Processing and Mechanics of Aromatic Vitrimeric Composites at Elevated Temperatures and Healing Performance
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. ATSP CFRP Composite Processing
2.3. Sample Preparation and Mechanical Characterization of the Composites
2.4. Double Cantilever Beam Testing (DCB) and Self-Healing Cure Cycles
2.5. Measurement of Mode I Fracture Toughness and Healing Efficiency
2.6. Material Characterization
3. Results and Discussion
3.1. Identification of the Vitrification Temperature
3.2. Mechanics of Vitrimeric Composites at Room and Elevated Temperatures
3.3. Mode I Fracture Toughness of Virgin and Healed Vitrimeric Composites
3.4. Fracture Surface Morphology of DCB Samples
3.5. Internal Structure Morphology of DCB Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, S.-S.; Jin, F.-L.; Rhee, K.Y.; Hui, D.; Park, S.-J. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review. Compos. Part B Eng. 2018, 142, 241–250. [Google Scholar] [CrossRef]
- You, J.; Jee, S.M.; Lee, Y.M.; Lee, S.-S.; Park, M.; Kim, T.A.; Park, J.H. Carbon fiber-reinforced polyamide composites with efficient stress transfer via plasma-assisted mechanochemistry. Compos. Part C Open Access 2021, 6, 100209. [Google Scholar] [CrossRef]
- Ozkan, D.; Gok, M.S.; Karaoglanli, A.C. Carbon fiber reinforced polymer (CFRP) composite materials, their characteristic properties, industrial application areas and their machinability. In Engineering Design Applications III; Springer: Berlin/Heidelberg, Germany, 2020; pp. 235–253. [Google Scholar]
- Kuppusamy, R.R.P.; Rout, S.; Kumar, K. Advanced manufacturing techniques for composite structures used in aerospace industries. In Modern Manufacturing Processes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–12. [Google Scholar]
- Skirbutis, G.; Dzingutė, A.; Masiliūnaitė, V.; Šulcaitė, G.; Žilinskas, J.J. A review of PEEK polymer’s properties and its use in prosthodontics. Stomatologija 2017, 19, 19–23. [Google Scholar] [PubMed]
- Chung, D.D. Composite Materials: Science and Applications; Springer Science & Business Media: Berlin, Germany, 2010. [Google Scholar]
- Mallick, P.K. Fiber-Reinforced Composites: Materials, Manufacturing, and Design; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Jin, F.-L.; Park, S.-J. Preparation and characterization of carbon fiber-reinforced thermosetting composites: A review. Carbon Lett. 2015, 16, 67–77. [Google Scholar] [CrossRef]
- Ozturk, F. Thermoplastic Composite Materials for the Aerospace Industry. Res. Dev. Mater. Sci. 2021, 15, 1745–1748. [Google Scholar] [CrossRef]
- Xu, Y.; Zehnder, A.T. Pressure, hydrolytic degradation and plasticization drive high temperature blistering failure in moisture saturated polyimides. Extrem. Mech. Lett. 2017, 16, 49–55. [Google Scholar] [CrossRef]
- Barbero, E.J. Introduction to Composite Materials Design; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Rao, P.S.; Hardiman, M.; O’Dowd, N.P.; Sebaey, T.A. Comparison of progressive damage between thermoset and thermoplastic CFRP composites under in-situ tensile loading. J. Compos. Mater. 2020, 55, 1473–1484. [Google Scholar] [CrossRef]
- Ivanov, S.G.; Beyens, D.; Gorbatikh, L.; Lomov, S.V. Damage development in woven carbon fibre thermoplastic laminates with PPS and PEEK matrices: A comparative study. J. Compos. Mater. 2016, 51, 637–647. [Google Scholar] [CrossRef]
- Kamble, M.; Vashisth, A.; Yang, H.; Pranompont, S.; Picu, C.R.; Wang, D.; Koratkar, N. Reversing fatigue in carbon-fiber reinforced vitrimer composites. Carbon 2022, 187, 108–114. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, X.; Urban, M.W. Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 2015, 49, 34–59. [Google Scholar] [CrossRef]
- Yang, Y.; Urban, M.W. Self-healing polymeric materials. Chem. Soc. Rev. 2013, 42, 7446–7467. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.J. Effect of polymer architecture on the intrinsic self-healing character of polymers. Eur. Polym. J. 2014, 53, 118–125. [Google Scholar] [CrossRef]
- Jud, K.; Kausch, H.; Williams, J. Fracture mechanics studies of crack healing and welding of polymers. J. Mater. Sci. 1981, 16, 204–210. [Google Scholar] [CrossRef]
- Lu, L.; Fan, J.; Li, G.J.P. Intrinsic healable and recyclable thermoset epoxy based on shape memory effect and transesterification reaction. Polymer 2016, 105, 10–18. [Google Scholar] [CrossRef]
- Hornat, C.C.; Urban, M.W. Shape memory effects in self-healing polymers. Prog. Polym. Sci. 2020, 102, 101208. [Google Scholar] [CrossRef]
- Abend, M.; Zechel, S.; Schubert, U.S.; Hager, M.D. Detailed Analysis of the Influencing Parameters on the Self-Healing Behavior of Dynamic Urea-Crosslinked Poly (methacrylate) s. Molecules 2019, 24, 3597. [Google Scholar] [CrossRef] [PubMed]
- Sumerlin, B.S. Next-generation self-healing materials. Science 2018, 362, 150–151. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.; Trask, R.; Bond, I. A self-healing carbon fibre reinforced polymer for aerospace applications. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1525–1532. [Google Scholar] [CrossRef]
- Kontiza, A.; Semitekolos, D.; Milickovic, T.K.; Pappas, P.; Koutroumanis, N.; Galiotis, C.; Charitidis, C.A. Double cantilever beam test and micro-computed tomography as evaluation tools for self-healing of CFRPs loaded with DCPD microcapsules. Compos. Struct. 2022, 279, 114780. [Google Scholar] [CrossRef]
- Lemmens, R.J.; Dai, Q.; Meng, D.D.; Mechanics, A.F. Side-groove influenced parameters for determining fracture toughness of self-healing composites using a tapered double cantilever beam specimen. Theor. Appl. Fract. Mech. 2014, 74, 23–29. [Google Scholar] [CrossRef]
- Benazzo, F.; Rigamonti, D.; Sala, G.; Grande, A.M. A critical appraisal of fracture mechanics methods for self-healing and healable composites characterization. Compos. Part A Appl. Sci. Manuf. 2023, 167, 107450. [Google Scholar] [CrossRef]
- Cho, S.H.; Andersson, H.M.; White, S.R.; Sottos, N.R.; Braun, P.V. Polydimethylsiloxane-based self-healing materials. Adv. Mater. 2006, 18, 997–1000. [Google Scholar] [CrossRef]
- Romero-Sabat, G.; Gago-Benedí, E.; Roa Rovira, J.J.; González-Gálvez, D.; Mateo, A.; Medel, S.; Tolentino Chivite, A. Development of a highly efficient extrinsic and autonomous self-healing polymeric system at low and ultra-low temperatures for high-performance applications. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106335. [Google Scholar] [CrossRef]
- Thies, C. Microencapsulation; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Jones, A.S.; Rule, J.D.; Moore, J.S.; White, S.R.; Sottos, N.R. Catalyst morphology and dissolution kinetics of self-healing polymers. Chem. Mater. 2006, 18, 1312–1317. [Google Scholar] [CrossRef]
- Shansky, E. Synthesis and Characterization of Microcapsules for Self-Healing Materials; Department of Chemistry Indiana University: Bloomington, IN, USA, 2005. [Google Scholar]
- Dry, C. Procedures developed for self-repair of polymer matrix composite materials. Compos. Struct. 1996, 35, 263–269. [Google Scholar] [CrossRef]
- Dry, C.M. Adhesive liquid core optical fibers for crack detection and repairs in polymer and concrete matrices. Smart Struct. Mater. 1995 Smart Sens. Process. Instrum. 1995, 2444, 410–413. [Google Scholar]
- Dry, C.M.; McMillan, W. Crack and damage assessment in concrete and polymer matrices using liquids released internally from hollow optical fibers. Smart Struct. Mater. 1996 Smart Sens. Process. Instrum. 1996, 2718, 448–451. [Google Scholar]
- Dry, C.M.; Sottos, N.R. Passive smart self-repair in polymer matrix composite materials. Smart Struct. Mater. 1993 Smart Mater. 1993, 1916, 438–444. [Google Scholar]
- Motuku, M.; Vaidya, U.; Janowski, G. Parametric studies on self-repairing approaches for resin infused composites subjected to low velocity impact. Smart Mater. Struct. 1999, 8, 623. [Google Scholar] [CrossRef]
- Bleay, S.M.; Loader, C.B.; Hawyes, V.; Humberstone, L.; Curtis, P. A smart repair system for polymer matrix composites. Compos. Part A Appl. Sci. Manuf. 2001, 32, 1767–1776. [Google Scholar] [CrossRef]
- Hucker, M.; Bond, I.; Foreman, A.; Hudd, J. Optimisation of hollow glass fibres and their composites. Adv. Compos. Lett. 1999, 8, 096369359900800406. [Google Scholar] [CrossRef]
- Trask, R.; Bond, I. Biomimetic self-healing of advanced composite structures using hollow glass fibres. Smart Mater. Struct. 2006, 15, 704. [Google Scholar] [CrossRef]
- Pang, J.; Bond, I. ‘Bleeding composites’—Damage detection and self-repair using a biomimetic approach. Compos. Part A Appl. Sci. Manuf. 2005, 36, 183–188. [Google Scholar] [CrossRef]
- Pang, J.W.; Bond, I.P. A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Compos. Sci. Technol. 2005, 65, 1791–1799. [Google Scholar] [CrossRef]
- Williams, H.R.; Trask, R.S.; Bond, I.P. Self-healing composite sandwich structures. Smart Mater. Struct. 2007, 16, 1198. [Google Scholar] [CrossRef]
- Sanada, K.; Yasuda, I.; Shindo, Y. Transverse tensile strengh of unidirectional fiber-reinforced polymers and self-healing of interfacial debonding. Plast. Rubber Compos. 2006, 35, 67–72. [Google Scholar] [CrossRef]
- Zhang, M.Q.; Rong, M.Z. Extrinsic and Intrinsic Approaches to Self-Healing Polymers and Polymer Composites; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Frich, D.; Goranov, K.; Schneggenburger, L.; Economy, J. Novel high-temperature aromatic copolyester thermosets: Synthesis, characterization, and physical properties. Macromolecules 1996, 29, 7734–7739. [Google Scholar] [CrossRef]
- Frich, D.; Economy, J.; Goranov, K. Aromatic copolyester thermosets: High temperature adhesive properties. Polym. Eng. Sci. 1997, 37, 541–548. [Google Scholar] [CrossRef]
- Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials from permanent organic networks. Science 2011, 334, 965–968. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, Y.; Ji, Y.; Wei, Y.J. Functional epoxy vitrimers and composites. Prog. Mater. Sci. 2021, 120, 100710. [Google Scholar] [CrossRef]
- Zheng, J.; Png, Z.M.; Ng, S.H.; Tham, G.X.; Ye, E.; Goh, S.S.; Loh, X.J.; Li, Z.J. Vitrimers: Current research trends and their emerging applications. Mater. Today 2021, 51, 586–625. [Google Scholar] [CrossRef]
- Shi, Q.; Yu, K.; Kuang, X.; Mu, X.; Dunn, C.; Dunn, M.; Wang, T.; Qi, H. Recyclable 3D Printing of Vitrimer Epoxy. Mater. Horiz. 2017, 4, 598–607. [Google Scholar] [CrossRef]
- Zheng, N.; Xu, Y.; Zhao, Q.; Xie, T. Dynamic Covalent Polymer Networks: A Molecular Platform for Designing Functions beyond Chemical Recycling and Self-Healing. Chem. Rev. 2021, 121, 1716–1745. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, A.M.; Ren, Y.; Konkolewicz, D.; Sarvestani, A.; Picu, C.R.; Kedziora, G.S.; Roy, A.; Varshney, V.; Nepal, D. Vitrimer Transition Temperature Identification: Coupling Various Thermomechanical Methodologies. ACS Appl. Polym. Mater. 2021, 3, 1756–1766. [Google Scholar] [CrossRef]
- Sharma, H.; Rana, S.; Singh, P.; Hayashi, M.; Binder, W.H.; Rossegger, E.; Kumar, A.; Schlögl, S. Self-healable fiber-reinforced vitrimer composites: Overview and future prospects. RSC Adv. 2022, 12, 32569–32582. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, B.; Cilento, F.; Amendola, E.; Valente, T.; Dello Iacono, S.; Giordano, M.; Martone, A. An Investigation of the Healing Efficiency of Epoxy Vitrimer Composites Based on Zn2+ Catalyst. Polymers 2023, 15, 3611. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhao, M.; Wang, A.; Chang, Z.; Wang, Z.; Zhang, K. Experimental study on the mode Ι interlaminar properties of self-healable vitrimeric CFRP with various interfaces. Compos. Part B Eng. 2023, 261, 110806. [Google Scholar] [CrossRef]
- Bakir, M.; Elhebeary, M.; Meyer, J.L.; Sutrisno, A.; Economy, J.; Jasiuk, I.J. Interfacial liquid crystalline mesophase domain on carbon nanofillers in aromatic thermosetting copolyester matrix. J. Appl. Polym. Sci. 2018, 135, 46584. [Google Scholar] [CrossRef]
- Vaezian, B.; Meyer, J.L.; Economy, J. Processing of aromatic thermosetting copolyesters into foams and bulk parts: Characterization and mechanical properties. Polym. Adv. Technol. 2016, 27, 1006–1013. [Google Scholar] [CrossRef]
- Meyer, J.L.; Lan, P.; Bakir, M.; Jasiuk, I.; Economy, J. Wide Area Reversible Adhesive for In-Space Assembly. Macromol. Mater. Eng. 2020, 305, 2000006. [Google Scholar] [CrossRef]
- Bashandeh, K.; Lan, P.; Meyer, J.L.; Polycarpou, A.A. Tribological Performance of Graphene and PTFE Solid Lubricants for Polymer Coatings at Elevated Temperatures. Tribol. Lett. 2019, 67, 99. [Google Scholar] [CrossRef]
- Frich, D.; Hall, A.; Economy, J.J. Nature of adhesive bonding via interchain transesterification reactions (ITR). Macromol. Chem. Phys. 1998, 199, 913–921. [Google Scholar] [CrossRef]
- Meyer, J.L.; Bakir, M.; Lan, P.; Economy, J.; Jasiuk, I.; Bonhomme, G.; Polycarpou, A.A. Reversible Bonding of Aromatic Thermosetting Copolyesters for In-Space Assembly. Macromol. Mater. Eng. 2019, 304, 1800647. [Google Scholar] [CrossRef]
- Taynton, P.; Zhu, C.; Loob, S.; Shoemaker, R.; Pritchard, J.; Jin, Y.; Zhang, W. Re-healable polyimine thermosets: Polymer composition and moisture sensitivity. Polym. Chem. 2016, 7, 7052–7056. [Google Scholar] [CrossRef]
- Chao, A.; Negulescu, I.; Zhang, D. Dynamic covalent polymer networks based on degenerative imine bond exchange: Tuning the malleability and self-healing properties by solvent. Macromolecules 2016, 49, 6277–6284. [Google Scholar] [CrossRef]
- Boutelle, R.C.; Northrop, B.H. Substituent effects on the reversibility of furan–maleimide cycloadditions. J. Org. Chem. 2011, 76, 7994–8002. [Google Scholar] [CrossRef] [PubMed]
- Schneggenburger, L.; Osenar, P.; Economy, J. Direct evidence for sequence ordering of random semicrystalline copolyesters during high-temperature annealing. Macromolecules 1997, 30, 3754–3758. [Google Scholar] [CrossRef]
- Stevens, M.P. Polymer Chemistry: An Introduction; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Mangalgiri, P.J. Polymer-matrix composites for high-temperature applications. Def. Sci. J. 2005, 55, 175. [Google Scholar] [CrossRef]
- Bashandeh, K.; Lan, P.; Polycarpou, A.A. Tribology of self-lubricating high performance ATSP, PI, and PEEK-based polymer composites up to 300 °C. Friction 2023, 11, 141–153. [Google Scholar] [CrossRef]
- Krull, B.; Patrick, J.; Hart, K.; White, S.; Sottos, N. Automatic optical crack tracking for double cantilever beam specimens. Exp. Tech. 2016, 40, 937–945. [Google Scholar] [CrossRef]
- Hashemi, S.M.K.; Kinloch, A.J.; Williams, J.G. Corrections needed in double-cantilever beam tests for assessing the interlaminar failure of fibre-composites. J. Mater. Sci. Lett. 1989, 8, 125–129. [Google Scholar] [CrossRef]
- Snyder, A.; Phillips, Z.; Turicek, J.; Diesendruck, C.; Nakshatrala, K.; Patrick, J. Prolonged in situ self-healing in structural composites via thermo-reversible entanglement. Nat. Commun. 2022, 13, 6511. [Google Scholar] [CrossRef] [PubMed]
- Lan, P.; Polychronopoulou, K.; Zhang, Y.; Polycarpou, A.A. Three-body abrasive wear by (silica) sand of advanced polymeric coatings for tilting pad bearings. Wear 2017, 382, 40–50. [Google Scholar] [CrossRef]
- Lan, P.; Zhang, Y.; Dai, W.; Polycarpou, A.A. A phenomenological elevated temperature friction model for viscoelastic polymer coatings based on nanoindentation. Tribol. Int. 2018, 119, 299–307. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, Y.; Yuan, A.; Zhao, S.; Chen, Y.; Xiao, Y.; Jiang, L.; Lei, J. Solving the difficult recyclability of conventional thermosetting polyurea elastomers based on commercial raw materials in a facile way. J. Mater. Chem. A 2022, 10, 6713–6723. [Google Scholar] [CrossRef]
- Mulqueen, D.W.; Sattar, S.; Kravchenko, O.G. Mechanical and thermal properties of carbon fiber epoxy composite with interlaminar graphene at elevated temperature. Compos. Part B Eng. 2023, 255, 110609. [Google Scholar] [CrossRef]
- Mani, D.; Vu, M.C.; Jeong, T.-H.; Kim, J.-B.; Lim, C.-S.; Lim, J.-H.; Kim, K.-M.; Kim, S.-R. 3D structured graphene fluoride-based epoxy composites with high thermal conductivity and electrical insulation. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106585. [Google Scholar] [CrossRef]
- Kim, S.G.; Heo, S.J.; Kim, S.; Kim, J.; Kim, S.O.; Lee, D.; Lee, S.; Kim, J.; You, N.-H.; Kim, M.; et al. Ultrahigh strength and modulus of polyimide-carbon nanotube based carbon and graphitic fibers with superior electrical and thermal conductivities for advanced composite applications. Compos. Part B Eng. 2022, 247, 110342. [Google Scholar] [CrossRef]
- Chae, H.G.; Newcomb, B.A.; Gulgunje, P.V.; Liu, Y.; Gupta, K.K.; Kamath, M.G.; Lyons, K.M.; Ghoshal, S.; Pramanik, C.; Giannuzzi, L. High strength and high modulus carbon fibers. Carbon 2015, 93, 81–87. [Google Scholar] [CrossRef]
- Wen, J.; Wu, Y.; Hou, X.; Yan, M.; Xiao, Y. Effect of high temperature on mechanical properties and porosity of carbon fiber/epoxy composites. J. Reinf. Plast. Compos. 2022, 42, 990–1005. [Google Scholar] [CrossRef]
- Carlsson, L.A.; Adams, D.F.; Pipes, R.B. Experimental Characterization of Advanced Composite Materials; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandal, T.; Ozten, U.; Vaught, L.; Meyer, J.L.; Amiri, A.; Polycarpou, A.; Naraghi, M. Processing and Mechanics of Aromatic Vitrimeric Composites at Elevated Temperatures and Healing Performance. J. Compos. Sci. 2024, 8, 252. https://doi.org/10.3390/jcs8070252
Mandal T, Ozten U, Vaught L, Meyer JL, Amiri A, Polycarpou A, Naraghi M. Processing and Mechanics of Aromatic Vitrimeric Composites at Elevated Temperatures and Healing Performance. Journal of Composites Science. 2024; 8(7):252. https://doi.org/10.3390/jcs8070252
Chicago/Turabian StyleMandal, Tanaya, Unal Ozten, Louis Vaught, Jacob L. Meyer, Ahmad Amiri, Andreas Polycarpou, and Mohammad Naraghi. 2024. "Processing and Mechanics of Aromatic Vitrimeric Composites at Elevated Temperatures and Healing Performance" Journal of Composites Science 8, no. 7: 252. https://doi.org/10.3390/jcs8070252
APA StyleMandal, T., Ozten, U., Vaught, L., Meyer, J. L., Amiri, A., Polycarpou, A., & Naraghi, M. (2024). Processing and Mechanics of Aromatic Vitrimeric Composites at Elevated Temperatures and Healing Performance. Journal of Composites Science, 8(7), 252. https://doi.org/10.3390/jcs8070252