Advancement in the Modeling and Design of Composite Pressure Vessels for Hydrogen Storage: A Comprehensive Review
Abstract
:1. Introduction
2. Design and Simulation of COPVs
2.1. Continuum Damage Modeling and Micromechanical Analysis
2.2. Molecular Dynamics Modeling
2.2.1. Mechanical Properties
2.2.2. Thermal Properties
2.2.3. Dynamic Properties
2.3. Dome Thickness Effect
2.4. Progressive Failure and Burst Analysis
2.5. Fatigue Analysis
2.6. Structural Optimization
2.7. Dynamic Refueling Conditions
2.8. Low-Velocity Impact Resistance
2.9. Structural Health Monitoring
3. Process and Manufacturing of COPVs
3.1. Cylindrical COPVs
3.2. Toroidal COPVs
4. Concluding Remarks and Future Works
- 1.
- This review aimed to find cost-efficient hydrogen storage solutions and investigates the effects of design parameters such as stacking sequence and orientation on the composite shell quality, vessel’s behavior under operating conditions and the resistance to bursting pressure. We discuss the experimental and analytical analysis of stacking sequences in composite pressure vessels. The review emphasizes the considerable influence of the stacking sequence on the vessel properties, highlighting the need for analytical and numerical strategies to address transition-related effects between the cylinder and the dome. Some published papers explore numerical simulation and optimization in high-pressure hydrogen storage vessels, focusing on damage modeling, burst pressure prediction, and lightweight design. They investigate liner geometry, dome shapes, and liner thickness, offering insights into COPV performance and structural analysis methods. Various studies propose numerical procedures and optimization methods to enhance the mechanical performance and design efficiency of composite pressure vessels. Combining Matlab and Abaqus software, the influence of the dome on vessel mechanics is analyzed. New techniques optimize dome thickness and liner charge pressure, enhancing structural integrity. Nonlinear finite element methods and optimization algorithms offer valuable insights into composite pressure vessel design, thus ensuring safety and efficiency. Recent research explores innovative approaches to optimize the design and manufacturing of composite pressure vessels using techniques such as variable winding angles and optimized stacking sequences. These techniques significantly enhance buckling strength and burst pressure prediction accuracy. Furthermore, it was found that the utilization of genetic algorithms and finite element analysis facilitates weight reduction and improved structural integrity, advancing efficient design strategies for composite pressure vessels.
- 2.
- In terms of materials development, the effect of the size on a composite pressure vessel’s fiber strength was examined, employing experimental and analytical methods. The focus of the investigation was the high-pressure strength of carbon fiber-reinforced vessels whereby the superior performance of carbon/vinylester composite was noted. Furthermore, alternative fibers were explored for sustainable vessel design, proposing hybrid configurations for improved performance.
- 3.
- Predictive damage models using continuum damage mechanics and finite element analysis, simulating cryogenic conditions, have been employed. In addition, many researchers have developed progressive failure analysis algorithms for composite vessels. The Hashin failure criterion and Abaqus and Ansys software facilitate comprehensive damage prediction, which is crucial for composite material behavior under varied loads. Hybrid composites, comprising carbon fibers and various nanoparticles dispersed in epoxy resins, are extensively utilized in hydrogen tank vessels. Some research focused on microscale simulations, such as molecular dynamics (MD), to predict mechanical, thermal, and dynamic properties. Other studies investigated epoxy curing, mechanical reinforcement by carbon nanotubes (CNTs), thermal expansion, glass transition behavior, and gas diffusion in polymer matrices for hydrogen tanks. Recent studies emphasize micromechanical modeling for assessing effective properties and failure modes and mechanisms in fiber reinforced composites. Parametric studies investigate stress distribution and failure mechanisms, which are crucial for aerospace and transportation. Predictive methods for burst pressure and deformation have developed, utilizing progressive failure analysis and probabilistic strength analysis, thereby contributing to improved structural design and safety. Finite element analysis and strength theories offer insights into stress distribution and crack behavior, facilitating safety enhancement.
- 4.
- SHM is crucial for assessing the condition of structures, aiming to detect, localize, and quantify damage early on to prevent catastrophic failures and extend their lifetime. Various methods, including fiber optic sensors, electrical impedance tomography, and ultrasonic guided waves, are employed for effective monitoring. Smart services enhance operational efficiency, reduce downtime risk, and contribute to cost savings in industries reliant on fluid storage and management.
- 5.
- Filament winding is pivotal when manufacturing composite vessels. Many investigations consider factors influencing burst pressure prediction, manufacturing variables, mechanical performance, and the feasibility of vessel manufacturing techniques. These studies emphasize the need for advancements to address manufacturing uncertainties and enhance structural performance. A non-geodesic method for designing winding patterns with unequal polar openings of filament-wound composite pressure vessels was used in several studies. LSE GmbH’s innovative ring winding technology for toroidal composite pressure vessels (TCPVs) offers substantial mass savings (up to 30%) and cost reductions. Analytical and numerical simulations were conducted for TCPV development, considering thick-walled structures and the local thickening of metallic inserts for reinforcement.
- 6.
- Future research should assess the impact of manufacturing and material property variations on Variable Angle Filament Winding (VAFW) cylinder performance, considering reliability-based design. The potential of VAFW designs for imperfection-insensitive structures in space applications remains unexplored, presenting possibilities for less conservative designs. Burst failure, often due to laminate failure, results from excessive internal pressure, such as overfilling or overheating. Advanced data analysis techniques, such as neural networks and Bayesian inference, enhance the accuracy of damage assessments. Challenges include sensor placement and environmental influences, which require robust solutions and advanced machine learning algorithms for future research. Smart SHM integrates IoT and data analytics to provide real-time data analysis, leading to timely decision-making for maintenance and safety.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barthelemy, H. Hydrogen storage—Industrial prospectives. Int. J. Hydrogen Energy 2012, 37, 17364–17372. [Google Scholar] [CrossRef]
- Barthelemy, H.; Weber, M.; Barbier, F. Hydrogen storage–recent improvements and industrial perspectives. Int. J. Hydrogen Energy 2017, 42, 7254–7262. [Google Scholar] [CrossRef]
- Rousseau, J.; Perreux, D.; Verdiere, N. The influence of winding patterns on the damage behaviour of filament-wound pipes. Compos. Sci. Technol. 1999, 59, 1439–1449. [Google Scholar] [CrossRef]
- Almeida, J.H.S., Jr.; St-Pierre, L.; Wang, Z.; Ribeiro, M.L.; Tita, V.; Amico, S.C.; Castro, S.G. Design, modelling, optimization, manufacturing, and testing of variable-angle filament-wound cylinders. Compos. Part B 2021, 225, 109224. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, P. Elasto-plastic stress analysis and burst strength evaluation of al-carbon fiber/epoxy composite cylindrical laminates. Comput. Mater. Sci. 2008, 42, 453–461. [Google Scholar] [CrossRef]
- Bouhala, L.; Makradi, A.; Belouettar, S.; Kiefer-Kamal, H.; Fréres, P. Modelling of failure in long fibres reinforced composites by xfem and cohesive zone model. Compos. Part B 2013, 55, 352–361. [Google Scholar] [CrossRef]
- Bouhala, L.; Shao, Q.; Koutsawa, Y.; Younes, A.; Núnez, P.; Makradi, A.; Belouettar, S. An xfem crack-tip enrichment for a crack terminating at a bi-material interface. Eng. Fract. Mech. 2013, 102, 51–64. [Google Scholar] [CrossRef]
- Li, W.; Lv, H.; Zhang, L.; He, P.; Zhang, C. Experiment, simulation, optimization design, and damage detection of composite shell of hydrogen storage vessel—A review. J. Reinf. Plast. Compos. 2023, 42, 507–536. [Google Scholar] [CrossRef]
- Bouhala, L.; Koutsawa, Y.; Makradi, A.; Belouettar, S. An advanced numerical method for predicting effective elastic properties of heterogeneous composite materials. Compos. Struct. 2014, 117, 114–123. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, S.; Song, M.; Chen, Y.; Zhao, X.; Liang, J.; Feng, J. A multiscale study of cfrp based on asymptotic homogenization with application to mechanical analysis of composite pressure vessels. Polymers 2022, 14, 2817. [Google Scholar] [CrossRef]
- Camara, S.; Bunsell, A.R.; Thionnet, A.; Allen, D.H.; Allen, D.H. Determination of lifetime probabilities of carbon fibre composite plates and pressure vessels for hydrogen storage. Int. J. Hydrogen Energy 2011, 36, 6031–6038. [Google Scholar] [CrossRef]
- Regassa, Y.; Gari, J.; Lemu, H.G. Composite overwrapped pressure vessel design optimization using numerical method. J. Compos. Sci. 2022, 6, 229. [Google Scholar] [CrossRef]
- Hashin, Z.; Rotem, A. A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 1973, 7, 448–464. [Google Scholar] [CrossRef]
- Kashyzadeh, K.R.; Rahimian Koloor, S.S.; Omidi Bidgoli, M.; Petrů, M.; Amiri Asfarjani, A. An optimum fatigue design of polymer composite compressed natural gas tank using hybrid finite element-response surface methods. Polymers 2021, 13, 483. [Google Scholar] [CrossRef]
- Hong, J.-H.; Han, M.-G.; Chang, S.-H.; Chang, S.-H. Safety evaluation of 70 mpa-capacity type iii hydrogen pressure vessel considering material degradation of composites due to temperature rise. Compos. Struct. 2014, 113, 127–133. [Google Scholar] [CrossRef]
- Zhang, M.; Lv, H.; Kang, H.; Zhou, W.; Zhang, C. A literature review of failure prediction and analysis methods for composite high-pressure hydrogen storage tanks. Int. J. Hydrogen Energy 2019, 44, 777–799. [Google Scholar] [CrossRef]
- Jebeli, M.A.; Heidari-Rarani, M. Development of abaqus wcm plugin for progressive failure analysis of type iv composite pressure vessels based on puck failure criterion. Eng. Fail. Anal. 2022, 131, 105851. [Google Scholar] [CrossRef]
- Lapczyk, I.; Hurtado, J.A. Progressive damage modeling in fiber-reinforced materials. Compos. Part A Appl. Sci. Manuf. 2007, 38, 2333–2341. [Google Scholar] [CrossRef]
- Mao, C.; Yang, M.; Hwang, D.; Wang, H. An estimation of strength for composite pressure vessels. Compos. Struct. 1992, 22, 179–186. [Google Scholar] [CrossRef]
- Benzeggagh, M.; Kenane, M.; Kenane, M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 1996, 56, 439–449. [Google Scholar] [CrossRef]
- Moradi, R.; Growth, K.M. Hydrogen storage and delivery: Review of the state-of-the-art technologies and risk and reliability analysis. Int. J. Hydrogen Energy 2019, 44, 12254–12269. [Google Scholar] [CrossRef]
- Liu, P.F.; Chu, J.K.; Hou, S.J.; Xu, P.; Zheng, J.Y. Numerical simulation and optimal design for composite high-pressure hydrogen storage vessel: A review. Renew. Sustain. Energy Rev. 2012, 16, 1817–1827. [Google Scholar] [CrossRef]
- Park, J.S.; Hong, C.S.; Kim, C.G.; Kim, C.U. Analysis of filament wound composite structures considering the change of winding angles through the thickness direction. Compos. Struct. 2002, 55, 63–71. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, S.; Bera, T.; Semwal, K.; Badhe, R.-M.; Sharma, A.; Kapur, G.-S.; Ramakumar, S.-V.; Neogi, S. Effects of dome shape on burst and weight performance of a type-3 composite pressure vessel for storage of compressed hydrogen. Compos. Struct. 2022, 293, 115732. [Google Scholar] [CrossRef]
- Kumar, G.-C.; Baligidad, S.-M.; Maharudresh, A.-C.; Dayanand, N. Analysis of composite pressure vessel and composite overwrapped pressure vessel by analytical and finite elemental approach. Mater. Today Proc. 2022, 50, 1726–1731. [Google Scholar] [CrossRef]
- Belardi, V.; Ottaviano, M.; Vivio, F. Bending theory of composite pressure vessels: A closed-form analytical approach. Compos. Struct. 2024, 329, 117799. [Google Scholar] [CrossRef]
- Dassault Systèmes, User’s Manual, Version 2022; Dassault Systèmes Simulia Corp.: Johnston, RI, USA, 2022.
- Mitsheal, A.D.; Diogo, M.; Opukuro, D.; George, H. A review of structural health monitoring techniques as applied to composite structures. Struct. Durab. Health Monit. 2023, 11, 91–147. [Google Scholar] [CrossRef]
- Schwab, M.; Todt, M.; Wolfahrt, M.; Pettermann, H. Failure mechanism based modelling of impact on fabric reinforced composite laminates based on shell elements. Compos. Sci. Technol. 2016, 128, 131–137. [Google Scholar] [CrossRef]
- Hassani, S.; Mousavi, M.; Gandomi, A.H. Structural health monitoring in composite structures: A comprehensive review. Sensors 2021, 22, 153. [Google Scholar] [CrossRef]
- Wang, B.; Zhong, S.; Lee, T.-L.; Fancey, K.S.; Mi, J. Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review. Adv. Mech. Eng. 2020, 12, 168781402091376. [Google Scholar] [CrossRef]
- Azad, M.M.; Kim, S.; Cheon, Y.B.; Kim, H.S. Intelligent structural health monitoring of composite structures using machine learning, deep learning, and transfer learning: A review. Adv. Compos. Mater. 2023, 33, 162–188. [Google Scholar] [CrossRef]
- Nguyen, B.N.; Roh, H.S.; Merkel, D.R.; Simmons, K.L. A predictive modelling tool for damage analysis and design of hydrogen storage composite pressure vessels. Int. J. Hydrogen Energy 2021, 46, 20573–20585. [Google Scholar] [CrossRef]
- Ramirez, J.P.B.; Halm, D.; Grandidier, J.-C.; Villalonga, S.; Villalonga, S. A fixed directions damage model for composite materials dedicated to hyperbaric type iv hydrogen storage vessel—Part i: Model formulation and identification. Int. J. Hydrogen Energy 2015, 40, 13165–13173. [Google Scholar] [CrossRef]
- Liu, P.; Zheng, J. Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2008, 485, 711–717. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, C.; Wei, S.; Wei, Z. Micromechanics-based progressive failure analysis of carbon fiber/epoxy composite vessel under combined internal pressure and thermomechanical loading. Compos. Part B Eng. 2016, 89, 77–84. [Google Scholar] [CrossRef]
- Bouhala, L.; Koutsawa, Y.; Karatrantos, A.; Bayreuther, C. Design of type-iv composite pressure vessel based on comparative analysis of numerical methods for modeling type-iii vessels. J. Compos. Sci. 2024, 8, 40. [Google Scholar] [CrossRef]
- Mugemana, C.; Moghimikheirabadi, A.; Arl, D.; Addiego, F.; Schmidt, D.F.; Kröger, M.; Karatrantos, A.V. Ionic poly(dimethylsiloxane)-silica nanocomposites: Dispersion and self-healing. MRS Bull. 2022, 47, 1. [Google Scholar] [CrossRef] [PubMed]
- Gavrielides, A.; Duguet, T.; Aufray, M.; Lacaze-Dufaure, C. Model of the dgeba-eda epoxy polymer: Experiments and simulation using classical molecular dynamics. Int. J. Polym. Sci. 2019, 2019, 9604714. [Google Scholar] [CrossRef]
- Aninch, I.M.M.; Palmese, G.R.; Lenhart, J.L.; Scala, J.J.L. Epoxy-amine networks with varying epoxy polydispersity. J. Appl. Polym. Sci. 2015, 132, 41503. [Google Scholar] [CrossRef]
- Ren, M.; Wang, L.; Li, T.; Wei, B. Molecular investigation on the compatibility of epoxy resin with liquid oxygen. Theor. Appl. Mech. Lett. 2020, 10, 38–45. [Google Scholar] [CrossRef]
- Shoji, N.; Sasaki, K.; Uedono, A.; Taniguchi, Y.; Hayashi, K.; Matsubara, N.; Kobayashi, T.; Yamashita, T. Effect of conversion on epoxy resin properties: Combined molecular dynamics simulation and experimental study. Polymer 2022, 254, 125041. [Google Scholar] [CrossRef]
- Melro, L.S.; Jensen, L.R. Interfacial characterization of functionalized graphene-epoxy composites. J. Compos. Mater. 2020, 54, 703–710. [Google Scholar] [CrossRef]
- Sirk, T.W.; Karim, M.; Khare, K.S.; Lenhart, J.L.; Andzelm, J.W.; Khare, R. Bi-modal polymer networks: Composition-dependent trends in thermal, volumetric and structural properties from molecular dynamics simulation. Polymer 2015, 58, 199–208. [Google Scholar] [CrossRef]
- Fan, J.; Anastassiou, A.; Macosko, C.W.; Tadmor, E.B. Molecular dynamics predictions of thermomechanical properties of an epoxy thermosetting polymer. Polymer 2020, 196, 122477. [Google Scholar] [CrossRef]
- Jeyranpour, F.; Alahyarizadeh, G.; Arab, B. Comparative investigation of thermal and mechanical properties of cross-linked epoxy polymers with different curing agents by molecular dynamics simulation. J. Mol. Graph. Model. 2015, 62, 157–164. [Google Scholar] [CrossRef]
- Jang, C.; Lacy, T.E.; Gwaltney, S.R.; Toghiani, H.; Pittman, C.U.J. Relative reactivity volume criterion for cross-linking: Application to vinyl ester resin molecular dynamics simulations. Macromolecules 2012, 45, 4876–4885. [Google Scholar] [CrossRef]
- Huang, M.; Alvarez, N.J.; Palmese, G.R.; Abrams, C. The effect of network topology on material properties in vinyl-ester/styrene thermoset polymers using molecular dynamics simulations and time–temperature superposition. Comput. Mater. Sci. 2022, 207, 111264. [Google Scholar] [CrossRef]
- Jiao, X.Z.W.; Hou, C.; Liu, W. Molecular dynamics simulation of the influence of sizing agent on the interfacial properties of sized carbon fiber/vinyl ester resin composite modified by self-migration method. Compos. Interfaces 2021, 28, 445–459. [Google Scholar] [CrossRef]
- Jang, H.-K.; Kim, H.-I.; Dodge, T.; Sun, P.; Zhu, H.; Nam, J.-D.; Suhr, J. Interfacial shear strength of reduced graphene oxide polymer composites. Carbon 2014, 77, 390–397. [Google Scholar] [CrossRef]
- He, S.; Walsh, T.R. Prediction of chain-growth polymerisation of vinyl ester resin structure at the carbon fibre interface. Compos. Sci. Technol. 2022, 218, 109168. [Google Scholar] [CrossRef]
- Jang, C.W.; Kang, J.H.; Palmieri, F.L.; Hudson, T.B.; Brandenburg, C.J.; Lawson, J.W. Molecular dynamic investigation of the structural and mechanical properties of off-stoichiometric epoxy resins. ACS Appl. Polym. Mater. 2021, 3, 2950–2959. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Livraghi, M.; Pahi, S.; Nowakowski, P.; Smith, D.M.; Wick, C.R.; Smith, A.-S. Block chemistry for accurate modeling of epoxy resins. J. Phys. Chem. B 2023, 127, 7648–7662. [Google Scholar] [CrossRef]
- Moghimikheirabadi, A.; Karatrantos, A.V.; Kröger, M. Ionic polymer nanocomposites subjected to uniaxial extension: A nonequilibrium molecular dynamics study. Polymers 2021, 13, 4001. [Google Scholar] [CrossRef]
- Radue, M.; Odegard, G. Multiscale modeling of carbon fiber/carbon nanotube/epoxy hybrid composites: Comparison of epoxy matrices. Compos. Sci. Technol. 2018, 166, 20–26. [Google Scholar] [CrossRef]
- Fasanella, N.; Sundararaghavan, V. Atomistic modeling of thermomechanical properties of swnt/epoxy nanocomposites. Model. Simul. Mater. Sci. Eng. 2015, 23, 065003. [Google Scholar] [CrossRef]
- Aluko, O.; Gowtham, S.; Odegard, G. Multiscale modeling and analysis of graphene nanoplatelet/carbon fiber/epoxy hybrid composite. Compos. Part B Eng. 2017, 131, 82–90. [Google Scholar] [CrossRef]
- Pal, S.; Dansuk, K.; Giuntoli, A.; Sirk, T.W.; Keten, S. Predicting the effect of hardener composition on the mechanical and fracture properties of epoxy resins using molecular modeling. Macromolecules 2023, 56, 4447–4456. [Google Scholar] [CrossRef]
- Konrad, J.; Zahn, D. Bottom-to-top modeling of epoxy resins: From atomic models to mesoscale fracture mechanisms. J. Chem. Phys. 2024, 160, 024111. [Google Scholar] [CrossRef]
- Yarahmadi, A.; Hashemian, M.; Toghraie, D.; Abedinzadeh, R.; Ali Eftekhari, S. Investigation of mechanical properties of epoxy-containing detda and degba and graphene oxide nanosheet using molecular dynamics simulation. J. Mol. Liq. 2022, 347, 118392. [Google Scholar] [CrossRef]
- Li, C.; Browning, A.R.; Christensen, S.; Strachan, A. Atomistic simulations on multilayer graphene reinforced epoxy composites. Compos. Part A 2012, 43, 1293–1300. [Google Scholar] [CrossRef]
- Wu, C. Competitive absorption of epoxy monomers on carbon nanotube: A molecular simulation study. J. Polym. Sci. B 2011, 49, 1123–1130. [Google Scholar] [CrossRef]
- Karatrantos, A.V.; Mugemana, C.; Bouhala, L.; Clarke, N.; Kröger, M. From ionic nanoparticle organic hybrids to ionic nanocomposites: Structure, dynamics, and properties: A review. Nanomaterials 2023, 13, 2. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Kikugawa, G.; Kawagoe, Y.; Shirasu, K.; Okabe, T. Molecular-scale investigation on relationship between thermal conductivity and the structure of crosslinked epoxy resin. Int. J. Heat Mass Transf. 2022, 198, 123429. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Valavala, P.K.; Clancy, T.C.; Wise, K.E.; Odegard, G.M. Molecular modeling of crosslinked epoxy polymers: The effect of crosslink density on thermomechanical properties. Polymer 2011, 52, 2445–2452. [Google Scholar] [CrossRef]
- Hadipeykani, M.; Aghadavoudi, F.; Toghraie, D. A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer based epoxy nanocomposite reinforced by cnt: A statistical study. Phys. A Stat. Mech. Its Appl. 2020, 546, 123995. [Google Scholar] [CrossRef]
- Khare, K.S.; Khare, R. Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites: Role of interfacial interactions. J. Phys. Chem. B 2013, 117, 7444–7454. [Google Scholar] [CrossRef]
- Baniassadi, M.; Laachachi, A.; Makradi, A.; Belouettar, S.; Ruch, D.; Muller, R.; Garmestani, H.; Toniazzo, V.; Ahzi, S. Statistical continuum theory for the effective conductivity of carbon nanotubes filled polymer composites. Thermochim. Acta 2011, 520, 33–37. [Google Scholar] [CrossRef]
- Mortazavi, B.; Benzerara, O.; Meyer, H.; Bardon, J.; Ahzi, S. Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites. Carbon 2013, 60, 356–365. [Google Scholar] [CrossRef]
- Zeng, K.; Ibrahim, A.J.; Saleh, Z.M.; Altimari, U.S.; Jalil, A.T.; Kadhim, M.M.; Dilfy, S.H.; Andani, M.T.; Alizadeh, A.A.; Hekmatifar, M. Investigation of mechanical and thermal characteristics of epoxy/graphene oxide nanocomposites by molecular dynamics simulation. Mater. Sci. Eng. B 2023, 287, 116087. [Google Scholar] [CrossRef]
- Koyanagi, J.; Itano, M.Y.N.; Mori, K.; Ishida, Y.; Bazhirov, T. Evaluation of the mechanical properties of carbon fiber/polymer resin interfaces by molecular simulation. Adv. Compos. Mater. 2019, 28, 639–652. [Google Scholar] [CrossRef]
- Muhammad, A.; Ezquerro, C.S.; Srivastava, R.; Asinari, P.; Laspalas, M.; Chiminelli, A.; Fasano, M. Atomistic to mesoscopic modelling of thermophysical properties of graphene-reinforced epoxy nanocomposites. Nanomaterials 2023, 13, 1960. [Google Scholar] [CrossRef]
- Shrestha, A.; Sumiya, Y.; Okazawa, K.; Uwabe, T.; Yoshizawa, K. Molecular understanding of adhesion of epoxy resin to graphene and graphene oxide surfaces in terms of orbital interactions. Langmuir 2023, 39, 5514–5526. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, L.; Cui, L.; Zhang, Y.; Du, X. Molecular dynamics simulation of cross-linked epoxy resin and its interaction energy with graphene under two typical force fields. Comput. Mater. Sci. 2018, 143, 240–247. [Google Scholar] [CrossRef]
- Tcharkhtchi, A.; Gouin, E.; Verdu, J. Thermal expansion of epoxide–amine networks in the glassy state. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 537–543. [Google Scholar] [CrossRef]
- Lin, P.H.; Khare, R. Molecular simulation of cross-linked epoxy and epoxy-poss nanocomposite. Macromolecules 2009, 42, 4319–4327. [Google Scholar] [CrossRef]
- Khare, K.S.; Khabaz, F.; Khare, R. Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites. Appl. Mater. Interf. 2014, 6, 6098–6110. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Yu, S.; Yang, S.; Cho, M. The glass transition and thermoelastic behavior of epoxy-based nanocomposites: A molecular dynamics study. Polymer 2011, 52, 5197–5203. [Google Scholar] [CrossRef]
- Defauchy, V.; Corre, H.L.; Colin, X. Simulation of the oxygen permeability of a composite container. J. Compos. Sci. 2018, 2, 21. [Google Scholar] [CrossRef]
- Su, Y.; Lv, H.; Feng, C.; Zhang, C. Hydrogen permeability of polyamide 6 as the liner material of type four hydrogen storage tanks: A molecular dynamics investigation. Int. J. Hydrogen Energy 2024, 50, 1598–1606. [Google Scholar] [CrossRef]
- Landi, A.V.D.; Borriello, S.; Scafà, M.; Germani, M. A methodological approach for the design of composite tanks produced by filament winding. Comput.-Aided Des. Appl. 2020, 17, 1229–1240. [Google Scholar] [CrossRef]
- Qian, Z.; Hui, X.; Xiaolong, J.; Lei, Z.; Zu, L.; Shuo, C.; Huabi, W. Design of a 70 mpa type iv hydrogen storage vessel using accurate modeling techniques for dome thickness prediction. Compos. Struct. 2020, 236, 111915. [Google Scholar] [CrossRef]
- Jois, K.C.; Welsh, M.; Gries, T.; Sackmann, J. Numerical analysis of filament wound cylindrical composite pressure vessels accounting for variable dome contour. J. Compos. Sci. 2021, 5, 56. [Google Scholar] [CrossRef]
- Wang, H.; Fu, S.; Chen, Y.; Hua, L. Thickness-prediction method involving tow redistribution for the dome of composite hydrogen storage vessels. Polymers 2021, 14, 902. [Google Scholar] [CrossRef]
- Sun, X.-K.; Du, S.; Du, S.-Y.; Wang, G.-D. Bursting problem of filament wound composite pressure vessels. Int. J. Press. Vessel. Pip. 1999, 76, 55–59. [Google Scholar] [CrossRef]
- Liang, C.-C.; Chen, H.-W.; Wang, C.-H. Optimum design of dome contour for filament-wound composite pressure vessels based on a shape factor. Compos. Struct. 2002, 58, 469–482. [Google Scholar] [CrossRef]
- Lin, J.; Zheng, C.; Dai, Y.; Wang, Z.; Lu, J. Prediction of composite pressure vessel dome contour and strength analysis based on a new fiber thickness calculation method. Compos. Struct. 2023, 306, 116590. [Google Scholar] [CrossRef]
- Wan, L.; Ismail, Y.; Sheng, Y.; Ye, J.; Yang, D. A review on micromechanical modelling of progressive failure in unidirectional fibre-reinforced composites. Compos. Part C Open Access 2023, 10, 100348. [Google Scholar] [CrossRef]
- Kang, H.; He, P.; Zhang, C.; Dai, Y.; Lv, H.; Zhang, M.; Yang, D. Stress-strain and burst failure analysis of fibre wound composite material high-pressure vessel. Polym. Polym. Compos. 2021, 29, 1291–1303. [Google Scholar]
- Farhood, N.H.; Karuppanan, S.; Ya, H.H.; Baharom, M.A. Burst pressure investigation of filament wound type iv composite pressure vessel. In AIP Conference Proceedings; AIP Publishing: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Harada, S.; Arai, Y.; Araki, W.; Iijima, T.; Kurosawa, A.; Ohbuchi, T.; Sasaki, N. A simplified method for predicting burst pressure of type iii filament-wound cfrp composite vessels considering the inhomogeneity of fiber packing. Compos. Struct. 2018, 190, 79–90. [Google Scholar] [CrossRef]
- Hwang, T.-K.; Hong, C.-S.; Kim, C.-G. Size effect on the fiber strength of composite pressure vessels author links open overlay panel. Compos. Struct. 2003, 59, 489–498. [Google Scholar] [CrossRef]
- Liu, P.; Xing, L.; Zheng, J. Failure analysis of carbon fiber/epoxy composite cylindrical laminates using explicit finite element method. Compos. Part B 2014, 56, 54–61. [Google Scholar] [CrossRef]
- Son, D.-S.; Hong, J.-H.; Chang, S.-H.; Chang, S.-H.; Chang, S.-H. Determination of the autofrettage pressure and estimation of material failures of a type iii hydrogen pressure vessel by using finite element analysis. Int. J. Hydrogen Energy 2012, 37, 12771–12781. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, X.D.; Fan, Z.; Nie, D. Stress and damage analyses of composite overwrapped pressure vessel. Procedia Eng. 2015, 130, 32–40. [Google Scholar] [CrossRef]
- Tsai, S.W.; Tsai, S.W.; Wu, E.M. A general theory of strength for anisotropic materials. J. Compos. Mater. 1971, 5, 58–80. [Google Scholar] [CrossRef]
- Park, W.R.; Fatoni, N.F.; Kwon, O.H. Evaluation of stress and crack behavior using the extended finite element method in the composite layer of a type iii hydrogen storage vessel. J. Mech. Sci. Technol. 2018, 32, 1995–2002. [Google Scholar] [CrossRef]
- Zheng, C.X.; Wang, L.; Li, R.; Wei, Z.X.; Zhou, W.W. Fatigue test of carbon epoxy composite high pressure hydrogen storage vessel under hydrogen environment. J. Zhejiang Univ. Sci. 2013, 14, 393–400. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Kim, L.; Park, J.-S. The effect of composite damage on fatigue life of the high pressure vessel for natural gas vehicles. Compos. Struct. 2011, 93, 2963–2968. [Google Scholar] [CrossRef]
- Azizian, M.; Azizian, M.; Abazadeh, B.; Mohtadi-Bonab, M. Progressive failure analysis and taguchi-based optimisation of filament-wound composite tubes subjected to internal pressure using continuum damage mechanics approach. J. Compos. Mater. 2022, 56, 3455–3469. [Google Scholar] [CrossRef]
- Roh, H.; Hua, T.Q.; Hua, T.; Ahluwalia, R.K. Optimization of carbon fiber usage in type 4 hydrogen storage tanks for fuel cell automobiles. Int. J. Hydrogen Energy 2013, 38, 12795–12802. [Google Scholar] [CrossRef]
- Francescato, P.; Gillet, A.; Leh, D.; Saffré, P. Comparison of optimal design methods for type 3 high-pressure storage tanks. Compos. Struct. 2012, 94, 2087–2096. [Google Scholar] [CrossRef]
- Xu, P.; Zheng, J.; Chen, H.; Liu, P. Optimal design of high pressure hydrogen storage vessel using an adaptive genetic algorithm. Int. J. Hydrogen Energy 2010, 35, 2840–2846. [Google Scholar] [CrossRef]
- Alcántar, V.; Aceves, S.M.; Ledesma-Orozco, E.; Ledesma, E.; Ledesma, S.; Aguilera, E. Optimization of type 4 composite pressure vessels using genetic algorithms and simulated annealing. Int. J. Hydrogen Energy 2017, 42, 15770–15781. [Google Scholar] [CrossRef]
- Sapre, S.; Pareek, K.; Vyas, M. Investigation of structural stability of type iv compressed hydrogen storage tank during refueling of fuel cell vehicle. Energy Storage 2020, 2, 150. [Google Scholar] [CrossRef]
- Gentilleau, B.; Touchard, F.; Grandidier, J.-C. Numerical study of influence of temperature and matrix cracking on type iv hydrogen high pressure storage vessel behavior. Compos. Struct. 2014, 111, 98–110. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, X.; Xu, P.; Liu, P.; Zhao, Y.; Yang, J.; Yang, J. Development of high pressure gaseous hydrogen storage technologies. Int. J. Hydrogen Energy 2012, 37, 1048–1057. [Google Scholar] [CrossRef]
- Bouhala, L.; Makradi, A.; Belouettar, S. Thermal and thermo-mechanical influence on crack propagation using an extended mesh free method. Eng. Fract. Mech. 2012, 88, 35–48. [Google Scholar] [CrossRef]
- Shao, Q.; Bouhala, L.; Younes, A.; Makradi, A.; Belouettar, S. An xfem model for cracked porous media: Effects of fluid flow and heat transfer. Int. J. Fract. 2014, 185, 155–169. [Google Scholar] [CrossRef]
- Shao, Q.; Fernández-González, R.; Mikdam, A.; Bouhala, L.; Younes, A.; Núñez, P.; Belouettar, S.; Makradi, A. Influence of heat transfer and fluid flow on crack growth in multilayered porous/dense materials using xfem: Application to solid oxide fuel cell like material design. Int. J. Solids Struct. 2014, 51, 3557–3569. [Google Scholar] [CrossRef]
- Li, H.; Lyu, Z.; Liu, Y.; Han, M.; Li, H. The effects of infill on hydrogen tank temperature distribution during fast fill. Int. J. Hydrogen Energy 2021, 46, 10396–10410. [Google Scholar] [CrossRef]
- Demir, I.; Sayman, O.; Dogan, A.; Arikan, V.; Arman, Y. The effects of repeated transverse impact load on the burst pressure of composite pressure vessel. Compos. Part B Eng. 2015, 68, 121–125. [Google Scholar] [CrossRef]
- Singh, H.; Namala, K.K.; Namala, K.K.; Mahajan, P. A damage evolution study of e-glass/epoxy composite under low velocity impact. Compos. Part B Eng. 2015, 76, 235–248. [Google Scholar] [CrossRef]
- Perillo, G.; Grytten, F.; Sørbø, S.; Delhaye, V. Numerical/experimental impact events on filament wound composite pressure vessel. Compos. Part B Eng. 2015, 69, 406–417. [Google Scholar] [CrossRef]
- Long, B.; Yang, N.; Cao, X. Low-velocity impact damages of filament-wound composite overwrapped pressure vessel (copv). J. Eng. Fibers Fabr. 2022, 17, 1–16. [Google Scholar] [CrossRef]
- Gemi, L. Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure. A comparative study. Compos. Part B Eng. 2018, 153, 217–232. [Google Scholar] [CrossRef]
- Mishra, M.; Lourenço, P.B.; Ramana, G. Structural health monitoring of civil engineering structures by using the internet of things: A review. J. Build. Eng. 2022, 48, 103954. [Google Scholar] [CrossRef]
- Civera, M.; Surace, C. Non-destructive techniques for the condition and structural health monitoring of wind turbines: A literature review of the last 20 years. Sensors 2022, 22, 1627. [Google Scholar] [CrossRef]
- Yari, T.; Nagai, K.; Takeda, N. Aircraft structural-health monitoring using optical fiber distributed botdr sensors. Adv. Compos. Mater. 2004, 13, 17–26. [Google Scholar] [CrossRef]
- Mitschang, P.; Molnár, P.; Ogale, A.; Ishii, M. Cost-effective structural health monitoring of frpc parts for automotive applications. Adv. Compos. Mater. 2007, 16, 135–149. [Google Scholar] [CrossRef]
- Güemes, A.; Fernandez-Lopez, A.; Pozo, A.R.; Sierra-Pérez, J. Structural health monitoring for advanced composite structures: A review. J. Compos. Sci. 2020, 4, 13. [Google Scholar] [CrossRef]
- Yoon, J.; Lee, J.; Kim, G.; Ryu, S.; Park, J. Deep Neural Network–Based Structural Health Monitoring Technique for Real–Time Crack Detection and Localization Using Strain Gauge Sensors. Available online: www.nature.com/scientificreports (accessed on 23 May 2024).
- Kralovec, C.; Schagerl, M. Review of structural health monitoring methods regarding a multi-sensor approach for damage assessment of metal and composite structures. Sensors 2020, 20, 826. [Google Scholar] [CrossRef]
- Khan, A.; Azad, M.M.; Sohail, M.; Kim, H.S. A review of physics-based models in prognostics and health management of laminated composite structures. Int. J. Precis. Eng. -Manuf.-Green Technol. 2023, 10, 1615–1635. [Google Scholar] [CrossRef]
- Murayama, H.; Kageyama, K.; Kamita, T.; Igawa, H. Structural health monitoring of a full-scale composite structure with fiber-optic sensors. Adv. Compos. Mater. 2002, 11, 287–297. [Google Scholar] [CrossRef]
- Bouhala, L.; Fiorelli, D.; Makradi, A.; Belouettar, S.; Sotayo, A.; Bradley, D.; Guan, Z. Advanced numerical investigation on adhesive free timber structures. Compos. Struct. 2020, 246, 112389. [Google Scholar] [CrossRef]
- Rafiee, R.; Torabi, M.A. Stochastic prediction of burst pressure in composite pressure vessels. Compos. Struct. 2018, 185, 573–583. [Google Scholar] [CrossRef]
- Cohen, D.; Cohen, D. Influence of filament winding parameters on composite vessel quality and strength. Compos. Part A Appl. Sci. Manuf. 1997, 28, 1035–1047. [Google Scholar] [CrossRef]
- Tapeinos, I.G.; Rajabzadeh, A.; Zarouchas, D.; Stief, M.; Groves, R.M.; Koussios, S.; Benedictus, R. Evaluation of the mechanical performance of a composite multi-cell tank for cryogenic storage: Part ii—Experimental assessment. Int. J. Hydrogen Energy 2019, 44, 3931–3943. [Google Scholar] [CrossRef]
- Kartav, O.; Kangal, S.; Yücetürk, K.; Tanoglu, M.; Aktas, E.; Artem, H.S. Development and analysis of composite overwrapped pressure vessels for hydrogen storage. J. Compos. Mater. 2021, 55, 4141–4155. [Google Scholar] [CrossRef]
- Kangal, S.; Kartav, O.; Tanoglu, M.; Aktas, E.; Artem, H.S. Investigation of interlayer hybridization effect on burst pressure performance of composite overwrapped pressure vessels with load-sharing metallic liner. J. Compos. Mater. 2020, 54, 961–980. [Google Scholar] [CrossRef]
- Air, A.; Oromiehie, E.; Prusty, G. Design and manufacture of a type v composite pressure vessel using automated fibre placement. Compos. Part Eng. B 2023, 266, 111027. [Google Scholar] [CrossRef]
- Canal, J.P.; Micuzzi, A.; Logarzo, H.; Terlisky, A.; Toscano, R.; Dvorkin, E. On the finite element modeling of copvs. Comput. Struct. 2019, 220, 1–13. [Google Scholar] [CrossRef]
- Guo, L.W.K.; Xiao, J.; Lei, M.; Wang, S.; Zhang, C.; Hou, X. Design of winding pattern of filament wound composite pressure vessel with unequal openings based on non-geodesics. J. Eng. Fibers Fabr. 2020, 15, 1–17. [Google Scholar] [CrossRef]
- Stabla, P.; Smolnicki, M.; Błażejewski, W. The numerical approach to mosaic patterns in filament-wound composite pipes. Appl. Compos. Mater. 2021, 28, 181–199. [Google Scholar] [CrossRef]
- Di, C.; Zhu, B.; Guo, X.; Yu, J.; Zhao, Y.; Qiao, K. Optimization of the winding layer structure of high-pressure composite overwrapped pressure vessels. Materials 2023, 16, 2713. [Google Scholar] [CrossRef]
- Hopmann, C.; Magura, N.; Müller, R.; Schneider, D.; Fischer, K. Impact of winding parameters on the fiber bandwidth in the cylindrical area of a hydrogen pressure vessel for generating a digital twin. Polym. Compos. 2022, 43, 1577–1589. [Google Scholar] [CrossRef]
- Lopez, N.R.; Tao, Y.; Çelik, H.; Hopmann, C. Entwicklung eines kohlenstofffaserverstärkten ringdruckbehälters zur wasserstoffspeicherung. Polym. Compos. 2023, 44, 2417–2426. [Google Scholar] [CrossRef]
- Azizian, M.; Almeida, J. Efficient strategies for reliability analysis and uncertainty quantification for filament-wound cylinders under internal pressure. J. Compos. Mater. 2023, 11, 1863–1874. [Google Scholar] [CrossRef]
- Schramm, N. Technological implementation of a toroidal composite pressure vessel for hydrogen storage. In Proceedings of the 22nd International Conference on Composite Materials, ICCM-22, Melbourne, Australia, 12–16 August 2019. [Google Scholar]
- Schramm, N. Entwicklung eines kohlenstofffaserverstärkten ringdruckbehälters zur wasserstoffspeicherung. In Proceedings of the 1st Fuel Cell Conference Chemnitz 2019, Saubere Antriebe, Saxony, Germany, 26–27 November 2019; ISBN 978-3-96100-103-3. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouhala, L.; Karatrantos, A.; Reinhardt, H.; Schramm, N.; Akin, B.; Rauscher, A.; Mauersberger, A.; Taşkıran, S.T.; Ulaşlı, M.E.; Aktaş, E.; et al. Advancement in the Modeling and Design of Composite Pressure Vessels for Hydrogen Storage: A Comprehensive Review. J. Compos. Sci. 2024, 8, 339. https://doi.org/10.3390/jcs8090339
Bouhala L, Karatrantos A, Reinhardt H, Schramm N, Akin B, Rauscher A, Mauersberger A, Taşkıran ST, Ulaşlı ME, Aktaş E, et al. Advancement in the Modeling and Design of Composite Pressure Vessels for Hydrogen Storage: A Comprehensive Review. Journal of Composites Science. 2024; 8(9):339. https://doi.org/10.3390/jcs8090339
Chicago/Turabian StyleBouhala, Lyazid, Argyrios Karatrantos, Heiner Reinhardt, Norbert Schramm, Beril Akin, Alexander Rauscher, Anton Mauersberger, Senagül Tunca Taşkıran, Muhammed Erdal Ulaşlı, Engin Aktaş, and et al. 2024. "Advancement in the Modeling and Design of Composite Pressure Vessels for Hydrogen Storage: A Comprehensive Review" Journal of Composites Science 8, no. 9: 339. https://doi.org/10.3390/jcs8090339
APA StyleBouhala, L., Karatrantos, A., Reinhardt, H., Schramm, N., Akin, B., Rauscher, A., Mauersberger, A., Taşkıran, S. T., Ulaşlı, M. E., Aktaş, E., & Tanoglu, M. (2024). Advancement in the Modeling and Design of Composite Pressure Vessels for Hydrogen Storage: A Comprehensive Review. Journal of Composites Science, 8(9), 339. https://doi.org/10.3390/jcs8090339