Does Silane Application Affect Bond Strength Between Self-Adhesive Resin Cements and Feldspathic Porcelain?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Surface Treatment
2.3. Silane Application
2.4. Cementation
2.5. Shear Bond Strength Testing
2.6. Failure Evaluation
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- (1)
- The application of a silane agent prior to using the SACs was found to enhance the SBS in G-Cem One, Panavia SA Luting Multi, and RelyX Unicem;
- (2)
- Fixing broken porcelain with G-Cem One, Panavia SA Luting Multi, and RelyX Unicem is simple and straightforward. Simply etch the porcelain with HF to create micromechanical retention, and apply the silane agent before the SACs to achieve chemical retention for optimal bond strength.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Qiu, X.M.; Zhu, S.; Sun, D.Q. Microstructures and mechanical properties of interface between porcelain and Ni-Cr alloy. Mater. Sci. Eng. A 2008, 497, 421–425. [Google Scholar] [CrossRef]
- Cheung, G.S. A preliminary investigation into the longevity and causes of failure of single unit extracoronal restorations. J. Dent. 1991, 19, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Aboras, M.M.; Muchtar, A.; Azhari, C.H.; Yahaya, N. Types of Failures in Porcelain-Fused-to-Metal Dental Restoration. In Proceedings of the 6th European Conference of the International Federation for Medical and Biological Engineering, Dubrovnik, Croatia, 7–11 September 2014; pp. 345–348. [Google Scholar]
- Özcan, M. Fracture reasons in ceramic-fused-to-metal restorations. J. Oral. Rehabil. 2003, 30, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Gourav, R.; Ariga, P.; Jain, A.; Philip, J. Effect of four different surface treatments on shear bond strength of three porcelain repair systems: An in vitro study. J. Conserv. Dent. 2013, 16, 208–212. [Google Scholar]
- dos Santos, J.G.; Fonseca, R.G.; Adabo, G.L.; dos Santos Cruz, C.A. Shear bond strength of metal-ceramic repair systems. J. Prosthet. Dent. 2006, 96, 165–173. [Google Scholar] [CrossRef]
- Bertolotti, R.L.; Lacy, A.M.; Watanabe, L.G. Adhesive Monomers for Porcelain Repair. Int. J. Prosthodont. 1989, 2, 483–489. [Google Scholar]
- Chung, K.-H.; Hwang, Y.-C. Bonding strengths of porcelain repair systems with various surface treatments. J. Prosthet. Dent. 1997, 78, 267–274. [Google Scholar] [CrossRef]
- Kimmich, M.; Stappert, C.F.J. Intraoral treatment of veneering porcelain chipping of fixed dental restorations: A review and clinical application. J. Am. Dent. Assoc. 2013, 144, 31–44. [Google Scholar] [CrossRef]
- Kato, H.; Matsumura, H.; Atsuta, M. Effect of etching and sandblasting on bond strength to sintered porcelain of unfilled resin. J. Oral Rehabil. 2000, 27, 103–110. [Google Scholar] [CrossRef]
- Kim, B.K.; Bae, H.E.K.; Shim, J.S.; Lee, K.W. The influence of ceramic surface treatments on the tensile bond strength of composite resin to all-ceramic coping materials. J. Prosthet. Dent. 2005, 94, 357–362. [Google Scholar] [CrossRef]
- Blatz, M.B.; Dent, M.; Sadan, A.; Kern, M. Resin-ceramic bonding: A review of the literature. J. Prosthet. Dent. 2003, 89, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Terateeraseth, T.; Thamrongananskul, N.; Kraisintu, P.; Somyhokwilas, S.; Klaisiri, A.; Sriamporn, T. Effect of different types of silane coupling agents on the shear bond strength between lithium disilicate glass ceramic and resin cement. J. Int. Dent. Med. Res. 2020, 13, 836–842. [Google Scholar]
- Klaisiri, A.; Krajangta, N.; Phumpatrakom, P.; Sriamporn, T.; Thamrongananskul, N. The use of silane coupling agents on lithium disilicate glass ceramic repaired with resin composite. J. Int. Dent. Med. Res. 2021, 14, 169–172. [Google Scholar]
- Yang, L.; Chen, B.; Meng, H.; Zhang, H.; He, F.; Xie, H.; Chen, C. Bond durability when applying phosphate ester monomer–containing primers vs. self-adhesive resin cements to zirconia: Evaluation after different aging conditions. J. Prosthodont. Res. 2020, 64, 193–201. [Google Scholar] [CrossRef]
- Almaskin, D.; Alzaher, Z.A.; Qaw, M.; Al-Thobity, A.M.; Alshahrani, A.; Alsalman, A.; Akhtar, S.; Shetty, A.C.; Gad, M.M. The Bond Strength of a Universal Adhesive System with Silane to Lithium Disilicates in Comparison with an Isolated Silane Coupling Agent. J. Prosthodont. 2022, 31, 512–520. [Google Scholar] [CrossRef]
- Matinlinna, J.P.; Lung, C.Y.K.; Tsoi, J.K.H. Silane adhesion mechanism in dental applications and surface treatments: A review. Dent. Mater. 2018, 34, 13–28. [Google Scholar] [CrossRef]
- Mohamed, F.F.; Finkelman, M.; Zandparsa, R.; Hirayama, H.; Kugel, G. Effects of Surface Treatments and Cement Types on the Bond Strength of Porcelain-to-Porcelain Repair. J. Prosthodont. 2014, 23, 618–625. [Google Scholar] [CrossRef]
- Vichi, A.; Fabian Fonzar, R.; Carrabba, M.; Louca, C.; Scotti, N.; Mazzitelli, C.; Breschi, L.; Goracci, C. Comparison between hydrofluoric acid and single-component primer as conditioners on resin cement adhesion to lithium silicate and lithium disilicate glass ceramics. Materials 2021, 14, 6776. [Google Scholar] [CrossRef]
- Ito, S.; Hashimoto, M.; Wadgaonkar, B.; Svizero, N.; Carvalho, R.M.; Yiu, C.; Rueggeberg, F.A.; Foulger, S.; Saito, T.; Nishitani, Y.; et al. Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials 2005, 26, 6449–6459. [Google Scholar] [CrossRef]
- Vrochari, A.D.; Eliades, G.; Hellwig, E.; Wrbas, K.T. Water Sorption and Solubility of Four Self-etching, Self-adhesive Resin Luting Agents. J. Adhes. Dent. 2010, 12, 39–43. [Google Scholar]
- Lee, S.E.; Bae, J.H.; Choi, J.W.; Jeon, Y.C.; Jeong, C.M.; Yoon, M.J.; Huh, J.B. Comparative shear-bond strength of six dental self-adhesive resin cements to zirconia. Materials 2015, 8, 3306–3315. [Google Scholar] [CrossRef]
- De Angelis, F.; Minnoni, A.; Vitalone, L.M.; Carluccio, F.; Vadini, M.; Paolantonio, M.; D’Arcangelo, C. Bond strength evaluation of three self-adhesive luting systems used for cementing composite and porcelain. Oper. Dent. 2011, 36, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Sriamporn, T.; Thamrongananskul, N.; Klaisiri, A. The effectiveness of various functional monomers in self-adhesive resin cements on prosthetic materials. J. Int. Soc. Prev. Community Dent. 2022, 12, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, K.; Nagaoka, N.; Maruo, Y.; Nishigawa, G.; Yoshida, Y.; Van Meerbeek, B. Silane-coupling effect of a silane-containing self-adhesive composite cement. Dent. Mater. 2020, 36, 914–926. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, K.; Nagaoka, N.; Sonoda, A.; Maruo, Y.; Makita, Y.; Okihara, T.; Irie, M.; Yoshida, Y.; Van Meerbeek, B. Effectiveness and stability of silane coupling agent incorporated in ‘universal’ adhesives. Dent. Mater. 2016, 32, 1218–1225. [Google Scholar] [CrossRef]
- Feilzer, A.J.; Kakaboura, A.I.; de Gee, A.J.; Davidson, C.L. The influence of water sorption on the development of setting shrinkage stress in traditional and resin-modified glass ionomer cements. Dent. Mater. 1995, 11, 186–190. [Google Scholar] [CrossRef]
- Segura, A.; Donly, K.J. In vitro posterior composite polymerization recovery following hygroscopic expansion. J. Oral Rehabil. 1993, 20, 495–499. [Google Scholar] [CrossRef]
- Yoshihara, K.; Nagaoka, N.; Hayakawa, S.; Okihara, T.; Yoshida, Y.; Van Meerbeek, B. Chemical interaction of glycero-phosphate dimethacrylate (GPDM) with hydroxyapatite and dentin. Dent. Mater. 2018, 34, 1072–1081. [Google Scholar] [CrossRef]
- Marghalani, H.Y. Sorption and solubility characteristics of self-adhesive resin cements. Dent. Mater. 2012, 28, e187–e198. [Google Scholar] [CrossRef]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials 2003, 24, 655–665. [Google Scholar] [CrossRef]
- Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Yiu, C.K.Y.; King, N.M.; Pashley, D.H.; Suh, B.I.; Carvalho, R.M.; Carrilho, M.R.O.; Tay, F.R. Effect of resin hydrophilicity and water storage on resin strength. Biomaterials 2004, 25, 5789–5796. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Okamoto, A.; Fukushima, M.; Okiji, T. Evaluation of physical properties and surface degradation of self-adhesive resin cements. Dent. Mater. J. 2007, 26, 906–914. [Google Scholar] [CrossRef]
- Zorzin, J.; Petschelt, A.; Ebert, J.; Lohbauer, U. PH neutralization and influence on mechanical strength in self-adhesive resin luting agents. Dent. Mater. 2012, 28, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Othávio, R.; Souza, A.; Castilho, A.A.; Fernandes, V.V.B.; Bottino, M.A.; Valandro, L.F. Durability of microtensile bond to nonetched and etched feldspar ceramic: Self-adhesive resin cements vs. conventional resin. J. Adhes. Dent. 2011, 13, 155–162. [Google Scholar]
- Sulaiman, T.A.; Abdulmajeed, A.A.; Altitinchi, A.; Ahmed, S.N.; Donovan, T.E. Mechanical properties of resin-based cements with different dispensing and mixing methods. J. Prosthet. Dent. 2018, 119, 1007–1013. [Google Scholar] [CrossRef]
- Rohr, N.; Märtin, S.; Zitzmann, N.U.; Fischer, J. A comprehensive in vitro study on the performance of two different strategies to simplify adhesive bonding. J. Esthet. Restor. Dent. 2022, 34, 833–842. [Google Scholar] [CrossRef]
- Kerby, R.E.; Knobloch, L.A.; Schricker, S.; Gregg, B. Synthesis and evaluation of modified urethane dimethacrylate resins with reduced water sorption and solubility. Dent. Mater. 2009, 25, 302–313. [Google Scholar] [CrossRef]
- Leelaponglit, S.; Maneenacarith, A.; Wutikhun, T.; Klaisiri, A. The various silane agents in universal adhesives on repair strength of resin composite to resin composite. J. Compos. Sci. 2023, 7, 7. [Google Scholar] [CrossRef]
- Valian, A.; Salehi, E.M.; Mahmoudzadeh, M.; Dabagh, N.K. Effect of different surface treatment on the repair bond strength of feldspathic porcelain. Dent. Med. Probl. 2021, 58, 107–113. [Google Scholar] [CrossRef]
- Kim, R.J.Y.; Woo, J.S.; Lee, I.B.; Yi, Y.A.; Hwang, J.Y.; Seo, D.G. Performance of universal adhesives on bonding to leucite-reinforced ceramic. Biomater. Res. 2015, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Nikzad, S.; Azari, A.; Dehgan, S. Ceramic (Feldspathic & IPS Empress II) vs. laboratory composite (Gradia) veneers; a comparison between their shear bond strength to enamel; an in vitro study. J. Oral Rehabil. 2010, 37, 569–574. [Google Scholar] [PubMed]
Type | Material (Lot No.) | Code | Compositions |
---|---|---|---|
Self-adhesive resin cements (SACs) | G-Cem One (GC Corp., Tokyo, Japan) (2101271) | GC | Paste A: fluoroaluminosilicate glass, UDMA, dimethacrylate, initiator, stabilizer, pigment, silicon dioxide, and 10-MDP. Paste B: SiO2, trimethoxysilane, UDMA,2-hydroxy-1,3 dimethacryloxypropane, 10-MDP, 6-tert-butyl-2,4-xylenol, 2,6-di-tert-butyl-p-cresol, EDTA, disodium salt dehydrate, vanadyl acetylacetonate, TPO, ascorbic acid, camphorquinone, and MgO. |
Maxcem Elite Chroma (Kerr Corporation, CA, USA) (10156938) | MX | Methacrylate ester monomers, GPDM, proprietary self-curing redox activator, camphorquinone, fluoraluminosilicate glass filler, silica, barium glass filler, activators, and stabilizers. | |
Panavia SA Luting Multi (Kuraray Noritake, Tokyo, Japan) (3P0169) | PS | 10-MDP, Bis-GMA, TEGDMA, hydrophobic aromaticdimethacrylate, hydrophobic aliphatic dimethacrylate, long carbon chain silane, di-camphorquinone, benzoyl peroxide, Initiator, silanated colloidal silica, silanated barium glass filler, accelerators, surface-treated sodium fluoride, and pigments. | |
Rely X Unicem (3M ESPE, Maplewood, MN, USA) (9737626) | RUN | Phosphoric acid-modified methacrylate monomers, bifunctional methacrylate, silanated fillers, initiator components, stabilizers, methacrylate monomers, alkaline fillers, and pigments. | |
Rely X U200 (3M ESPE Maplewood, MN, USA) (10376045) | RU2 | Silane-treated glass powder, substituted dimethacrylate, 1-benzyl-5-phenyl-barbic-acid, calcium salt, silane-treated silica, sodium p-toluenesulfinate, 1,12-dodecane dimethycrylate, calcium hydroxide, methacrylated aliphatic amine, and titanium dioxide. | |
Rely X Universal (3M ESPE Maplewood, MN, USA) (10195470) | RUS | BPA derivative-free dimethacrylate monomers and phosphorylated dimethacrylate adhesion monomers. Photoinitiator system, novel amphiphilic redox initiator system, radiopaque fillers, and rheological additives. | |
Etchant | Porcelain etchant (Bisco Inc., Schaumburg, IL, USA) (2200000962) | HF | 9.5% hydrofluoric acid. |
Silane | Porcelain primer (Bisco Inc., Schaumburg, IL, USA) (2100008801) | PP | Acetone, ethanol, and silane. |
Type of SACs | Without Silane | With Silane |
---|---|---|
GC | 12.68 ± 1.92 (A,1) | 36.77 ± 3.15 (B,1) |
MX | 29.77 ± 2.44 (A,2,3) | 29.36 ± 4.74 (A,2) |
PS | 25.72 ± 2.50 (A,2) | 56.09 ± 1.82 (B,3) |
RU2 | 42.04 ± 2.47 (A,4) | 40.45 ± 4.65 (A,1) |
RUN | 35.36 ± 3.07 (A,3) | 50.57 ± 5.77 (B,3) |
RUS | 27.06 ± 1.82 (A,2) | 29.69 ± 2.92 (A,2) |
Type of SACs | Without Silane | With Silane | ||||
---|---|---|---|---|---|---|
Cohesive | Adhesive | Mixed | Cohesive | Adhesive | Mixed | |
GC | 0 | 100 | 0 | 0 | 20 | 80 |
MX | 0 | 70 | 30 | 0 | 50 | 50 |
PS | 0 | 60 | 40 | 0 | 0 | 100 |
RU2 | 0 | 0 | 100 | 0 | 20 | 80 |
RUN | 0 | 0 | 100 | 0 | 0 | 100 |
RUS | 0 | 50 | 50 | 0 | 50 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thiranukoon, P.; Klaisiri, A.; Sriamporn, T.; Swasdison, S.; Thamrongananskul, N. Does Silane Application Affect Bond Strength Between Self-Adhesive Resin Cements and Feldspathic Porcelain? J. Compos. Sci. 2025, 9, 52. https://doi.org/10.3390/jcs9020052
Thiranukoon P, Klaisiri A, Sriamporn T, Swasdison S, Thamrongananskul N. Does Silane Application Affect Bond Strength Between Self-Adhesive Resin Cements and Feldspathic Porcelain? Journal of Composites Science. 2025; 9(2):52. https://doi.org/10.3390/jcs9020052
Chicago/Turabian StyleThiranukoon, Pakpilai, Awiruth Klaisiri, Tool Sriamporn, Somporn Swasdison, and Niyom Thamrongananskul. 2025. "Does Silane Application Affect Bond Strength Between Self-Adhesive Resin Cements and Feldspathic Porcelain?" Journal of Composites Science 9, no. 2: 52. https://doi.org/10.3390/jcs9020052
APA StyleThiranukoon, P., Klaisiri, A., Sriamporn, T., Swasdison, S., & Thamrongananskul, N. (2025). Does Silane Application Affect Bond Strength Between Self-Adhesive Resin Cements and Feldspathic Porcelain? Journal of Composites Science, 9(2), 52. https://doi.org/10.3390/jcs9020052