Enhanced Photocatalytic Hydrogen Generation from Methanol Solutions via In Situ Ni/Pt Co-Deposition on TiO2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Photocatalytic Hydrogen Production Reaction
3. Results and Discussion
3.1. Photocatalytic Hydrogen Production
3.2. Effect of Pt Loading
3.3. Effect of Ag/Pt Loading
3.4. Effect of Cu/Pt Loading
3.5. Effect of Ni/Pt Loading
3.6. Comparison of Metallic Properties on the Photocatalytic Hydrogen Production
3.7. Proposed Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acar, C.; Dincer, I.; Naterer, G.F. Review of Photocatalytic Water-Splitting Methods for Sustainable Hydrogen Production. Int. J. Energy Res. 2016, 40, 1449–1473. [Google Scholar] [CrossRef]
- Kumaravel, V.; Mathew, S.; Bartlett, J.; Pillai, S.C. Photocatalytic Hydrogen Production Using Metal Doped TiO2: A Review of Recent Advances. Appl. Catal. B Environ. 2019, 244, 1021–1064. [Google Scholar] [CrossRef]
- Kapdan, I.K.; Kargi, F. Bio-Hydrogen Production from Waste Materials. Enzyme Microb. Technol. 2006, 38, 569–582. [Google Scholar] [CrossRef]
- Balat, M. Potential Importance of Hydrogen as a Future Solution to Environmental and Transportation Problems. Int. J. Hydrogen Energy 2008, 33, 4013–4029. [Google Scholar] [CrossRef]
- Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-Based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef] [PubMed]
- Pareek, A.; Dom, R.; Gupta, J.; Chandran, J.; Adepu, V.; Borse, P.H. Insights Into Renewable Hydrogen Energy: Recent Advances and Prospects. Mater. Sci. Energy Technol. 2020, 3, 319–327. [Google Scholar] [CrossRef]
- Shih, C.F.; Zhang, T.; Li, J.; Bai, C. Powering the Future with Liquid Sunshine. Joule 2018, 2, 1925–1949. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, X.; Gao, G.; Liu, Y.; Zhao, M.; Yan, J.; Du, H.; Xiao, X.; Su, H. Green Hydrogen Production by Photocatalytic Direct Dehydrogenation of Methanol on CuPt/TiO2. Fuel 2024, 366, 131391. [Google Scholar] [CrossRef]
- Ou, T.-C.; Chang, F.-W.; Roselin, L.S. Production of Hydrogen via Partial Oxidation of Methanol over Bimetallic Au–Cu/TiO2 Catalysts. J. Mol. Catal. A Chem. 2008, 293, 8–16. [Google Scholar] [CrossRef]
- Shishido, T.; Yamamoto, Y.; Morioka, H.; Takehira, K. Production of Hydrogen from Methanol over Cu/ZnO and Cu/ZnO/Al2O3 Catalysts Prepared by Homogeneous Precipitation: Steam Reforming and Oxidative Steam Reforming. J. Mol. Catal. A Chem. 2007, 268, 185–194. [Google Scholar] [CrossRef]
- Mannich, C.; Geilmann, W. Über Die Spaltung Des Methylalkohols Durch Erhitztes Kupfer. Berichte Dtsch. Chem. Ges. 1916, 49, 585–586. [Google Scholar] [CrossRef]
- Cubeiro, M.L.; Fierro, J.L.G. Partial Oxidation of Methanol over Supported Palladium Catalysts. Appl. Catal. A Gen. 1998, 168, 307–322. [Google Scholar] [CrossRef]
- Wu, G.-S.; Wang, L.-C.; Liu, Y.-M.; Cao, Y.; Dai, W.-L.; He, H.-Y.; Fan, K.-N. Implication of the Role of Oxygen Anions and Oxygen Vacancies for Methanol Decomposition over Zirconia Supported Copper Catalysts. Appl. Surf. Sci. 2006, 253, 974–982. [Google Scholar] [CrossRef]
- Murcia-Mascarós, S.; Navarro, R.M.; Gómez-Sainero, L.; Costantino, U.; Nocchetti, M.; Fierro, J.L.G. Oxidative Methanol Reforming Reactions on CuZnAl Catalysts Derived from Hydrotalcite-Like Precursors. J. Catal. 2001, 198, 338–347. [Google Scholar] [CrossRef]
- Lawton, T.J.; Carrasco, J.; Baber, A.E.; Michaelides, A.; Sykes, E.C.H. Hydrogen-Bonded Assembly of Methanol on Cu(111). Phys. Chem. Chem. Phys. 2012, 14, 11846. [Google Scholar] [CrossRef]
- Gomathisankar, P.; Hachisuka, K.; Katsumata, H.; Suzuki, T.; Funasaka, K.; Kaneco, S. Enhanced Photocatalytic Hydrogen Production from Aqueous Methanol Solution Using ZnO with Simultaneous Photodeposition of Cu. Int. J. Hydrogen Energy 2013, 38, 11840–11846. [Google Scholar] [CrossRef]
- Oros-Ruiz, S.; Zanella, R.; López, R.; Hernández-Gordillo, A.; Gómez, R. Photocatalytic Hydrogen Production by Water/Methanol Decomposition Using Au/TiO2 Prepared by Deposition–Precipitation with Urea. J. Hazard. Mater. 2013, 263, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; An, N.; Bai, Y.; Hang, H.; Li, J.; Lu, X.; Liu, Y.; Wang, F.; Li, Z.; Lei, Z. High Photocatalytic Hydrogen Production from Methanol Aqueous Solution Using the Photocatalysts CuS/TiO2. Int. J. Hydrogen Energy 2013, 38, 10739–10745. [Google Scholar] [CrossRef]
- Feng, N.; Liu, F.; Huang, M.; Zheng, A.; Wang, Q.; Chen, T.; Cao, G.; Xu, J.; Fan, J.; Deng, F. Unravelling the Efficient Photocatalytic Activity of Boron-Induced Ti3+ Species in the Surface Layer of TiO2. Sci. Rep. 2016, 6, 34765. [Google Scholar] [CrossRef]
- Rafique, M.; Hajra, S.; Irshad, M.; Usman, M.; Imran, M.; Assiri, M.A.; Ashraf, W.M. Hydrogen Production Using TiO2-Based Photocatalysts: A Comprehensive Review. ACS Omega 2023, 8, 25640–25648. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Yang, W.; Guo, Q.; Dai, D.; Chen, M.; Yang, X. Molecular Hydrogen Formation from Photocatalysis of Methanol on TiO2(110). J. Am. Chem. Soc. 2013, 135, 10206–10209. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.-J.; Wei, L.-F.; Zhang, Z.-H.; Jiang, Q.-J.; Wei, Y.-J.; Xie, B.; Wei, M.-B. Research on Photocatalytic H2 Production from Acetic Acid Solution by Pt/TiO2 Nanoparticles Under UV Irradiation. Int. J. Hydrogen Energy 2009, 34, 9033–9041. [Google Scholar] [CrossRef]
- He, C.; Shu, D.; Su, M.; Xia, D.; Abou Asi, M.; Lin, L.; Xiong, Y. Photocatalytic Activity of Metal (Pt, Ag, and Cu)-Deposited TiO2 Photoelectrodes for Degradation of Organic Pollutants in Aqueous Solution. Desalination 2010, 253, 88–93. [Google Scholar] [CrossRef]
- Serafin, J.; Ouzzine, M.; Sreńscek-Nazzal, J.; Llorca, J. Photocatalytic Hydrogen Production from Alcohol Aqueous Solutions over TiO2-Activated Carbon Composites Decorated with Au and Pt. J. Photochem. Photobiol. A Chem. 2022, 425, 113726. [Google Scholar] [CrossRef]
- Guayaquil-Sosa, J.F.; Serrano-Rosales, B.; Valadés-Pelayo, P.J.; de Lasa, H. Photocatalytic Hydrogen Production Using Mesoporous TiO2 Doped with Pt. Appl. Catal. B 2017, 211, 337–348. [Google Scholar] [CrossRef]
- Sreethawong, T.; Yoshikawa, S. Enhanced photocatalytic hydrogen evolution over Pt supported on mesoporous TiO2 prepared by single-step sol–gel process with surfactant template. Int. J. Hydrogen Energy 2006, 31, 786–796. [Google Scholar] [CrossRef]
- Al-Azri, Z.H.N.; Chen, W.-T.; Chan, A.; Jovic, V.; Ina, T.; Idriss, H.; Waterhouse, G.I.N. The Roles of Metal Co-Catalysts and Reaction Media in Photocatalytic Hydrogen Production: Performance Evaluation of M/TiO2 Photocatalysts (M = Pd, Pt, Au) in Different Alcohol–Water Mixtures. J. Catal. 2015, 329, 355–367. [Google Scholar] [CrossRef]
- Colón, G.; Maicu, M.; Hidalgo, M.S.; Navío, J.A. Cu-doped TiO2 systems with improved photocatalytic activity Catalysts. Appl. Catal. B-Environ. 2006, 67, 41–51. [Google Scholar] [CrossRef]
- Ibrahim, N.S.; Leaw, W.L.; Mohamad, D.; Alias, S.H.; Nur, H. A Critical Review of Metal-Doped TiO2 and Its Structure–Physical Properties–Photocatalytic Activity Relationship in Hydrogen Production. Int. J. Hydrogen Energy 2020, 45, 28553–28565. [Google Scholar] [CrossRef]
- Platero, F.; López-Martín, A.; Caballero, A.; Colón, G. Mechanistic Considerations on the H2 Production by Methanol Thermal--assisted Photocatalytic Reforming over Cu/TiO2 Catalyst. ChemCatChem 2021, 13, 3878–3888. [Google Scholar] [CrossRef]
- Miwa, T.; Kaneco, S.; Katsumata, H.; Suzuki, T.; Ohta, K.; Chand Verma, S.; Sugihara, K. Photocatalytic Hydrogen Production from Aqueous Methanol Solution with CuO/Al2O3/TiO2 Nanocomposite. Int. J. Hydrogen Energy 2010, 35, 6554–6560. [Google Scholar] [CrossRef]
- Madhumitha, A.; Preethi, V.; Kanmani, S. Photocatalytic Hydrogen Production Using TiO2 Coated Iron-Oxide Core Shell Particles. Int. J. Hydrogen Energy 2018, 43, 3946–3956. [Google Scholar] [CrossRef]
- Lalitha, K.; Reddy, J.K.; Phanikrishna Sharma, M.V.; Kumari, V.D.; Subrahmanyam, M. Continuous Hydrogen Production Activity over Finely Dispersed Ag2O/TiO2 Catalysts from Methanol: Water Mixtures Under Solar Irradiation: A Structure–Activity Correlation. Int. J. Hydrogen Energy 2010, 35, 3991–4001. [Google Scholar] [CrossRef]
- Guerrero-Araque, D.; Acevedo-Peña, P.; Ramírez-Ortega, D.; Lartundo-Rojas, L.; Gómez, R. SnO2-TiO2 Structures and the Effect of CuO, CoO Metal Oxide on Photocatalytic Hydrogen Production. J. Chem. Technol. Biotechnol. 2017, 92, 1531–1539. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, H.; Huo, P.; Filip Edelmannová, M.; Čapek, L.; Kočí, K. Hydrogen Production from Methanol-Water Mixture over NiO/TiO2 Nanorods Structure Photocatalysts. J. Environ. Chem. Eng. 2022, 10, 106908. [Google Scholar] [CrossRef]
- Xu, C.; Yang, W.; Guo, Q.; Dai, D.; Chen, M.; Yang, X. Molecular Hydrogen Formation from Photocatalysis of Methanol on Anatase-TiO2(101). J. Am. Chem. Soc. 2014, 136, 602–605. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Peng, T.; Ke, D.; Ke, D.; Zan, L.; Yan, C. Photocatalytic H2 Production from Methanol Aqueous Solution over Titania Nanoparticles with Mesostructures. Int. J. Hydrogen Energy 2008, 33, 672–678. [Google Scholar] [CrossRef]
- Amorós-Pérez, A.; Cano-Casanova, L.; Lillo-Ródenas, M.Á.; Román-Martínez, M.C. Cu/TiO2 Photocatalysts for the Conversion of Acetic Acid into Biogas and Hydrogen. Catal. Today 2017, 287, 78–84. [Google Scholar] [CrossRef]
- Imizcoz, M.; Puga, A.V. Optimising Hydrogen Production via Solar Acetic Acid Photoreforming on Cu/TiO2. Catal. Sci. Technol. 2019, 9, 1098–1102. [Google Scholar] [CrossRef]
- Hamid, S.; Dillert, R.; Bahnemann, D.W. Photocatalytic Reforming of Aqueous Acetic Acid into Molecular Hydrogen and Hydrocarbons over Co-Catalyst-Loaded TiO2: Shifting the Product Distribution. J. Phys. Chem. C 2018, 122, 12792–12809. [Google Scholar] [CrossRef]
- Kim, J.; Monllor-Satoca, D.; Choi, W. Simultaneous Production of Hydrogen with the Degradation of Organic Pollutants Using TiO2 Photocatalyst Modified with Dual Surface Components. Energy Environ. Sci. 2012, 5, 7647. [Google Scholar] [CrossRef]
- Patsoura, A.; Kondarides, D.I.; Verykios, X.E. Photocatalytic Degradation of Organic Pollutants with Simultaneous Production of Hydrogen. Catal. Today 2007, 124, 94–102. [Google Scholar] [CrossRef]
- Li, Y.; Xie, Y.; Peng, S.; Lu, G.; Li, S. Photocatalytic Hydrogen Generation in the Presence of Chloroacetic Acids over Pt/TiO2. Chemosphere 2006, 63, 1312–1318. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Long, J.; Wang, X.; Leung, D.; Ding, Z.; Wu, L.; Zhang, Z.; Li, Z.; Fu, X. Photocatalytic Reforming of Biomass: A Systematic Study of Hydrogen Evolution from Glucose Solution. Int. J. Hydrogen Energy 2008, 33, 6484–6491. [Google Scholar] [CrossRef]
- Kawai, T.; Sakata, T. Photocatalytic Hydrogen Production from Liquid Methanol and Water. J. Chem. Soc. Chem. Commun. 1980, 15, 694–695. [Google Scholar] [CrossRef]
- Gomathisankar, P.; Yamamoto, D.; Katsumata, H.; Suzuki, T.; Kaneco, S. Photocatalytic Hydrogen Production with Aid of Simultaneous Metal Deposition Using Titanium Dioxide from Aqueous Glucose Solution. Int. J. Hydrogen Energy 2013, 38, 5517–5524. [Google Scholar] [CrossRef]
- Michaelson, H.B. The Work Function of the Elements and Its Periodicity. J. Appl. Phys. 1977, 48, 4729–4733. [Google Scholar] [CrossRef]
- Ano, T.; Kishimoto, F.; Tsubaki, S.; Lu, Y.-H.; Hohman, J.N.; Maitani, M.M.; Salmeron, M.; Wada, Y. Controlling the Schottky Barrier at the Pt/TiO2 Interface by Intercalation of a Self-Assembled Monolayer with Oriented Dipole Moments. J. Phy. Chem. C 2021, 125, 13984–13989. [Google Scholar] [CrossRef]
- Meng, A.; Zhang, L.; Cheng, B.; Yu, J. Dual Cocatalysts in TiO2 Photocatalysis. Adv. Mater. 2019, 31, 1807660. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Lee, H.-Y.; Prasad, M.; Sharma, A.; Yu, J.-S.; Sengupta, S.; Pathak, D.D.; Sinhamahapatra, A. Black TiO2–x Nanoparticles Decorated with Ni Nanoparticles and Trace Amounts of Pt Nanoparticles for Photocatalytic Hydrogen Generation. ACS Appl. Nano. Mater. 2021, 4, 4441–4451. [Google Scholar] [CrossRef]
- Mizukoshi, Y.; Makise, Y.; Shuto, T.; Hu, J.; Tominaga, A.; Shironita, S.; Tanabe, S. Immobilization of Noble Metal Nanoparticles on the Surface of TiO2 by the Sonochemical Method: Photocatalytic Production of Hydrogen from an Aqueous Solution of Ethanol. Ultrason. Sonochem. 2007, 14, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Melián, E.P.; López, C.R.; Méndez, A.O.; Díaz, O.G.; Suárez, M.N.; Doña Rodríguez, J.M.; Navío, J.A.; Fernández Hevia, D. Hydrogen Production Using Pt-Loaded TiO2 Photocatalysts. Int. J. Hydrogen Energy 2013, 38, 11737–11748. [Google Scholar] [CrossRef]
- Wu, C.; Fang, L.; Ding, F.; Mao, G.; Huang, X.; Lu, S. Photocatalytic Hydrogen Production from Water and Wastepaper on Pt/TiO2 Composites. Chem. Phys. Lett. 2023, 826, 140650. [Google Scholar] [CrossRef]
- Gogoi, D.; Namdeo, A.; Golder, A.K.; Peela, N.R. Ag-Doped TiO2 Photocatalysts with Effective Charge Transfer for Highly Efficient Hydrogen Production Through Water Splitting. Int. J. Hydrogen Energy 2020, 45, 2729–2744. [Google Scholar] [CrossRef]
- Kennedy, J.; Jones, W.; Morgan, D.J.; Bowker, M.; Lu, L.; Kiely, C.J.; Wells, P.P.; Dimitratos, N. Photocatalytic Hydrogen Production by Reforming of Methanol Using Au/TiO2, Ag/TiO2 and Au-Ag/TiO2 Catalysts. Catal. Struct. React. 2015, 1, 35–43. [Google Scholar] [CrossRef]
- Jung, M.; Scott, J.; Ng, Y.H.; Jiang, Y.; Amal, R. CuOx Dispersion and Reducibility on TiO2 and Its Impact on Photocatalytic Hydrogen Evolution. Int. J. Hydrogen Energy 2014, 39, 12499–12506. [Google Scholar] [CrossRef]
- Jing, D.; Zhang, Y.; Guo, L. Study on the Synthesis of Ni Doped Mesoporous TiO2 and Its Photocatalytic Activity for Hydrogen Evolution in Aqueous Methanol Solution. Chem. Phys. Lett. 2005, 415, 74–78. [Google Scholar] [CrossRef]
- Wang, W.; Liu, S.; Nie, L.; Cheng, B.; Yu, J. Enhanced Photocatalytic H2-Production Activity of TiO2 Using Ni(NO3)2 as an Additive. Phys. Chem. Chem. Phys. 2013, 15, 12033–12039. [Google Scholar] [CrossRef] [PubMed]
- Díaz, L.; Rodríguez, V.D.; González-Rodríguez, M.; Rodríguez-Castellón, E.; Algarra, M.; Núñez, P.; Moretti, E. M/TiO2 (M = Fe, Co, Ni, Cu, Zn) Catalysts for Photocatalytic Hydrogen Production Under UV and Visible Light Irradiation. Inorg. Chem. Front. 2021, 8, 3491–3500. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2004; Volume 85, ISBN 0849304857. [Google Scholar]
- Aarthi, T.; Madras, G. Photocatalytic Reduction of Metals in Presence of Combustion Synthesized Nano-TiO2. Catal. Commun. 2008, 9, 630–634. [Google Scholar] [CrossRef]
- Subramanian, V.; Wolf, E.E.; Kamat, P.V. Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration. J. Am. Chem. Soc. 2004, 126, 4943–4950. [Google Scholar] [CrossRef]
- Jiang, X.; Fuji, M. Non-Noble Nanoparticles Cocatalysts in TiO2 for Photocatalytic Hydrogen Production from Water. A Review. J. Jpn. Soc. Powder Powder Metall. 2023, 70, 203–212. [Google Scholar] [CrossRef]
- Beasley, C.; Kumaran Gnanamani, M.; Santillan-Jimenez, E.; Martinelli, M.; Shafer, W.D.; Hopps, S.D.; Wanninayake, N.; Kim, D. Effect of Metal Work Function on Hydrogen Production from Photocatalytic Water Splitting with MTiO2 Catalysts. ChemistrySelect 2020, 5, 1013–1019. [Google Scholar] [CrossRef]
- Tanaka, A.; Sakaguchi, S.; Hashimoto, K.; Kominami, H. Preparation of Au/TiO2 with Metal Cocatalysts Exhibiting Strong Surface Plasmon Resonance Effective for Photoinduced Hydrogen Formation Under Irradiation of Visible Light. ACS Catal. 2013, 3, 79–85. [Google Scholar] [CrossRef]
- Abdullah, N.; Bahruji, H.; Rogers, S.M.; Wells, P.P.; Catlow, C.R.A.; Bowker, M. Pd Local Structure and Size Correlations to the Activity of Pd/TiO2 for Photocatalytic Reforming of Methanol. Phy. Chem. Chem. Phy. 2019, 21, 16154–16160. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Soler, L.; Armengol-Profitós, M.; Xie, C.; Crespo, D.; Llorca, J. Enhanced Photoproduction of Hydrogen on Pd/TiO2 Prepared by Mechanochemistry. Appl. Catal. B 2022, 309, 121275. [Google Scholar] [CrossRef]
- Galińska, A.; Walendziewski, J. Photocatalytic Water Splitting over Pt−TiO2 in the Presence of Sacrificial Reagents. Energy Fuels 2005, 19, 1143–1147. [Google Scholar] [CrossRef]
- Singh, P.; Shandilya, P.; Raizada, P.; Sudhaik, A.; Rahmani-Sani, A.; Hosseini-Bandegharaei, A. Review on Various Strategies for Enhancing Photocatalytic Activity of Graphene Based Nanocomposites for Water Purification. Arab. J. Chem. 2020, 13, 3498–3520. [Google Scholar] [CrossRef]
- Uribe López, M.C.; Alvarez Lemus, M.A.; Hidalgo, M.C.; López González, R.; Quintana Owen, P.; Oros-Ruiz, S.; Uribe López, S.A.; Acosta, J. Synthesis and Characterization of ZnO-ZrO2 Nanocomposites for Photocatalytic Degradation and Mineralization of Phenol. J. Nanomater. 2019, 2019, 1015876. [Google Scholar] [CrossRef]
- Chen, W.T.; Chan, A.; Waterhouse, D.S.; Moriga, T.; Idriss, H.; Waterhouse, G.I. Ni/TiO2: A promising low-cost photocatalytic system for solar H2 production from ethanol–water mixtures. J. Catal. 2015, 326, 43–53. [Google Scholar] [CrossRef]
- Chen, W.T.; Chan, A.; Waterhouse, D.S.; Llorca, J.; Idriss, H.; Waterhouse, G.I. Performance comparison of Ni/TiO2 and Au/TiO2 photocatalysts for H2 production in different alcohol-water mixtures. J. Catal. 2018, 367, 27–42. [Google Scholar] [CrossRef]
- Melián, E.P.; Suárez, M.N.; Jardiel, T.; Rodríguez, J.D.; Caballero, A.C.; Araña, J.; Calatayud, D.G.; Díaz, O.G. Influence of nickel in the hydrogen production activity of TiO2. Appl. Catal. B Environ. 2014, 152, 192–201. [Google Scholar] [CrossRef]
- Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrocatalytic Process of CO Selectivity in Electrochemical Reduction of CO2 at Metal Electrodes in Aqueous Media. Electrochim. Acta 1994, 39, 1833–1839. [Google Scholar] [CrossRef]
Photocatalyst (wt.%) | H2 Production (µmol g−1 h−1) | P-25 TiO2 Ratio |
---|---|---|
P-25 TiO2 | 12 | 1.0 |
Pt(1.0%)/TiO2 | 3117 | 260 |
Cu(0.01%)/Pt(1.0%)/TiO2 | 3900 | 325 |
Ni(0.01%)/Pt(1.0%)/TiO2 | 3983 | 332 |
Pd(0.01%)/Pt(1.0%)/TiO2 | 2800 | 233 |
Metal | Work Function (eV) | Hydrogen Evolution Potential (V vs. SHE) | Redox Potential (V vs. SHE) [60] |
---|---|---|---|
Cu | 4.65 | −0.95 | Cu2+/Cu (0.342) |
Ni | 5.25 | −0.68 | Ni2+/Ni (−0.257) |
Ag | 4.26 | −1.14 | Ag+/Ag (0.799) |
Pd | 5.12 | −0.35 | Pd2+/Pd (0.951) |
Pt | 5.65 | −0.38 | [PtCl6]2−/[PtCl4]2− (0.680) [PtCl4]2−/Pt0 (0.755) Pt4+/Pt0 (1.44) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afrin, M.F.; Furukawa, M.; Tateishi, I.; Katsumata, H.; Uzzaman, M.; Kaneco, S. Enhanced Photocatalytic Hydrogen Generation from Methanol Solutions via In Situ Ni/Pt Co-Deposition on TiO2. J. Compos. Sci. 2025, 9, 68. https://doi.org/10.3390/jcs9020068
Afrin MF, Furukawa M, Tateishi I, Katsumata H, Uzzaman M, Kaneco S. Enhanced Photocatalytic Hydrogen Generation from Methanol Solutions via In Situ Ni/Pt Co-Deposition on TiO2. Journal of Composites Science. 2025; 9(2):68. https://doi.org/10.3390/jcs9020068
Chicago/Turabian StyleAfrin, Mst. Farhana, Mai Furukawa, Ikki Tateishi, Hideyuki Katsumata, Monir Uzzaman, and Satoshi Kaneco. 2025. "Enhanced Photocatalytic Hydrogen Generation from Methanol Solutions via In Situ Ni/Pt Co-Deposition on TiO2" Journal of Composites Science 9, no. 2: 68. https://doi.org/10.3390/jcs9020068
APA StyleAfrin, M. F., Furukawa, M., Tateishi, I., Katsumata, H., Uzzaman, M., & Kaneco, S. (2025). Enhanced Photocatalytic Hydrogen Generation from Methanol Solutions via In Situ Ni/Pt Co-Deposition on TiO2. Journal of Composites Science, 9(2), 68. https://doi.org/10.3390/jcs9020068