Evaluating the Hybridization and Treatment Effects on the Mechanical Properties of Enset and Sisal Hybrid Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composites Fabrication Methods
2.3. Composite Mechanical Testing
2.3.1. Tensile Test
2.3.2. Flexural Test
2.4. Water Absorption
2.5. Analysis of Variance
2.6. Morphological Surface
3. Results and Discussion
3.1. Flexural Test Results
3.2. Tensile Test Results
3.3. Water Absorption Results
3.4. Morphological Surface Analysis of the Composite
3.5. Results of the ANOVA
4. Conclusions
- The mechanical (tensile and flexural) properties enhanced as the sisal fiber volume increased and water absorption improved as the enset fiber volume increased in the E/S hybrid composite.
- A hybridization and treatment effect showed significant improvement for the mechanical and water absorption properties in both types of composite orientations.
- Higher tensile and flexural strength was obtained for 5% NaOH in both unidirectional and woven types of fiber orientation composites when compared with untreated and 10% NaOH treated composites.
- For tensile and flexural strength, the hybridization factor made a higher percentage contribution for unidirectional and woven samples of composite than treatment. The treatment factor, on the other hand, had more influence on the water absorption properties in both E/S composites than hybridization factors.
- The morphology of untreated and 10% NaOH composite specimens after tensile testing was affected. This is due to the hydrophilic nature of natural fibers which absorb moisture, resulting in fiber swelling, fiber fracture, debonding and dislocation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanjay, M.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 2018, 172, 566–581. [Google Scholar] [CrossRef]
- Mohammed, L.; Ansari, M.; Pua, G.; Jawaid, M.; Islam, M. A review on natural fiber reinforced polymer composite and its applications. Int. J. Polym. Sci. 2015, 2015, 1–15. [Google Scholar] [CrossRef]
- Gupta, M.; Srivastava, R. Tensile and flexural properties of sisal fiber reinforced epoxy composite: A comparison between unidirectional and mat form of fibers. Procedia Mater. Sci. 2014, 5, 2434–2439. [Google Scholar] [CrossRef]
- Swolfs, Y.; Gorbatikh, L.; Verpoest, I. Fiber hybridisation in polymer composites: A review. Compos. Part A 2014, 67, 181–200. [Google Scholar] [CrossRef]
- Codispoti, R.; Oliveira, D.; Olivito, R.; Lourenço, P.; Fangueiro, R. Mechanical performance of natural fi ber-reinforced composites for the strengthening of masonry. Compos. Part B 2015, 77, 74–83. [Google Scholar] [CrossRef]
- Mosisa, S.; Sirhabizu, B. Study and characterization of flexural and tensile properties of hybrid bamboo/sisal fiber reinforced epoxy composite. J. Mater. Sci. Eng. 2019, 8, 5. [Google Scholar]
- Cai, M.; Takagi, H.; Nakagaito, A.N.; Li, Y. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos. Part A 2016, 90, 589–597. [Google Scholar] [CrossRef]
- Kabir, M.; Wang, H.; Lau, K.; Cardona, F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B 2012, 43, 2883–2892. [Google Scholar] [CrossRef]
- Sood, M.; Dwivedi, G. Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egypt. J. Pet. 2018, 27, 775–783. [Google Scholar] [CrossRef]
- Niaz, M.; Bakar, A.; Radzi, M.; Ismail, F.; Raza, M.; Muhamad, N.; Khan, M.A. Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Prog. Nat. Sci. Mater. Int. 2017, 26, 657–664. [Google Scholar] [CrossRef]
- Siengchin, S.; Parameswaranpillai, J.; Jawaid, M.; Pruncu, C.I.; Khan, A. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydr. Polym. 2019, 207, 108–121. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Huang, L.; Kasal, B. Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Constr. Build. Mater. 2016, 112, 168–182. [Google Scholar] [CrossRef]
- Subramanian, S.; Rajkumar, R.; Ramkumar, T. Characterization of natural cellulosic fiber from cereus Hildmannianus. J. Nat. Fibers. 2021, 18, 343–354. [Google Scholar] [CrossRef]
- Jayaramudu, J.; Maity, A.; Sadiku, E.; Guduri, B.; Varada Rajulu, A.; Ramana, C.; Li, R. Structure and properties of new natural cellulose fabrics from Cordia dichotoma. Carbohydr. Polym. 2011, 86, 1623–1629. [Google Scholar] [CrossRef]
- Bekele, A.; Lemu, H.; Jiru, M. Experimental study of physical, chemical and mechanical properties of enset and sisal fibers. Polym. Test. 2022, 106, 107453. [Google Scholar] [CrossRef]
- Parida, C.; Dash, S.; Das, S. Effect of fiber treatment and fiber loading on mechanical properties of Luffa -Resorcinol composites. Indian J. Mater. Sci. 2015, 2015, 1–6. [Google Scholar] [CrossRef]
- Perremans, D.; Hendrickx, K.; Verpoest, I.; Van Vuure, A. Effect of chemical treatments on the mechanical properties of technical flax fibres with emphasis on sti ff ness improvement. Compos. Sci. Technol. 2018, 160, 216–223. [Google Scholar] [CrossRef]
- Yang, Y.; Ota, T.; Morii, T. Mechanical property and hydrothermal aging of injection molded jute/polypropylene composites. J. Mater. Sci. 2011, 46, 2678–2684. [Google Scholar] [CrossRef]
- Shubhra, Q.; Khan, M.; Gafur, M. Mechanical and degradation characteristics of natural silk and synthetic phosphate glass fiber reinforced polypropylene composites. J. Compos. Mater. 2011, 45, 1305–1313. [Google Scholar] [CrossRef]
- Wongsorat, W.; Suppakarn, N.; Jarukumjorn, K. Effects of compatibilizer type and fiber loading on mechanical properties and cure characteristics of sisal fiber/natural rubber composites. J. Compos. Mater. 2014, 48, 2401–2411. [Google Scholar] [CrossRef]
- Jawaid, M.; Abdul Khalil, H.; Hassan, A.; Dungani, R.; Hadiyane, A. Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites. Compos. Part B Eng. 2013, 45, 619–624. [Google Scholar] [CrossRef]
- Ramesh, M.; Palanikumar, K.; Reddy, K. Influence of fiber orientation and fiber content on properties of sisal-jute-glass fiber-reinforced polyester composites. J. Appl. Polym. Sci. 2016, 133, 1–9. [Google Scholar] [CrossRef]
- Chaudhary, V.; Bajpai, P.; Maheshwari, S. Studies on mechanical and morphological characterization of developed Jute/Hemp/Flax reinforced hybrid composites for structural applications. J. Nat. Fibers 2018, 15, 80–97. [Google Scholar] [CrossRef]
- Cavalcanti, D.; Banea, M.; Neto, J.; Lima, R.; Silva, L.; Carbas, R. Mechanical characterization of intralaminar natural fibre-reinforced hybrid composites. Compos. Part B 2019, 175, 107149. [Google Scholar] [CrossRef]
- Negawo, T.A.; Polat, Y.; Buyuknalcacl, F.; Kilic, A.; Saba, N.; Jawaid, M. Mechanical, morphological, structural and dynamic mechanical properties of alkali treated Ensete stem fibers reinforced unsaturated polyester composites. Compos. Struct. 2019, 207, 589–597. [Google Scholar] [CrossRef]
- Bekele, A.E.; Lemu, H.G.; Jiru, M.G. Exploration of mechanical properties of enset-sisal hybrid polymer composite. Fibers 2022, 10, 14. [Google Scholar] [CrossRef]
- Brandt, S.A. The ‘Tree against hunger’ Ensete-Based Agricultural Systems in Ethiopia; American Association for the Advancement of Science: Washington, DC, USA, 1997; Volume 55. [Google Scholar]
- Mizera, C.; Herak, D.; Hrabe, P.; Kabutey, A. Effect of temperature and moisture content on tensile behaviour of false banana fibre (Ensete ventricosum). Int. Agrophys. 2017, 31, 377–382. [Google Scholar] [CrossRef]
- Abdela, A.; Vandaele, M.; Haenen, S.; Buffel, B.; Sirahbizu, B.; Desplentere, F. Moisture absorption characteristics and subsequent mechanical property loss of enset–PLA composites. J. Compos. Sci. 2023, 7, 382. [Google Scholar] [CrossRef]
- Venkateshwaran, N.; Elayaperumal, A.; Alavudeen, A.; Thiruchitrambalam, M. Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Mater. Des. 2011, 32, 4017–4021. [Google Scholar] [CrossRef]
- Moshi, A.; Madasamy, S.; Bharathi, S. Investigation on the mechanical properties of sisal—Banana hybridized natural fiber composites with distinct weight fractions. AIP Conf. Proc. 2019, 2128, 020029. [Google Scholar] [CrossRef]
- Pappu, A.; Pickering, K.; Kumar, V. Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding. Ind. Crop. Prod. 2019, 137, 260–269. [Google Scholar] [CrossRef]
- Nunna, S.; Chandra, P.; Shrivastava, S. A review on mechanical behavior of natural fiber based hybrid composites. J. Reinf. Plast. Compos. 2012, 31, 760–769. [Google Scholar] [CrossRef]
- Sivakandhan, C.; Murali, G.; Tamiloli, N.; Ravikumar, L. Studies on mechanical properties of sisal and jute fiber hybrid sandwich composite. Mater. Today Proc. 2019, 21, 404–407. [Google Scholar] [CrossRef]
- ASTM D3039/D3039M-08; Standard Test Methods for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2014. Available online: https://www.astm.org/d3039_d3039m-08.html (accessed on 18 September 2024).
- ASTM D790-10; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2016. Available online: https://www.astm.org/d0790-10.html (accessed on 18 September 2024).
- Pinto, M.; Chalivendra, V.; Kim, Y.; Lewis, A. Evaluation of Surface Treatment and Fabrication Methods for Jute Fiber/Epoxy Laminar Composites. Polym. Compos. 2014, 35, 201–417. [Google Scholar] [CrossRef]
- Alshammari, B.; Saba, N.; Alotaibi, M.; Alotibi, M.; Jawaid, M.; Alothman, O. Evaluation of Mechanical, Physical, and Morphological Properties of Epoxy Composites Reinforced with Different Date Palm Fillers. Matererials 2019, 12, 2145. [Google Scholar] [CrossRef] [PubMed]
- Babu, G.; Babu, K.; Gowd, B. Effect of Machining Parameters on Milled Natural Fiber-Reinforced Plastic Composites. J. Adv. Mech. Eng. 2013, 1, 1–12. [Google Scholar] [CrossRef]
- Yousif, B.F.; Shalwan, A.; Chin, C.; Ming, K. Flexural properties of treated and untreated kenaf/epoxy composites. Mater Des. 2012, 40, 378–385. [Google Scholar] [CrossRef]
- Peijs, A.; Tsman, P.; Govaert, L.; Lemstra, P. Hybrid composites based on polyethylene and carbon fibres Part 2: Influence of composition and adhesion level of polyethylene fibers on mechanical properties. Composites 1990, 21, 513–521. [Google Scholar] [CrossRef]
- Chaudhary, V.; Bajpai, P.; Maheshwari, S. Effect of moisture absorption on the mechanical performance of natural fiber reinforced woven hybrid bio-composites. J. Nat. Fibers. 2018, 17, 84–100. [Google Scholar] [CrossRef]
- Elmushyakhi, A. Parametric characterization of nano-hybrid wood polymer composites using ANOVA and regression analysis. Structures 2021, 29, 652–662. [Google Scholar] [CrossRef]
- Kumar, V.; Ganta, V. Optimization of process parameters in drilling of GFRP composite using Taguchi method. Integr. Med. Res. 2013, 3, 35–41. [Google Scholar] [CrossRef]
- Venkateswarulu, G.; Davidson, M.J.; Tagore, G.R.N. Influence of process parameters on the cup drawing of aluminum 7075 sheet. Int. J. Eng. Sci. Technol. 2010, 2, 40–49. [Google Scholar] [CrossRef]
- Rozing, G.; Duspara, M.; Dudic, B.; Savkovic, B. Research on the effect of load and rotation speed on resistance to combined wear of stainless steels using ANOVA Analysis. Materials 2023, 16, 4284. [Google Scholar] [CrossRef] [PubMed]
- Savkovic, B.; Kovac, P.; Stoic, A.; Dudic, B. Optimization of machining parameters using the Taguchi and ANOVA analysis in the face milling of aluminum alloys Al7075. Teh. Vjesn. 2020, 27, 1221–1228. [Google Scholar] [CrossRef]
Source of Variation | SS | DF | MS | F | p-Value | Fcrit | %Contr. |
---|---|---|---|---|---|---|---|
Hybridization | 12,891.09 | 4 | 3222.77 | 30.64 | 6.7 × 10−5 | 3.83 | 59.08 |
Treatment | 8087.48 | 2 | 4043.74 | 38.45 | 7.88 × 10−5 | 4.45 | 37.06 |
Error | 841.21 | 8 | 105.15 | 3.85 | |||
Total | 21,819.78 | 14 |
Source of Variation | SS | DF | MS | F | p-Value | Fcrit | %Contr. |
---|---|---|---|---|---|---|---|
Hybridization | 10,383.43 | 4 | 2595.85 | 99.42 | 7.44 × 10−7 | 3.84 | 85.71 |
Treatment | 1522.19 | 2 | 761.09 | 29.15 | 0.0002 | 4.46 | 12.56 |
Error | 208.86 | 8 | 26.10 | 1.72 | |||
Total | 12,114.5 | 14 |
Source of Variation | SS | DF | MS | F | p-Value | Fcrit | %Contr. |
---|---|---|---|---|---|---|---|
Hybridization | 2766.07 | 4 | 691.51 | 26.78 | 0.0001 | 3.83 | 71.09 |
Treatment | 917.83 | 2 | 458.91 | 17.77 | 0.0011 | 4.45 | 23.59 |
Error | 206.57 | 8 | 25.82 | 5.30 | |||
Total | 3890.48 | 14 |
Source of Variation | SS | DF | MS | F | p-Value | Fcrit | %Contr. |
---|---|---|---|---|---|---|---|
Hybridization | 10,953.55 | 4 | 2738.38 | 12.67 | 0.0015 | 3.83 | 69.02 |
Treatment | 3186.40 | 2 | 1593.20 | 7.37 | 0.0153 | 4.45 | 20.07 |
Error | 1728.83 | 8 | 216.10 | 10.89 | |||
Total | 15,868.79 | 14 |
Source of Variation | SS | Df | MS | F | p-Value | Fcrit | %Contr. |
---|---|---|---|---|---|---|---|
Hybridization | 0.89 | 4 | 0.22 | 2.54 | 0.1210 | 3.83 | 13.23 |
Treatment | 5.14 | 2 | 2.56 | 29.35 | 0.0002 | 4.45 | 76.36 |
Error | 0.70 | 8 | 0.08 | 10.40 | |||
Total | 6.73 | 14 |
Source of Variation | SS | Df | MS | F | p-Value | Fcrit | %Contr. |
---|---|---|---|---|---|---|---|
Hybridization | 1.72 | 4 | 0.42 | 9.47 | 0.0039 | 3.84 | 33.64 |
Treatment | 3.02 | 2 | 1.51 | 33.38 | 0.0001 | 4.46 | 59.25 |
Error | 0.36 | 8 | 0.04 | 7.09 | |||
Total | 5.10 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekele, A.E.; Lemu, H.G. Evaluating the Hybridization and Treatment Effects on the Mechanical Properties of Enset and Sisal Hybrid Composites. J. Compos. Sci. 2024, 8, 377. https://doi.org/10.3390/jcs8090377
Bekele AE, Lemu HG. Evaluating the Hybridization and Treatment Effects on the Mechanical Properties of Enset and Sisal Hybrid Composites. Journal of Composites Science. 2024; 8(9):377. https://doi.org/10.3390/jcs8090377
Chicago/Turabian StyleBekele, Abera Endesha, and Hirpa G. Lemu. 2024. "Evaluating the Hybridization and Treatment Effects on the Mechanical Properties of Enset and Sisal Hybrid Composites" Journal of Composites Science 8, no. 9: 377. https://doi.org/10.3390/jcs8090377
APA StyleBekele, A. E., & Lemu, H. G. (2024). Evaluating the Hybridization and Treatment Effects on the Mechanical Properties of Enset and Sisal Hybrid Composites. Journal of Composites Science, 8(9), 377. https://doi.org/10.3390/jcs8090377