (kPa) |
---|---|---|---|---|---|
FG-100 | 10.6 ± 1.2 | 742 ± 100 | FGox-100 | 19.2 ± 0.4 | 1275 ± 28 |
FG-80 | 14.9 ± 2.3 | 784 ± 110 | FGox-80 | 11.9 ± 2.0 | 722 ± 52 |
FG-20 | 11.8 ± 0.5 | 721 ± 9 | FGox-20 | 10.3 ± 1.5 | 654 ± 39 |
FG-Comp | 5.6 ± 0.1 | 352 ± 1 | FGox-Comp | 10.1 ± 0.6 | 454 ± 28 |
Sample | Conductivity W·m−1·K−1 | Diffusivity m2/s |
---|---|---|
FG-100 | 0.054 ± 0.001 | (1.53 ± 0.07)·10−7 |
FG-80 | 0.065 ± 0.001 | (1.40 ± 0.09)·10−7 |
FG-20 | 0.057 ± 0.001 | (1.45 ± 0.06)·10−7 |
FG-Comp | 0.064 ± 0.001 | (1.40 ± 0.05)·10−7 |
FGox-100 | 0.082 ± 0.001 | (1.42 ± 0.07)·10−7 |
FGox-80 | 0.095 ± 0.002 | (1.53 ± 0.06)·10−7 |
FGox-20 | 0.041 ± 0.001 | (2.55 ± 0.17)·10−7 |
FGox-Comp | 0.078 ± 0.001 | (1.40 ± 0.07)·10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musa, C.; Zaidi, M.; Depriester, M.; Allouche, Y.; Naouar, N.; Bourmaud, A.; Baillis, D.; Delattre, F. Development of Foam Composites from Flax Gum-Filled Epoxy Resin. J. Compos. Sci. 2024, 8, 244. https://doi.org/10.3390/jcs8070244
Musa C, Zaidi M, Depriester M, Allouche Y, Naouar N, Bourmaud A, Baillis D, Delattre F. Development of Foam Composites from Flax Gum-Filled Epoxy Resin. Journal of Composites Science. 2024; 8(7):244. https://doi.org/10.3390/jcs8070244
Chicago/Turabian StyleMusa, Corentin, Mohammed Zaidi, Michaël Depriester, Yamina Allouche, Naïm Naouar, Alain Bourmaud, Dominique Baillis, and François Delattre. 2024. "Development of Foam Composites from Flax Gum-Filled Epoxy Resin" Journal of Composites Science 8, no. 7: 244. https://doi.org/10.3390/jcs8070244
APA StyleMusa, C., Zaidi, M., Depriester, M., Allouche, Y., Naouar, N., Bourmaud, A., Baillis, D., & Delattre, F. (2024). Development of Foam Composites from Flax Gum-Filled Epoxy Resin. Journal of Composites Science, 8(7), 244. https://doi.org/10.3390/jcs8070244