Hardness of Learning in Rich Environments and Some Consequences for Financial Markets
Abstract
:1. Introduction
2. Literature Review
3. Hardness of Learning
3.1. Modeling Framework
3.2. Establishing Hardness Results
4. Some Consequences of Hardness
4.1. Rich Environments
4.2. Coping with Hardness
4.3. Illustrative Example: Information Percolation in Trading
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Grossman, S.J.; Stiglitz, J.E. On the Impossibility of Informationally Efficient Markets. Am. Econ. Rev. 1980, 70, 393–408. [Google Scholar]
- Glosten, L.; Milgrom, P. Bid, ask and transaction prices in a specialist market with heterogeneously informed traders. J. Financ. Econ. 1985, 14, 71–100. [Google Scholar] [CrossRef] [Green Version]
- Kyle, A. Continuous Auctions and Insider Trading. Econometrica 1985, 5, 1315–1335. [Google Scholar] [CrossRef] [Green Version]
- Athey, S.; Wager, S. Policy learning with observational data. Econometrica 2021, 89, 133–161. [Google Scholar] [CrossRef]
- Chernozhukov, V.; Newey, W.K.; Singh, R. Automatic Debiased Machine Learning of Causal and Structural Effects. arXiv 2021, arXiv:1809.05224. [Google Scholar]
- Dao, T.; Kamath, G.M.; Syrgkanis, V.; Mackey, L. Knowledge Distillation As Semiparametric Inference. In Proceedings of the International Conference on Learning Representations (ICLR’21), Vienna, Austria, 28–29 October 2021. [Google Scholar]
- Iskhakov, F.; Rust, J.; Schjerning, B. Machine learning and structural econometrics: Contrasts and synergies. Econom. J. 2020, 23, S81–S124. [Google Scholar] [CrossRef]
- Oprescu, M.; Syrgkanis, V.; Wu, Z.S. Orthogonal random forest for causal inference. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 4932–4941. [Google Scholar]
- Singh, R.; Sahani, M.; Gretton, A. Kernel Instrumental Variable Regression. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; pp. 4595–4607. [Google Scholar]
- Sverdrup, E.; Kanodia, A.; Zhou, Z.; Athey, S.; Wager, S. Policytree: Policylearning via doubly robust empirical welfare maximization over trees. J. Open Source Softw. 2020, 5, 2232. [Google Scholar] [CrossRef]
- Syrgkanis, V.; Lei, V.; Oprescu, M.; Hei, M.; Battocchi, K.; Lewis, G. Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments. In Proceedings of the Conference on Learning Theory, Phoenix, AZ, USA, 25–28 June 2019; pp. 15167–15176. [Google Scholar]
- Syrgkanis, V.; Zampetakis, M. Estimation and Inference with Trees and Forests in High Dimensions. In Proceedings of the Annual Workshop on Computational Learning Theory, Graz, Austria, 9–12 July 2020; pp. 3453–3454. [Google Scholar]
- Koller, D.; Friedman, N. Probabilistic Graphical Models; MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufman Publishers: San Francisco, CA, USA, 1988. [Google Scholar]
- Chickering, D.M.; Heckerman, D.; Meek, C. Large-Sample Learning of Bayesian Networks is NP-Hard. J. Mach. Learn. Res. 2004, 5, 1287–1330. [Google Scholar] [CrossRef]
- Caravagna, G.; Ramazzotti, D. Learning the structure of Bayesian Networks via the Bootstrap. Neurocomputing 2021, 448, 48–59. [Google Scholar] [CrossRef]
- Constantinou, A. Learning Bayesian Networks That Enable Full Propagation of Evidence. IEEE Access 2020, 8, 124845–124856. [Google Scholar] [CrossRef]
- Malone, B.; Kangas, K.; Jarvisalo, M.; Koivisto, M.; Myllymäki, P. Empirical Hardness of Finding Optimal Bayesian Network Structures: Algorithm Selection and Runtime prediction. Mach. Learn. 2018, 107, 247–283. [Google Scholar] [CrossRef] [Green Version]
- Platas-López, A.; Mezura-Montes, E.; Cruz-Ramírez, N.; Guerra-Hernández, A. Discriminative Learning of Bayesian Network Parameters by Differential Evolution. Appl. Math. Model. 2021, 93, 244–256. [Google Scholar] [CrossRef]
- Talvitie, T.; Eggeling, R.; Koivisto, M. Learning Bayesian Networks with Local Structure, Mixed Variables, and Exact Algorithms. Int. J. Approx. Reason. 2019, 115, 69–95. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Z.; Rekatsinas, T. A Statistical Perspective on Discovering Functional Dependencies in Noisy Data. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, Portland, OR, USA, 14–19 June 2020; pp. 861–876. [Google Scholar] [CrossRef]
- Scanagatta, M.; Salmerón, A.; Stella, F. A survey on Bayesian network structure learning from data. Prog. Artif. Intell. 2019, 8, 425–439. [Google Scholar] [CrossRef]
- Rubinstein, A. Modeling Bounded. Rationality; The MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Spiegler, R. Bounded Rationality and Industrial Organization; Oxford University Press: New York, NY, USA, 2011. [Google Scholar]
- Ellis, A.; Piccione, M. Correlation Misperception in Choice. Am. Econ. Rev. 2017, 107, 1264–1292. [Google Scholar] [CrossRef] [Green Version]
- Esponda, I.; Puozo, D. Berk—Nash Equilibrium: A Framework for Modeling Agents With Misspecified Models. Econometrica 2016, 84, 1093–1130. [Google Scholar] [CrossRef] [Green Version]
- Eyster, E.; Rabin, M.; Vayanos, D. Financial Markets Where Traders Neglect the Informational Content of Prices. J. Financ. 2019, 74, 374–399. [Google Scholar] [CrossRef] [Green Version]
- Eyster, E.; Piccione, M. An Approach to Asset Pricing under Incomplete and Diverse Perceptions. Econometrica 2013, 81, 1483–1506. [Google Scholar] [CrossRef]
- Jehiel, P. Analogy-based Expectation Equilibrium. J. Econ. Theory 2005, 123, 81–104. [Google Scholar] [CrossRef]
- Jehiel, P. Analogy-Based Expectation Equilibrium and Related Concepts: Theory, Applications, and Beyond. World Congress of the Econometric Society. 2020. Available online: https://philippe-jehiel.enpc.fr/wp-content/uploads/sites/2/2020/10/SurveyABEE.pdf (accessed on 10 May 2021).
- Jehiel, P.; Koessler, F. Revisiting Games of Incomplete Information with Analogy-based Expectations. Games Econ. Behav. 2008, 62, 533–557. [Google Scholar] [CrossRef] [Green Version]
- Mailath, G.J.; Samuelson, L. Learning under Diverse World Views: Model-Based Inference. Am. Econ. Rev. 2020, 110, 1464–1501. [Google Scholar] [CrossRef]
- Spiegler, R. Bayesian Networks and Boundedly Rational Expectations. Q. J. Econ. 2016, 131, 1243–1290. [Google Scholar] [CrossRef]
- Steiner, J.; Stewart, C. Price distortions under coarse reasoning with frequent trade. J. Econ. Theory 2015, 159, 574–595. [Google Scholar] [CrossRef] [Green Version]
- Williamson, D.P.; Shmoys, D.B. The Design of Approximation Algorithms; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Esponda, I. Behavioral Equilibrium in Economies with Adverse Selection. Am. Econ. Rev. 2008, 98, 1269–1291. [Google Scholar] [CrossRef] [Green Version]
- Aumann, R. Interactive Epistemology I: Knowledge. Int. J. Game Theory 1999, 28, 263–300. [Google Scholar] [CrossRef]
- Ralston, A. De Bruijn Sequences—A Model Example of the Interaction of Discrete Mathematics and Computer Science. Math. Mag. 1982, 55, 131–143. [Google Scholar] [CrossRef]
- Piccione, M.; Rubinstein, A. Modeling the Economic Interaction of Agents with Diverse Abilities to Recognize Equilibrium Patterns. J. Eur. Econ. Assoc. 2003, 1, 212–223. [Google Scholar] [CrossRef]
- Milgrom, P.; Stokey, N. Information, trade and common knowledge. J. Econ. Theory 1982, 26, 17–27. [Google Scholar] [CrossRef] [Green Version]
Sparse Environment | Rich Environment | |
---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattacharya, A. Hardness of Learning in Rich Environments and Some Consequences for Financial Markets. Mach. Learn. Knowl. Extr. 2021, 3, 467-480. https://doi.org/10.3390/make3020024
Bhattacharya A. Hardness of Learning in Rich Environments and Some Consequences for Financial Markets. Machine Learning and Knowledge Extraction. 2021; 3(2):467-480. https://doi.org/10.3390/make3020024
Chicago/Turabian StyleBhattacharya, Ayan. 2021. "Hardness of Learning in Rich Environments and Some Consequences for Financial Markets" Machine Learning and Knowledge Extraction 3, no. 2: 467-480. https://doi.org/10.3390/make3020024
APA StyleBhattacharya, A. (2021). Hardness of Learning in Rich Environments and Some Consequences for Financial Markets. Machine Learning and Knowledge Extraction, 3(2), 467-480. https://doi.org/10.3390/make3020024