The Effect of Chopped Carbon Fibers on the Mechanical Properties and Fracture Toughness of 3D-Printed PLA Parts: An Experimental and Simulation Study
Abstract
:1. Introduction
- To fabricate PLA-CF composite samples with varying CCF orientations (0°, 0°/90°, +45°/−45°, and 0°/+45°/−45°/90°) using the FFF technique.
- To experimentally evaluate the tensile properties and fracture toughness (via the single-edge notched bend (SENB) method) of the composite samples.
- To look at how in-plane raster orientation affects the tensile and fracture strengths of PLA parts made with the FDM method. (The paper starts with a theoretical background of the stress field around the crack tip.)
- To develop and validate a finite element analysis (FEA) model using Abaqus to predict the fracture toughness of the composite samples.
- To analyze the effects of CF orientation on the mechanical properties and fracture toughness of the PLA-CF composites.
- To provide insights into the strengthening and toughening mechanisms of PLA-CF composites and their potential applications.
2. Theoretical Background
3. Materials and Methods
3.1. Materials
3.2. Composite Fabrication
3.2.1. Tensile Testing
3.2.2. Fracture Testing for Mode I
4. Finite Element Analysis
Prediction of Fracture Toughness Values
5. Results and Discussion
5.1. Tensile Properties
5.2. Fracture Toughness Values from SENB Testing
5.3. Analysis of Effects of Fiber Orientation on Properties
5.4. Microscopic Examination of Fracture Surfaces
5.5. Finite Element Analysis Results
Stress Distribution and Crack-Tip Fields
6. Conclusions
- Enhanced tensile strength:
- -
- The incorporation of CCF reinforcement resulted in a significant enhancement in tensile strength compared to unreinforced PLA (27.8 MPa).
- -
- The 0°/+45°/90° fiber orientation (sample A4) exhibited the highest tensile strength of 28.8 MPa, representing a 3.6% improvement over the unreinforced baseline.
- -
- Conversely, the 0°/90° orientation (sample A2) displayed a 39.6% decrease in tensile strength (16.786 MPa), highlighting the profound impact of fiber orientation on tensile properties.
- Improved fracture toughness:
- -
- The fracture toughness data revealed a trend where multi-directional fiber orientations outperformed unidirectional orientations.
- -
- The +45°/−45° orientation (sample A3) yielded the maximum fracture toughness of 259.12 MPa√m—a remarkable 29.9% increase compared to unreinforced PLA (199.34 MPa√m).
- -
- The 0°/+45°/90° orientation (sample A4) exhibited an 18.9% improvement in fracture toughness (237.21 MPa√m), while the 0°/90° orientation (sample A2) showed a modest 7.0% increase (213.28 MPa√m).
- Critical role of fiber orientation:
- -
- The study underscores the critical role played by fiber orientation in tailoring the mechanical properties of CCF-reinforced PLA composites.
- -
- Unidirectional fiber orientations, such as 0°, enhance tensile strength through efficient load transfer.
- -
- Multi-directional orientations facilitate improved fracture toughness by promoting mechanisms like crack deflection, fiber bridging, and fiber pull-out.
- -
- The observed inverse correlation between tensile strength and fracture toughness highlights the importance of judiciously selecting the fiber orientation to meet specific mechanical performance requirements.
- Optimizing composite architectures:
- -
- Composite designers can leverage the trade-off between tensile strength and fracture toughness to optimize the desired combination of strength, stiffness, and fracture resistance by strategically tailoring composite architectures.
- Future research directions:
- -
- Future research endeavors should focus on further exploring the underlying mechanisms governing the observed trends, potentially through in-depth microstructural and fractographic analyses.
- -
- Investigating the effect of varying fiber content and aspect ratios could provide valuable insights for optimizing the mechanical performance of CCF-reinforced PLA composites.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Murariu, M.; Dubois, P. PLA composites: From production to properties. Adv. Drug Deliv. Rev. 2016, 107, 17–46. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Wang, C.C.L.; Shin, Y.C.; Zhang, S.; Zavattieri, P.D. The status, challenges, and future of additive manufacturing in engineering. Comput.-Aided Des. 2015, 69, 65–89. [Google Scholar] [CrossRef]
- Thompson, M.K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R.I.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B.; et al. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP Ann. 2016, 65, 737–760. [Google Scholar] [CrossRef]
- Rajpurohit, S.R.; Dave, H.K. Impact strength of 3D printed PLA using open source FFF-based 3D printer. Prog. Addit. Manuf. 2021, 6, 119–131. [Google Scholar] [CrossRef]
- Kartikeyan, B.; Ponshanmugakumar, A.; Saravanan, G.; BharathGanesh, S.; Hemamalini, V. Experimental and theoretical analysis of FDM AM PLA mechanical properties. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Caminero, M.Á.; Chacón, J.M.; García-Plaza, E.; Núñez, P.J.; Reverte, J.M.; Becar, J.P. Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture. Polymers 2019, 11, 799. [Google Scholar] [CrossRef] [PubMed]
- Erdaş, M.U.; Yildiz, B.S.; Yildiz, A.R. Crash performance of a novel bio-inspired energy absorber produced by additive manufacturing using PLA and ABS materials. Mater. Test. 2024, 66, 696–704. [Google Scholar] [CrossRef]
- Ogaili, A.A.F.; Jaber, A.A.; Hamzah, M.N. Wind turbine blades fault diagnosis based on vibration dataset analysis. Data Brief 2023, 49, 109414. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Masood, S.H.; Bhowmik, J.L. Optimization of fused deposition modeling process parameters: A review of current research and future prospects. Adv. Manuf. 2015, 3, 42–53. [Google Scholar] [CrossRef]
- Gardan, J. Additive manufacturing technologies for polymer composites: State-of-the-art and future trends. In Structure and Properties of Additive Manufactured Polymer Components; Friedrich, K., Walter, R., Soutis, C., Advani, S.G., Fiedler, B., Eds.; Woodhead Publishing: Cambridge, UK, 2020; pp. 3–15. [Google Scholar] [CrossRef]
- Koç, O.O.; Meram, A.; Çetin, M.E.; Öztürk, S. Acoustic properties of ABS and PLA parts produced by additive manufacturing using different printing parameters. Mater. Test. 2024, 66, 705–714. [Google Scholar] [CrossRef]
- Erdaş, M.U.; Yıldız, B.S.; Yıldız, A.R. Experimental analysis of the effects of different production directions on the mechanical characteristics of ABS, PLA, and PETG materials produced by FDM. Mater. Test. 2024, 66, 198–206. [Google Scholar] [CrossRef]
- Ghabezi, P.; Sam-Daliri, O.; Flanagan, T.; Walls, M.; Harrison, N.M.; Ghabezi, P.; Sam-Daliri, O.; Flanagan, T.; Walls, M.; Harrison, N.M. Circular economy innovation: A deep investigation on 3D printing of industrial waste polypropylene and carbon fibre composites. Resour. Conserv. Recycl. 2024, 206, 107667. [Google Scholar] [CrossRef]
- Shirasu, K.; Yamaguchi, Y.; Hoshikawa, Y.; Kikugawa, G.; Tohmyoh, H.; Okabe, T. Micromechanics study of short carbon fiber-reinforced thermoplastics fabricated via 3D printing using design of experiments. Mater. Sci. Eng. A 2024, 891, 145971. [Google Scholar] [CrossRef]
- Ghabezi, P.; Flanagan, T.; Walls, M.; Harrison, N.M. Degradation characteristics of 3D printed continuous fibre-reinforced PA6/chopped fibre composites in simulated saltwater. Prog. Addit. Manuf. 2024, 9, 1–14. [Google Scholar] [CrossRef]
- Vălean, E.; Foti, P.; Razavi, S.M.J.; Berto, F.; Marșavina, L. Static and fatigue behavior of 3D printed PLA and PLA reinforced with short carbon fibers. J. Mech. Sci. Technol. 2023, 37, 5555–5559. [Google Scholar] [CrossRef]
- Iragi, M.; Pascual-González, C.; Esnaola, A.; Lopes, C.; Aretxabaleta, L. Ply and interlaminar behaviours of 3D printed continuous carbon fibre-reinforced thermoplastic laminates; effects of processing conditions and microstructure. Addit. Manuf. 2019, 30, 100884. [Google Scholar] [CrossRef]
- Li, Y.; Gao, S.; Dong, R.; Ding, X.; Duan, X. Additive Manufacturing of PLA and CF/PLA Binding Layer Specimens via Fused Deposition Modeling. J. Mater. Eng. Perform. 2018, 27, 492–500. [Google Scholar] [CrossRef]
- Thirugnanasamabandam, A.; Subramaniyan, M.; Prabhu, B.; Ramachandran, K. Development and comprehensive investigation on PLA / carbon fiber reinforced PLA based structurally alternate layered polymer composites. J. Ind. Eng. Chem. 2024, 136, 248–257. [Google Scholar] [CrossRef]
- Nanni, A.; Parisi, M.; Colonna, M.; Messori, M. Thermo-Mechanical and Morphological Properties of Polymer Composites Reinforced by Natural Fibers Derived from Wet Blue Leather Wastes: A Comparative Study. Polymers 2021, 13, 1837. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, P.; Prasad, B.D.; Narayana, K.L. Effect of MMT Clay on Mechanical, Thermal and Barrier Properties of Treated Aloevera Fiber/ PLA-Hybrid Biocomposites. Silicon 2020, 12, 1751–1760. [Google Scholar] [CrossRef]
- Cao, M.; Cui, T.; Yue, Y.; Li, C.; Guo, X.; Jia, X.; Wang, B. Preparation and Characterization for the Thermal Stability and Mechanical Property of PLA and PLA/CF Samples Built by FFF Approach. Materials 2023, 16, 5023. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, Q.; Kang, Y.; Wang, Y.; Liu, J. An investigation of preparation of continuous carbon fiber reinforced PLA prepreg filament. Compos. Commun. 2023, 39, 101530. [Google Scholar] [CrossRef]
- Li, H.; Liu, B.; Ge, L.; Chen, Y.; Zheng, H.; Fang, D. Mechanical performances of continuous carbon fiber reinforced PLA composites printed in vacuum. Compos. Part B Eng. 2021, 225, 109277. [Google Scholar] [CrossRef]
- Naranjo-Lozada, J.; Ahuett-Garza, H.; Orta-Castañón, P.; Verbeeten, W.M.; Sáiz-González, D. Tensile properties and failure behavior of chopped and continuous carbon fiber composites produced by additive manufacturing. Addit. Manuf. 2019, 26, 227–241. [Google Scholar] [CrossRef]
- Yadav, P.; Sahai, A.; Sharma, R.S. Flexural Strength and Surface Profiling of Carbon-Based PLA Parts by Additive Manufacturing. J. Inst. Eng. India Ser. C 2021, 102, 1–11. [Google Scholar] [CrossRef]
- Kumar Patro, P.; Kandregula, S.; Suhail Khan, M.; Das, S. Investigation of mechanical properties of 3D printed sandwich structures using PLA and ABS. Mater. Proc. 2023. [Google Scholar] [CrossRef]
- Zwawi, M. Structure Integrity and Fracture Prediction of PLA 3D-Printed Eye Grab Hooks with Different Cross Sections. Procedia Struct. Integr. 2022, 37, 1057–1064. [Google Scholar] [CrossRef]
- Wu, W.Z.; Ye, W.L.; Wu, Z.C.; Geng, P.; Wang, Y.L.; Zhao, J. Influence of Layer Thickness, Raster Angle, Deformation Temperature and Recovery Temperature on the Shape-Memory Effect of 3D-Printed Polylactic Acid Samples. Materials 2017, 10, 970. [Google Scholar] [CrossRef]
- Sajjadi, S.A.; Ghasemi, F.A.; Rajaee, P.; Fasihi, M. Evaluation of fracture properties of 3D printed high impact polystyrene according to essential work of fracture: Effect of raster angle. Addit. Manuf. 2022, 59, 103191. [Google Scholar] [CrossRef]
- Ayatollahi, M.R.; Nabavi-Kivi, A.; Bahrami, B.; Yahya, M.Y.; Khosravani, M.R. The influence of in-plane raster angle on tensile and fracture strengths of 3D-printed PLA specimens. Eng. Fract. Mech. 2020, 237, 107225. [Google Scholar] [CrossRef]
- Nabavi-Kivi, A.; Ayatollahi, M.R.; Razavi, N. Investigating the effect of raster orientation on fracture behavior of 3D-printed ABS specimens under tension-tear loading. Eur. J. Mech. A/Solids 2023, 99, 104944. [Google Scholar] [CrossRef]
- Gonabadi, H.; Chen, Y.; Yadav, A.; Bull, S. Investigation of the effect of raster angle, build orientation, and infill density on the elastic response of 3D printed parts using finite element microstructural modeling and homogenization techniques. Int. J. Adv. Manuf. Technol. 2022, 118, 1485–1510. [Google Scholar] [CrossRef]
- Karimi, H.R.; Khedri, E.; Nazemzadeh, N.; Mohamadi, R. Effect of layer angle and ambient temperature on the mechanical and fracture characteristics of unidirectional 3D printed PLA material. Mater. Today Commun. 2023, 35, 106174. [Google Scholar] [CrossRef]
- Anderson, T.L.; Anderson, T.L. Fracture Mechanics: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Sih, G.C.; Paris, P.C.; Irwin, G.R. On cracks in rectilinearly anisotropic bodies. Int. J. Fract. 1965, 1, 189–203. [Google Scholar] [CrossRef]
- Rice, J.R. A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. J. Appl. Mech. 1968, 35, 379–386. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W.; Qiu, J.; Wei, J.; Wang, S. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B Eng. 2015, 80, 369–378. [Google Scholar] [CrossRef]
- Hu, C.; Hau, W.N.J.; Chen, W.; Qin, Q.-H. The fabrication of long carbon fiber reinforced polylactic acid composites via fused deposition modelling: Experimental analysis and machine learning. J. Compos. Mater. 2020, 55, 1459–1472. [Google Scholar] [CrossRef]
- Arrigo, R.; Bartoli, M.; Malucelli, G. Poly(lactic Acid)–Biochar Biocomposites: Effect of Processing and Filler Content on Rheological, Thermal, and Mechanical Properties. Polymers 2020, 12, 892. [Google Scholar] [CrossRef]
- Abdulla, F.A.; Hamid, K.L.; Ogaili, A.A.F.; Abdulrazzaq, M.A. Experimental study of Wear Rate Behavior for Composite Materials under Hygrothermal Effect. IOP Conf. Ser. Mater. Sci. Eng. 2020, 928, 022009. [Google Scholar] [CrossRef]
- Ogaili, A.A.F.; Al-Ameen, E.S.; Kadhim, M.S.; Mustafa, M.N. Evaluation of mechanical and electrical properties of GFRP composite strengthened with hybrid nanomaterial fillers. AIMS Mater. Sci. 2020, 7, 93–102. [Google Scholar] [CrossRef]
- Ogaili, A.A.F.; Abdulla, F.A.; Al-Sabbagh, M.N.M.; Waheeb, R.R. Prediction of Mechanical, Thermal and Electrical Properties of Wool/Glass Fiber based Hybrid Composites. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; p. 022004. [Google Scholar]
- Ogaili, A.A.F.; Jaber, A.A.; Hamzah, M.N. A methodological approach for detecting multiple faults in wind turbine blades based on vibration signals and machine learning. Curved Layer. Struct. 2023, 10, 20220214. [Google Scholar] [CrossRef]
- Al-Ameen, E.S.; Abdulhameed, J.J.; Abdulla, F.A.; Ogaili, A.A.F.; Al-Sabbagh, M.N.M. Strength characteristics of pol-yester filled with recycled GFRP waste. J. Mech. Eng. Res. Dev. 2020, 43, 178–185. [Google Scholar]
- Al-Ameen, E.S.; Al-Sabbagh, M.N.M.; Ogaili, A.A.F.; Kurji, A. Role of pre-stressing on anti-penetration properties for Kevlar/Epoxy composite plates. Int. J. Nanoelectron. Mater. 2022, 15, 293–302. [Google Scholar]
- Al-Ameen, E.S.; Abdulla, F.A.; Ogaili, A.A.F. Effect of Nano TiO2 on Static Fracture Toughness of Fiberglass/Epoxy Composite Materials in Hot Climate regions. IOP Conf. Ser. Mater. Sci. Eng. 2020, 870, 012170. [Google Scholar] [CrossRef]
- Mohammed, S.A.; Al-Haddad, L.A.; Alawee, W.H.; Dhahad, H.A.; Jaber, A.A.; Al-Haddad, S.A. Forecasting the productivity of a solar distiller enhanced with an inclined absorber plate using stochastic gradient descent in artificial neural networks. Multiscale Multidiscip. Model. Exp. Des. 2023, 7, 1–11. [Google Scholar] [CrossRef]
- Akasheh, F.; Aglan, H. Fracture toughness enhancement of carbon fiber–reinforced polymer composites utilizing additive manufacturing fabrication. J. Elastomers Plast. 2018, 51, 698–711. [Google Scholar] [CrossRef]
- Oviedo, A.; Puente, A.; Bernal, C.; Pérez, E. Mechanical evaluation of polymeric filaments and their corresponding 3D printed samples. Polym. Test. 2020, 88, 106561. [Google Scholar] [CrossRef]
- Jap, N.S.; Pearce, G.M.; Hellier, A.K.; Russell, N.; Parr, W.C.; Walsh, W.R. The effect of raster orientation on the static and fatigue properties of filament deposited ABS polymer. Int. J. Fatigue 2019, 124, 328–337. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Reinicke, T. Effects of printing parameters on the fracture toughness of 3D-printed polymer parts. Procedia Struct. Integr. 2023, 47, 454–459. [Google Scholar] [CrossRef]
- Vălean, E.; Foti, P.; Berto, F.; Marșavina, L. Static and fatigue behavior of 3D printed smooth and notched PLA and short carbon fibers reinforced PLA. Theor. Appl. Fract. Mech. 2024, 131, 104417. [Google Scholar] [CrossRef]
- Ogaili, A.A.F.; Hamzah, M.N.; Jaber, A.A. Integration of Machine Learning (ML) and Finite Element Analysis (FEA) for Predicting the Failure Modes of a Small Horizontal Composite Blade. Int. J. Renew. Energy Res. 2022, 12, 2168–2179. [Google Scholar] [CrossRef]
- Ogaili, A.A.; Hamzah, M.N.; Jaber, A.A. Free Vibration Analysis of a Wind Turbine Blade Made of Composite Materials. In Proceedings of the International Middle Eastern Simulation and Modeling Conference, Baghdad, Iraq, 27–29 June 2022; pp. 27–29. [Google Scholar]
Parameters | Value |
---|---|
Printing speed (mm/s) | 60 |
Nozzle diameter (mm) | 0.4 |
Layer thickness (mm) | 0.2 |
Supplied speed (mm/s) | 60 |
Print temperature (°C) | 200 |
Infill ratio | 100% |
Sample Group | Raster Orientation | Description |
---|---|---|
A1 | 0° | All layers are printed with fibers aligned along the primary loading direction |
A2 | 0°/90° | Alternating layers with fibers oriented at 0° and 90° |
A3 | +45°/−45° | Alternating layers with fibers oriented at +45° and −45° |
A4 | 0°/+45°/−45°/90° | Layers with fibers oriented at 0°, +45°, and 90° in a specific sequence |
Sample | Max. Fracture Loads (N) | KIC) |
---|---|---|
A1 | 1000 | 199.34 |
A2 | 1072 | 213.28 |
A3 | 1300 | 259.12 |
A4 | 1190 | 237.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogaili, A.A.F.; Basem, A.; Kadhim, M.S.; Al-Sharify, Z.T.; Jaber, A.A.; Njim, E.K.; Al-Haddad, L.A.; Hamzah, M.N.; Al-Ameen, E.S. The Effect of Chopped Carbon Fibers on the Mechanical Properties and Fracture Toughness of 3D-Printed PLA Parts: An Experimental and Simulation Study. J. Compos. Sci. 2024, 8, 273. https://doi.org/10.3390/jcs8070273
Ogaili AAF, Basem A, Kadhim MS, Al-Sharify ZT, Jaber AA, Njim EK, Al-Haddad LA, Hamzah MN, Al-Ameen ES. The Effect of Chopped Carbon Fibers on the Mechanical Properties and Fracture Toughness of 3D-Printed PLA Parts: An Experimental and Simulation Study. Journal of Composites Science. 2024; 8(7):273. https://doi.org/10.3390/jcs8070273
Chicago/Turabian StyleOgaili, Ahmed Ali Farhan, Ali Basem, Mohammed Salman Kadhim, Zainab T. Al-Sharify, Alaa Abdulhady Jaber, Emad Kadum Njim, Luttfi A. Al-Haddad, Mohsin Noori Hamzah, and Ehsan S. Al-Ameen. 2024. "The Effect of Chopped Carbon Fibers on the Mechanical Properties and Fracture Toughness of 3D-Printed PLA Parts: An Experimental and Simulation Study" Journal of Composites Science 8, no. 7: 273. https://doi.org/10.3390/jcs8070273
APA StyleOgaili, A. A. F., Basem, A., Kadhim, M. S., Al-Sharify, Z. T., Jaber, A. A., Njim, E. K., Al-Haddad, L. A., Hamzah, M. N., & Al-Ameen, E. S. (2024). The Effect of Chopped Carbon Fibers on the Mechanical Properties and Fracture Toughness of 3D-Printed PLA Parts: An Experimental and Simulation Study. Journal of Composites Science, 8(7), 273. https://doi.org/10.3390/jcs8070273