Effects of Ionizing Radiation on the Shear Bond Strength of Composite Materials to Dentin
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Shear Bond Strength of Bulk-Fill Composite Materials to Dentin
3.2. Failure Mode Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Rocha, P.H.; Reali, R.M.; Decnop, M.; Souza, S.A.; Teixeira, L.A.; Júnior, A.L.; Sarpi, M.O.; Cintra, M.B.; Pinho, M.C.; Garcia, M.R. Adverse Radiation Therapy Effects in the Treatment of Head and Neck Tumors. RadioGraphics 2022, 42, 806–821. [Google Scholar] [CrossRef]
- Grundmann, O.; Mitchell, G.C.; Limesand, K.H. Sensitivity of Salivary Glands to Radiation: From Animal Models to Therapies. J. Dent. Res. 2009, 88, 894–903. [Google Scholar] [CrossRef]
- Silva, A.R.S.; Alves, F.A.; Antunes, A.; Goes, M.F.; Lopes, M.A. Patterns of Demineralization and Dentin Reactions in Radiation-Related Caries. Caries Res. 2009, 43, 43–49. [Google Scholar] [CrossRef]
- Gonçalves, L.M.N.; Palma-Dibb, R.G.; Paula-Silva, F.W.G.; de Oliveira, H.F.; Nelson-Filho, P.; da Silva, L.A.B.; de Queiroz, A.M. Radiation therapy alters microhardness and microstructure of enamel and dentin of permanent human teeth. J. Dent. 2014, 42, 986–992. [Google Scholar] [CrossRef]
- Velo, M.M.D.A.C.; Farha, A.L.H.; da Silva Santos, P.S.; Shiota, A.; Sansavino, S.Z.; Souza, A.T.; Honório, H.M.; Wang, L. Radiotherapy alters the composition, structural and mechanical properties of root dentin in vitro. Clin. Oral. Investig. 2018, 22, 2871–2878. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, Q.; Guo, J.; Zeng, B.; Yu, X.; Yu, D.; Zhao, W. Direct radiation-induced effects on dental hard tissue. Radiat. Oncol. 2019, 14, 5. [Google Scholar] [CrossRef]
- Breschi, L.; Mazzoni, A.; Ruggeri, A.; Cadenaro, M.; Di Lenarda, R.; De Stefano Dorigo, E. Dental adhesion review: Aging and stability of the bonded interface. Dent. Mater. 2008, 24, 90–101. [Google Scholar] [CrossRef]
- Bedran-Russo, A.; Leme-Kraus, A.A.; Vidal, C.M.P.; Teixeira, E.C. An Overview of Dental Adhesive Systems and the Dynamic Tooth–Adhesive Interface. Dent. Clin. N. Am. 2017, 61, 713–731. [Google Scholar] [CrossRef]
- Pashley, D.H.; Tay, F.R.; Breschi, L.; Tjäderhane, L.; Carvalho, R.M.; Carrilho, M.; Tezvergil-Mutluay, A. State of the art etch-and-rinse adhesives. Dent. Mater. 2011, 27, 1–16. [Google Scholar] [CrossRef]
- Niewald, M.; Mang, K.; Barbie, O.; Fleckenstein, J.; Holtmann, H.; Spitzer, W.J.; Rübe, C. Dental status, dental treatment procedures and radiotherapy as risk factors for infected osteoradionecrosis (IORN) in patients with oral cancer—A comparison of two 10 years’ observation periods. Springerplus 2014, 3, 263. [Google Scholar] [CrossRef]
- Madrid Troconis, C.C.; Santos-Silva, A.R.; Brandão, T.B.; Lopes, M.A.; de Goes, M.F. Impact of head and neck radiotherapy on the mechanical behavior of composite resins and adhesive systems: A systematic review. Dent. Mater. 2017, 33, 1229–1243. [Google Scholar] [CrossRef]
- Naves, L.Z.; Novais, V.R.; Armstrong, S.R.; Correr-Sobrinho, L.; Soares, C.J. Effect of gamma radiation on bonding to human enamel and dentin. Support. Care Cancer 2012, 20, 2873–2878. [Google Scholar] [CrossRef]
- Rodrigues, R.B.; Soares, C.J.; Junior, P.C.S.; Lara, V.C.; Arana-Chavez, V.E.; Novais, V.R. Influence of radiotherapy on the dentin properties and bond strength. Clin. Oral. Investig. 2018, 22, 875–883. [Google Scholar] [CrossRef]
- Bulucu, B.; Yesilyurt, C.; Cakir, S.; Meydan, A.D. Influence of radiation on bond strength. J. Adhes. Dent. 2006, 8, 217–221. [Google Scholar]
- Soares, E.F.; Naves, L.Z.; Correr, A.B.; Costa, A.R.; Consani, S.; Soares, C.J.; Garcia-Godoy, F.; Correr-Sobrinho, L. Effect of radiotherapy, adhesive systems and doxycycline on the bond strength of the dentin-composite interface. Am. J. Dent. 2016, 29, 352–356. [Google Scholar]
- Yadav, S.; Yadav, H. Ionizing irradiation affects the microtensile resin dentin bond strength under simulated clinical conditions. J. Conserv. Dent. 2013, 16, 148–151. [Google Scholar] [CrossRef]
- Biscaro, S.L.; Moraes, R.R.; Correr, A.B.; Almeida, S.M.; Boscolo, F.N.; Soares, C.J.; Correr-Sobrinho, L. Effect of X-ray radiation dose on the bond strength of different adhesive systems to dentin. J. Adhes. Dent. 2009, 11, 355–360. [Google Scholar] [PubMed]
- Gernhardt, C.R.; Kielbassa, A.M.; Hahn, P.; Schaller, H.G. Tensile bond strengths of four different dentin adhesives on irradiated and non-irradiated human dentin in vitro. J. Oral. Rehabil. 2001, 28, 814–820. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, S.R.d.B.; Ramos, P.A.M.M.; Haddad, C.M.K.; da Silva, J.L.F.; Fregnani, E.R.; Aranha, A.C.C. Effects of Different Radiation Doses on the Bond Strengths of Two Different Adhesive Systems to Enamel and Dentin. J. Adhes. Dent. 2016, 18, 151–156. [Google Scholar] [CrossRef]
- Ugurlu, M. Effect of the double application of universal adhesives on the dentine bond strength after radiotherapy. Aust. Dent. J. 2020, 65, 181–188. [Google Scholar] [CrossRef]
- Oglacki, B.; Burduroğlu, D.; Eriş, A.H.; Mayadağli, A.; Arhun, N. How Does Radiotherapy Affect the Adhesion of Universal Adhesive to Enamel and Dentin? A Qualitative and Quantitative Analysis? Odovtos Int. J. Dent. Sci. 2022, 24, 75–90. [Google Scholar]
- Jacker-Guhr, S.; Sander, J.; Luehrs, A.K. How “Universal” is Adhesion? Shear Bond Strength of Multi-mode Adhesives to Enamel and Dentin. J. Adhes. Dent. 2019, 21, 87–95. [Google Scholar] [CrossRef]
- David, C.; Cuevas-Suárez, C.E.; de Cardoso, G.C.; Isolan, C.P.; de Moraes, R.R.; da Rosa, W.L.O.; Münchow, E.A.; da Silva, A.F. Characterization of Contemporary Conventional, Bulk-fill, and Self-adhesive Resin Composite Materials. Oper. Dent. 2022, 47, 392–402. [Google Scholar] [CrossRef]
- de Freitas Chaves, L.V.; de Sousa Lima, R.X.; de Azevedo Silva, L.J.; Bruschi Alonso, R.C.; Geraldeli, S.; Dutra Borges, B.C. Bonding performance and mechanical properties of flowable bulk-fill and traditional composites in high c-factor cavity models. J. Conserv. Dent. 2020, 23, 36–41. [Google Scholar] [CrossRef]
- Anderson, G.; Ebadi, M.; Vo, K.; Novak, J.; Govindarajan, A.; Amini, A. An Updated Review on Head and Neck Cancer Treatment with Radiation Therapy. Cancers 2021, 13, 4912. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- ISO 29022; Dentistry—Adhesion—Notched Edge Shear Bond Strength Test. International Organization for Standardization: Geneva, Switzerland, 2013.
- Alfouzan, A.F. Radiation therapy in head and neck cancer. Saudi Med. J. 2021, 42, 247–254. [Google Scholar] [CrossRef]
- Munoz, M.A.; Garin-Correa, C.; Gonzalez-Arriagada, W.; Quintela Davila, X.; Häberle, P.; Bedran-Russo, A.; Luque-Martinez, I. The adverse effects of radiotherapy on the structure of dental hard tissues and longevity of dental restoration. Int. J. Radiat. Biol. 2020, 96, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Le Caër, S. Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation. Water 2011, 3, 235–253. [Google Scholar] [CrossRef]
- Ray-Chaudhuri, A.; Shah, K.; Porter, R.J. The oral management of patients who have received radiotherapy to the head and neck region. Br. Dent. J. 2013, 214, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Pioch, T.; Golfels, D.; Staehle, H.J. An experimental study of the stability of irradiated teeth in the region of the dentinoenamel junction. Endod. Dent. Traumatol. 1992, 8, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Arid, J.; Palma-Dibb, R.G.; de Oliveira, H.F.; Nelson-Filho, P.; de Carvalho, F.K.; da Silva, L.A.B.; de Siqueira Mellara, T.; da Silva, R.A.B.; Faraoni, J.J.; de Queiroz, A.M. Radiotherapy impairs adhesive bonding in permanent teeth. Support. Care Cancer 2020, 28, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Van Meerbeek, B.; Yoshihara, K.; Yoshida, Y.; Mine, A.; De Munck, J.; Van Landuyt, K.L. State of the art of self-etch adhesives. Dent. Mater. 2011, 27, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Cadenaro, M.; Maravic, T.; Comba, A.; Mazzoni, A.; Fanfoni, L.; Hilton, T.; Ferracane, J.; Breschi, L. The role of polymerization in adhesive dentistry. Dent. Mater. 2019, 35, e1–e22. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Inoue, S. Chemical analyses in dental adhesive technology. Jap. Dent. Sci. Rev. 2012, 48, 141–152. [Google Scholar] [CrossRef]
- Scotchbond Universal Plus Adhesive Technical Product Profile. Available online: https://multimedia.3m.com/mws/media/1910608O/3m-scotchbond-universal-plus-adhesive-technical-product-profile-us.pdf (accessed on 18 February 2024).
- Araújo-Neto, V.G.; Moreira, M.M.; Ñaupari-Villasante, R.; De Paula, D.M.; Medeiros, S.T.C.B.; Loguercio, A.D.; Feitosa, V.P. Nanofiller Particles and Bonding Durability, Water Sorption, and Solubility of Universal Adhesives. Oper. Dent. 2021, 46, 690–697. [Google Scholar] [CrossRef]
- Hashimoto, M.; Ohno, H.; Sano, H.; Kaga, M.; Oguchi, H. In vitro degradation of resin–dentin bonds analyzed by microtensile bond test, scanning and transmission electron microscopy. Biomaterials 2003, 24, 3795–3803. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef]
- Alshali, R.Z.; Salim, N.A.; Satterthwaite, J.D.; Silikas, N. Long-term sorption and solubility of bulk-fill and conventional resin-composites in water and artificial saliva. J. Dent. 2015, 43, 1511–1518. [Google Scholar] [CrossRef]
- Schricker, S.R. Composite resin polymerization and relevant parameters. In Orthodontic Applications of Biomaterials; Eliades, T., Brantley, W.A., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 153–170. [Google Scholar] [CrossRef]
- Anseth, K.S.; Goodner, M.D.; Reil, M.A.; Kannurpatti, A.R.; Newman, S.M.; Bowman, C.N. The Influence of Comonomer Composition on Dimethacrylate Resin Properties for Dental Composites. J. Dent. Res. 1996, 75, 1607–1612. [Google Scholar] [CrossRef]
- Mortier, E.; Gerdolle, D.A.; Jacquot, B.; Panighi, M.M. Importance of water sorption and solubility studies for couple bonding agent—Resin-based filling material. Oper. Dent. 2004, 29, 669–676. [Google Scholar]
Material | Type | Chemical Formulation * | Manufacturer and LOT No. |
---|---|---|---|
SDR Plus Bulk Fill Flowable (SDR) | Bulk-fill flowable resin composite | Modified UDMA, Bis-EMA, TEGDMA, barium-alumino-fluoro-borosilicate glass, strontium alumino-fluoro-silicate glass, CQ photoinitiator, photoaccelerator, BHT, UV stabilizer, titanium dioxide, iron oxide pigments fluorescing agent. Filler load: 70.5 wt%, 47.4 vol% | Dentsply Sirona, Konstanz, Germany LOT: 2101000559, 2208000286 |
Tetric EvoFlow Bulk Fill (TET) | Bulk-fill flowable resin composite | Bis-GMA, Bis-EMA, UDMA, barium-alumino-silicate glass, ytterbium trifluoride, copolymers, mixed oxide. Filler load: 68.2 wt%, 46.4 vol% | Ivoclar Vivadent, Schaan, Liechtenstein LOT: Z00V4H |
3M Scotchbond Universal Plus Adhesive | Adhesive, universal | 10-MDP, dimethacrylate resins, HEMA, Vitrebond copolymer, silica filler, ethanol, water, initiators based on CQ, silane, dual-cure accelerator | 3M ESPE, Neuss, Germany LOT: 8039902 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohenski, D.; Vrebac, M.; Sever, E.K.; Grego, T.; Goršeta, K.; Ivanišević, A. Effects of Ionizing Radiation on the Shear Bond Strength of Composite Materials to Dentin. J. Compos. Sci. 2024, 8, 261. https://doi.org/10.3390/jcs8070261
Mohenski D, Vrebac M, Sever EK, Grego T, Goršeta K, Ivanišević A. Effects of Ionizing Radiation on the Shear Bond Strength of Composite Materials to Dentin. Journal of Composites Science. 2024; 8(7):261. https://doi.org/10.3390/jcs8070261
Chicago/Turabian StyleMohenski, Dora, Mihaela Vrebac, Eva Klarić Sever, Timor Grego, Kristina Goršeta, and Ana Ivanišević. 2024. "Effects of Ionizing Radiation on the Shear Bond Strength of Composite Materials to Dentin" Journal of Composites Science 8, no. 7: 261. https://doi.org/10.3390/jcs8070261
APA StyleMohenski, D., Vrebac, M., Sever, E. K., Grego, T., Goršeta, K., & Ivanišević, A. (2024). Effects of Ionizing Radiation on the Shear Bond Strength of Composite Materials to Dentin. Journal of Composites Science, 8(7), 261. https://doi.org/10.3390/jcs8070261