Enhancing Hierarchical Sales Forecasting with Promotional Data: A Comparative Study Using ARIMA and Deep Neural Networks
Abstract
:1. Introduction
- This work contributes to the field by incorporating promotional data into hierarchical sales forecasting models. This addresses a gap in the existing literature and provides valuable insights into the impact of promotions on forecasting accuracy.
- This study compares the performance of traditional ARIMA models with more advanced MLP models, providing insights into their relative strengths and weaknesses in the context of hierarchical forecasting.
- This paper assesses the effectiveness of different reconciliation methods (bottom-up, top-down, and optimal reconciliation) in improving forecast accuracy and consistency across hierarchical levels.
- By utilizing a real-world dataset, this paper demonstrates the practical application of the proposed methodology and its potential benefits for retailers.
- This study contributes to the ongoing development of hierarchical forecasting methods by exploring the integration of additional variables and the application of advanced modeling techniques.
2. Related Work
2.1. Sales Forecasting in the Retail Sector
2.2. Hierarchical Forecasting
2.3. Determinants in Retail Product Sales
3. Forecasting Models
3.1. Hierarchical Forecasting
- , , where . In this case, the estimator for corresponds to the OLS estimator. Although this is the simplest estimation method, matrix does not rely on the data, meaning it does not account for differences in scale between hierarchical levels or the relationships among the series. This specification is referred to as OLS.
- , , where and is the sample covariance estimator of the one-step-ahead base forecast errors. This approach scales the base forecasts using the variance of the residuals (). This MinT estimator is referred to as WLS (var).
- , , where , , with 1 being a unit vector of dimension m. This specification assumes that the variance of the base forecast errors at the bottom level is and that these errors are uncorrelated across different nodes. The estimator relies solely on the aggregation constraints of the hierarchy rather than on the data, making it particularly useful when residuals are not available. This method is known as structural scaling and is denoted as WLS (struct).
- , , where represents the sample covariance estimator for . This estimator is straightforward to compute, but it may be unsuitable when the number of bottom-level series (m) exceeds the number of time periods (T). This specification is referred to as MinT (sample).
- , , where represents a shrinkage estimator. Here, is designed to shrink the off-diagonal elements of toward zero while leaving the diagonal entries unchanged. In this formulation, is a diagonal matrix containing the diagonal elements of and is the shrinkage intensity parameter. Assuming constant variances, Schäfer and Strimmer [106] proposed the following formula for the shrinkage intensity parameter:
3.2. ARIMA Models
3.3. Multi-Layer Perceptrons for Time Series Forecasting
4. Empirical Study
4.1. Case Study Data
4.2. Experimental Setup
4.3. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Villegas, M.A.; Pedregal, D.J. Supply chain decision support systems based on a novel hierarchical forecasting approach. Decis. Support Syst. 2018, 114, 29–36. [Google Scholar] [CrossRef]
- Fildes, R.; Ma, S.; Kolassa, S. Retail forecasting: Research and practice. Int. J. Forecast. 2022, 38, 1283–1318. [Google Scholar] [CrossRef]
- Syntetos, A.A.; Babai, Z.; Boylan, J.E.; Kolassa, S.; Nikolopoulos, K. Supply chain forecasting: Theory, practice, their gap and the future. Eur. J. Oper. Res. 2016, 252, 1–26. [Google Scholar] [CrossRef]
- Oliveira, J.M.; Ramos, P. Investigating the Accuracy of Autoregressive Recurrent Networks Using Hierarchical Aggregation Structure-Based Data Partitioning. Big Data Cogn. Comput. 2023, 7, 100. [Google Scholar] [CrossRef]
- Petropoulos, F.; Apiletti, D.; Assimakopoulos, V.; Babai, M.Z.; Barrow, D.K.; Ben Taieb, S.; Bergmeir, C.; Bessa, R.J.; Bijak, J.; Boylan, J.E.; et al. Forecasting: Theory and practice. Int. J. Forecast. 2022, 38, 705–871. [Google Scholar] [CrossRef]
- Abolghasemi, M.; Beh, E.; Tarr, G.; Gerlach, R. Demand forecasting in supply chain: The impact of demand volatility in the presence of promotion. Comput. Ind. Eng. 2020, 142, 106380. [Google Scholar] [CrossRef]
- Abolghasemi, M.; Hurley, J.; Eshragh, A.; Fahimnia, B. Demand forecasting in the presence of systematic events: Cases in capturing sales promotions. Int. J. Prod. Econ. 2020, 230, 107892. [Google Scholar] [CrossRef]
- Ramos, P.; Santos, N.; Rebelo, R. Performance of state space and ARIMA models for consumer retail sales forecasting. Robot. Comput.-Integr. Manuf. 2015, 34, 151–163. [Google Scholar] [CrossRef]
- Fildes, R.; Goodwin, P.; Lawrence, M.; Nikolopoulos, K. Effective forecasting and judgmental adjustments: An empirical evaluation and strategies for improvement in supply-chain planning. Int. J. Forecast. 2009, 25, 3–23. [Google Scholar] [CrossRef]
- Davydenko, A.; Fildes, R. Measuring forecasting accuracy: The case of judgmental adjustments to SKU-level demand forecasts. Int. J. Forecast. 2013, 29, 510–522. [Google Scholar] [CrossRef]
- Franses, P.H.; Legerstee, R. Do experts’ adjustments on model-based SKU-level forecasts improve forecast quality? J. Forecast. 2010, 29, 331–340. [Google Scholar] [CrossRef]
- Seaman, B. Considerations of a retail forecasting practitioner. Int. J. Forecast. 2018, 34, 822–829. [Google Scholar] [CrossRef]
- Seaman, B.; Bowman, J. Applicability of the M5 to Forecasting at Walmart. Int. J. Forecast. 2022, 38, 1468–1472. [Google Scholar] [CrossRef]
- Trapero, J.R.; Pedregal, D.J.; Fildes, R.; Kourentzes, N. Analysis of judgmental adjustments in the presence of promotions. Int. J. Forecast. 2013, 29, 234–243. [Google Scholar] [CrossRef]
- Lee, H.L.; So, K.C.; Tang, C.S. The Value of Information Sharing in a Two-Level Supply Chain. Manag. Sci. 2000, 46, 626–643. [Google Scholar] [CrossRef]
- Yu, Z.; Yan, H.; Edwin Cheng, T. Benefits of information sharing with supply chain partnerships. Ind. Manag. Data Syst. 2001, 101, 114–121. [Google Scholar] [CrossRef]
- Hosoda, T.; Naim, M.M.; Disney, S.M.; Potter, A. Is there a benefit to sharing market sales information? Linking theory and practice. Comput. Ind. Eng. 2008, 54, 315–326. [Google Scholar] [CrossRef]
- Trapero, J.R.; Kourentzes, N.; Fildes, R. Impact of information exchange on supplier forecasting performance. Omega 2012, 40, 738–747. [Google Scholar] [CrossRef]
- Lee, H.L.; Padmanabhan, V.; Whang, S. Information Distortion in a Supply Chain: The Bullwhip Effect. Manag. Sci. 1997, 43, 546–558. [Google Scholar] [CrossRef]
- Lee, H.L.; Whang, S. Information sharing in a supply chain. Int. J. Manuf. Technol. Manag. 2000, 1, 79–93. [Google Scholar] [CrossRef]
- Jain, A.; Rudi, N.; Wang, T. Demand Estimation and Ordering Under Censoring: Stock-Out Timing Is (Almost) All You Need. Oper. Res. 2014, 63, 134–150. [Google Scholar] [CrossRef]
- Vulcano, G.; van Ryzin, G.; Ratliff, R. Estimating Primary Demand for Substitutable Products from Sales Transaction Data. Oper. Res. 2012, 60, 313–334. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.; Lu, J.C. A practical approach to measuring the impacts of stockouts on demand. J. Bus. Ind. Mark. 2019, 34, 891–901. [Google Scholar] [CrossRef]
- Boone, T.; Boylan, J.E.; Fildes, R.; Ganeshan, R.; Sanders, N. Perspectives on supply chain forecasting. Int. J. Forecast. 2019, 35, 121–127. [Google Scholar] [CrossRef]
- Beutel, A.L.; Minner, S. Safety stock planning under causal demand forecasting. Int. J. Prod. Econ. 2012, 140, 637–645. [Google Scholar] [CrossRef]
- Fisher, M.; Vaidyanathan, R. A Demand Estimation Procedure for Retail Assortment Optimization with Results from Implementations. Manag. Sci. 2014, 60, 2401–2415. [Google Scholar] [CrossRef]
- Kahn, K.B. Solving the problems of new product forecasting. Bus. Horizons 2014, 57, 607–615. [Google Scholar] [CrossRef]
- Fisher, M.; Raman, A. Using Data and Big Data in Retailing. Prod. Oper. Manag. 2018, 27, 1665–1669. [Google Scholar] [CrossRef]
- Boone, T.; Ganeshan, R.; Jain, A.; Sanders, N.R. Forecasting sales in the supply chain: Consumer analytics in the big data era. Int. J. Forecast. 2019, 35, 170–180. [Google Scholar] [CrossRef]
- Boone, T.; Ganeshan, R.; Hicks, R.L.; Sanders, N.R. Can Google Trends Improve Your Sales Forecast? Prod. Oper. Manag. 2018, 27, 1770–1774. [Google Scholar] [CrossRef]
- Chern, C.C.; Wei, C.P.; Shen, F.Y.; Fan, Y.N. A sales forecasting model for consumer products based on the influence of online word-of-mouth. Inf. Syst. e-Bus. Manag. 2015, 13, 445–473. [Google Scholar] [CrossRef]
- Cui, R.; Gallino, S.; Moreno, A.; Zhang, D.J. The Operational Value of Social Media Information. Prod. Oper. Manag. 2018, 27, 1749–1769. [Google Scholar] [CrossRef]
- Lau, R.Y.K.; Zhang, W.; Xu, W. Parallel Aspect-Oriented Sentiment Analysis for Sales Forecasting with Big Data. Prod. Oper. Manag. 2018, 27, 1775–1794. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep learning applications and challenges in big data analytics. Int. J. Manuf. Technol. Manag. 2015, 2, 1. [Google Scholar] [CrossRef]
- Alon, I.; Qi, M.; Sadowski, R.J. Forecasting aggregate retail sales: A comparison of artificial neural networks and traditional methods. J. Retail. Consum. Serv. 2001, 8, 147–156. [Google Scholar] [CrossRef]
- Chu, C.W.; Zhang, G.P. A comparative study of linear and nonlinear models for aggregate retail sales forecasting. Int. J. Prod. Econ. 2003, 86, 217–231. [Google Scholar] [CrossRef]
- Zhang, G.P.; Qi, M. Neural network forecasting for seasonal and trend time series. Eur. J. Oper. Res. 2005, 160, 501–514. [Google Scholar] [CrossRef]
- Nelson, M.; Hill, T.; Remus, W.; O’Connor, M. Time series forecasting using neural networks: Should the data be deseasonalized first? J. Predict. 1999, 18, 359–367. [Google Scholar] [CrossRef]
- Aras, S.; Kocakoç, Í.D.; Polat, C. Comparative study on retail sales forecasting between single and combination methods. J. Bus. Econ. Manag. 2017, 18, 803–832. [Google Scholar] [CrossRef]
- Aburto, L.; Weber, R. Improved supply chain management based on hybrid demand forecasts. Appl. Soft Comput. 2007, 7, 126–144. [Google Scholar] [CrossRef]
- Vallés-Pérez, I.; Soria-Olivas, E.; Martínez-Sober, M.; Serrano-López, A.J.; Gómez-Sanchís, J.; Mateo, F. Approaching sales forecasting using recurrent neural networks and transformers. Expert Syst. Appl. 2022, 201, 116993. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Abbasimehr, H.; Shabani, M.; Yousefi, M. An optimized model using LSTM network for demand forecasting. Comput. Ind. Eng. 2020, 143, 106435. [Google Scholar] [CrossRef]
- Ensafi, Y.; Amin, S.H.; Zhang, G.; Shah, B. Time-series forecasting of seasonal items sales using machine learning—A comparative analysis. Int. J. Inf. Manag. Data Insights 2022, 2, 100058. [Google Scholar] [CrossRef]
- Falatouri, T.; Darbanian, F.; Brandtner, P.; Udokwu, C. Predictive Analytics for Demand Forecasting—A Comparison of SARIMA and LSTM in Retail SCM. Procedia Comput. Sci. 2022, 200, 993–1003. [Google Scholar] [CrossRef]
- Punia, S.; Nikolopoulos, K.; Singh, S.P.; Madaan, J.K.; Litsiou, K. Deep learning with long short-term memory networks and random forests for demand forecasting in multi-channel retail. Int. J. Prod. Res. 2020, 58, 4964–4979. [Google Scholar] [CrossRef]
- Weng, T.; Liu, W.; Xiao, J. Supply chain sales forecasting based on lightGBM and LSTM combination model. Ind. Manag. Data Syst. 2020, 120, 265–279. [Google Scholar] [CrossRef]
- Wang, Y.; Smola, A.; Maddix, D.; Gasthaus, J.; Foster, D.; Januschowski, T. Deep Factors for Forecasting. In Proceedings of Machine Learning Research, Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Chaudhuri, K., Salakhutdinov, R., Eds.; PMLR: New York, NY, USA, 2019; Volume 97, pp. 6607–6617. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.Q.; Liu, L. A Selection of Advanced Technologies for Demand Forecasting in the Retail Industry. In Proceedings of the 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA), Suzhou, China, 15–18 March 2019; pp. 317–320. [Google Scholar] [CrossRef]
- LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Handwritten Digit Recognition with a Back-Propagation Network. In Advances in Neural Information Processing Systems; Touretzky, D., Ed.; Morgan-Kaufmann: Burlington, MA, USA, 1989; Volume 2. [Google Scholar]
- Ma, S.; Fildes, R. Retail sales forecasting with meta-learning. Eur. J. Oper. Res. 2021, 288, 111–128. [Google Scholar] [CrossRef]
- Kaunchi, P.; Jadhav, T.; Dandawate, Y.; Marathe, P. Future Sales Prediction For Indian Products Using Convolutional Neural Network-Long Short Term Memory. In Proceedings of the 2021 2nd Global Conference for Advancement in Technology (GCAT), Bangalore, India, 1–3 October 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Liu, Y.; Lan, K.; Huang, F.; Cao, X.; Feng, B.; Zhu, B. An Aggregate Store Sales Forecasting Framework based on ConvLSTM. In Proceedings of the 2021 5th International Conference on Compute and Data Analysis, ICCDA ’21, New York, NY, USA, 2–4 February 2021; pp. 67–72. [Google Scholar] [CrossRef]
- Nithin, S.S.J.; Rajasekar, T.; Jayanthy, S.; Karthik, K.; Rithick, R.R. Retail Demand Forecasting using CNN-LSTM Model. In Proceedings of the 2022 International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 16–18 March 2022; pp. 1751–1756. [Google Scholar] [CrossRef]
- Bandara, K.; Shi, P.; Bergmeir, C.; Hewamalage, H.; Tran, Q.; Seaman, B. Sales Demand Forecast in E-commerce Using a Long Short-Term Memory Neural Network Methodology. In Neural Information Processing, Proceedings of the 26th International Conference, ICONIP 2019, Sydney, Australia, 12–15 December 2019; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2019; Volume 11955, pp. 462–474. [Google Scholar] [CrossRef]
- Bandara, K.; Bergmeir, C.; Smyl, S. Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach. Expert Syst. Appl. 2020, 140, 112896. [Google Scholar] [CrossRef]
- Bandara, K.; Hewamalage, H.; Liu, Y.H.; Kang, Y.; Bergmeir, C. Improving the accuracy of global forecasting models using time series data augmentation. Pattern Recognit. 2021, 120, 108148. [Google Scholar] [CrossRef]
- Pan, H.; Zhou, H. Study on convolutional neural network and its application in data mining and sales forecasting for E-commerce. Electron. Commer. Res. 2020, 20, 297–320. [Google Scholar] [CrossRef]
- Chen, K. An Online Retail Prediction Model Based on AGA-LSTM Neural Network. In Proceedings of the 2020 2nd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China, 23–25 October 2020; pp. 145–149. [Google Scholar] [CrossRef]
- He, Q.Q.; Wu, C.; Si, Y.W. LSTM with particle Swam optimization for sales forecasting. Electron. Commer. Res. Appl. 2022, 51, 101118. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you Need. In Advances in Neural Information Processing Systems; Morgan-Kaufmann: Burlington, MA, USA, 2017; Volume 30, pp. 5998–6008. [Google Scholar]
- Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting. In Advances in Neural Information Processing Systems; Morgan-Kaufmann: Burlington, MA, USA, 2021; Volume 34, pp. 22419–22430. [Google Scholar]
- Lim, B.; Arık, S.Ö.; Loeff, N.; Pfister, T. Temporal Fusion Transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 2021, 37, 1748–1764. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. Proc. AAAI Conf. Artif. Intell. 2021, 35, 11106–11115. [Google Scholar] [CrossRef]
- Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; Jin, R. FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting. In Proceedings of Machine Learning Research, Proceedings of the 39th International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022; Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S., Eds.; PMLR: New York, NY, USA, 2022; Volume 162, pp. 27268–27286. [Google Scholar]
- Nie, Y.; Nguyen, N.H.; Sinthong, P.; Kalagnanam, J. A Time Series is Worth 64 Words: Long-term Forecasting with Transformers. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Tong, J.; Xie, L.; Yang, W.; Zhang, K.; Zhao, J. Enhancing time series forecasting: A hierarchical transformer with probabilistic decomposition representation. Inf. Sci. 2023, 647, 119410. [Google Scholar] [CrossRef]
- Oliveira, J.M.; Ramos, P. Evaluating the Effectiveness of Time Series Transformers for Demand Forecasting in Retail. Mathematics 2024, 12, 2728. [Google Scholar] [CrossRef]
- Wellens, A.P.; Boute, R.N.; Udenio, M. Simplifying tree-based methods for retail sales forecasting with explanatory variables. Eur. J. Oper. Res. 2024, 314, 523–539. [Google Scholar] [CrossRef]
- Ansari, A.F.; Stella, L.; Turkmen, C.; Zhang, X.; Mercado, P.; Shen, H.; Shchur, O.; Rangapuram, S.S.; Arango, S.P.; Kapoor, S.; et al. Chronos: Learning the Language of Time Series. arXiv 2024, arXiv:2403.07815. [Google Scholar] [CrossRef]
- Woo, G.; Liu, C.; Kumar, A.; Xiong, C.; Savarese, S.; Sahoo, D. Unified Training of Universal Time Series Forecasting Transformers. arXiv 2024, arXiv:2402.02592. [Google Scholar] [CrossRef]
- Das, A.; Kong, W.; Sen, R.; Zhou, Y. A decoder-only foundation model for time-series forecasting. arXiv 2024, arXiv:2310.10688. [Google Scholar] [CrossRef]
- Rasul, K.; Ashok, A.; Williams, A.R.; Ghonia, H.; Bhagwatkar, R.; Khorasani, A.; Bayazi, M.J.D.; Adamopoulos, G.; Riachi, R.; Hassen, N.; et al. Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting. arXiv 2024, arXiv:2310.08278. [Google Scholar] [CrossRef]
- Garza, A.; Challu, C.; Mergenthaler-Canseco, M. TimeGPT-1. arXiv 2024, arXiv:2310.03589. [Google Scholar] [CrossRef]
- Oliveira, J.M.; Ramos, P. Cross-Learning-Based Sales Forecasting Using Deep Learning via Partial Pooling from Multi-level Data. In Engineering Applications of Neural Networks; Iliadis, L., Maglogiannis, I., Alonso, S., Jayne, C., Pimenidis, E., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 279–290. [Google Scholar] [CrossRef]
- Kourentzes, N.; Petropoulos, F.; Trapero, J.R. Improving forecasting by estimating time series structural components across multiple frequencies. Int. J. Forecast. 2014, 30, 291–302. [Google Scholar] [CrossRef]
- Athanasopoulos, G.; Hyndman, R.J.; Kourentzes, N.; Petropoulos, F. Forecasting with temporal hierarchies. Eur. J. Oper. Res. 2017, 262, 60–74. [Google Scholar] [CrossRef]
- Zotteri, G.; Kalchschmidt, M.; Caniato, F. The impact of aggregation level on forecasting performance. Int. J. Prod. Econ. 2005, 93–94, 479–491. [Google Scholar] [CrossRef]
- Athanasopoulos, G.; Gamakumara, P.; Panagiotelis, A.; Hyndman, R.J.; Affan, M. Hierarchical Forecasting. In Macroeconomic Forecasting in the Era of Big Data; Fuleky, P., Ed.; Springer: Cham, Switzerland, 2020; Volume 52, Chapter 21; pp. 689–719. [Google Scholar] [CrossRef]
- Athanasopoulos, G.; Ahmed, R.A.; Hyndman, R.J. Hierarchical forecasts for Australian domestic tourism. Int. J. Forecast. 2009, 25, 146–166. [Google Scholar] [CrossRef]
- Gross, C.W.; Sohl, J.E. Disaggregation methods to expedite product line forecasting. J. Forecast. 1990, 9, 233–254. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Ahmed, R.A.; Athanasopoulos, G.; Shang, H.L. Optimal combination forecasts for hierarchical time series. Comput. Stat. Data Anal. 2011, 55, 2579–2589. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Lee, A.J.; Wang, E. Fast computation of reconciled forecasts for hierarchical and grouped time series. Comput. Stat. Data Anal. 2016, 97, 16–32. [Google Scholar] [CrossRef]
- Wickramasuriya, S.L.; Athanasopoulos, G.; Hyndman, R.J. Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. J. Am. Stat. Assoc. 2019, 114, 804–819. [Google Scholar] [CrossRef]
- Spiliotis, E.; Abolghasemi, M.; Hyndman, R.J.; Petropoulos, F.; Assimakopoulos, V. Hierarchical forecast reconciliation with machine learning. Appl. Soft Comput. 2021, 112, 107756. [Google Scholar] [CrossRef]
- Pennings, C.L.; van Dalen, J. Integrated hierarchical forecasting. Eur. J. Oper. Res. 2017, 263, 412–418. [Google Scholar] [CrossRef]
- Oliveira, J.M.; Ramos, P. Assessing the Performance of Hierarchical Forecasting Methods on the Retail Sector. Entropy 2019, 21, 436. [Google Scholar] [CrossRef]
- Divakar, S.; Ratchford, B.T.; Shankar, V. CHAN4CAST: A Multichannel, Multiregion Sales Forecasting Model and Decision Support System for Consumer Packaged Goods. Mark. Sci. 2005, 24, 334–350. [Google Scholar] [CrossRef]
- Ramanathan, U.; Muyldermans, L. Identifying demand factors for promotional planning and forecasting: A case of a soft drink company in the UK. Int. J. Prod. Econ. 2010, 128, 538–545. [Google Scholar] [CrossRef]
- Steinker, S.; Hoberg, K.; Thonemann, U.W. The Value of Weather Information for E-Commerce Operations. Prod. Oper. Manag. 2017, 26, 1854–1874. [Google Scholar] [CrossRef]
- Liu, X.; Ichise, R. Food Sales Prediction with Meteorological Data—A Case Study of a Japanese Chain Supermarket. In Data Mining and Big Data; Tan, Y., Takagi, H., Shi, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 93–104. [Google Scholar]
- Hirche, M.; Haensch, J.; Lockshin, L. Comparing the day temperature and holiday effects on retail sales of alcoholic beverages—A time-series analysis. Int. J. Wine Bus. Res. 2021, 33, 432–455. [Google Scholar] [CrossRef]
- Verstraete, G.; Aghezzaf, E.H.; Desmet, B. A data-driven framework for predicting weather impact on high-volume low-margin retail products. J. Retail. Consum. Serv. 2019, 48, 169–177. [Google Scholar] [CrossRef]
- Badorf, F.; Hoberg, K. The impact of daily weather on retail sales: An empirical study in brick-and-mortar stores. J. Retail. Consum. Serv. 2020, 52, 101921. [Google Scholar] [CrossRef]
- Ramanathan, U.; Muyldermans, L. Identifying the underlying structure of demand during promotions: A structural equation modelling approach. Expert Syst. Appl. 2011, 38, 5544–5552. [Google Scholar] [CrossRef]
- Ali, Ö.G.; Sayın, S.; van Woensel, T.; Fransoo, J. SKU demand forecasting in the presence of promotions. Expert Syst. Appl. 2009, 36, 12340–12348. [Google Scholar] [CrossRef]
- Arunraj, N.S.; Ahrens, D. A hybrid seasonal autoregressive integrated moving average and quantile regression for daily food sales forecasting. Int. J. Prod. Econ. 2015, 170, 321–335. [Google Scholar] [CrossRef]
- Arunraj, N.S.; Ahrens, D.; Fernandes, M. Application of SARIMAX Model to Forecast Daily Sales in Food Retail Industry. Int. J. Oper. Res. Inf. Syst. 2016, 7, 1–21. [Google Scholar] [CrossRef]
- Huber, J.; Stuckenschmidt, H. Daily retail demand forecasting using machine learning with emphasis on calendric special days. Int. J. Forecast. 2020, 36, 1420–1438. [Google Scholar] [CrossRef]
- Guo, Z.; Wong, W.; Li, M. A multivariate intelligent decision-making model for retail sales forecasting. Decis. Support Syst. 2013, 55, 247–255. [Google Scholar] [CrossRef]
- Huang, T.; Fildes, R.; Soopramanien, D. The value of competitive information in forecasting FMCG retail product sales and the variable selection problem. Eur. J. Oper. Res. 2014, 237, 738–748. [Google Scholar] [CrossRef]
- Ma, S.; Fildes, R.; Huang, T. Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra- and inter-category promotional information. Eur. J. Oper. Res. 2016, 249, 245–257. [Google Scholar] [CrossRef]
- Trapero, J.R.; Kourentzes, N.; Fildes, R. On the identification of sales forecasting models in the presence of promotions. J. Oper. Res. Soc. 2015, 66, 299–307. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 3rd ed.; Online Open-Access Textbooks; Monash University: Clayton, Australia, 2021; Available online: https://OTexts.com/fpp3/ (accessed on 1 April 2024).
- Schäfer, J.; Strimmer, K. A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics. Stat. Appl. Genet. Mol. Biol. 2005, 4, 151–163. [Google Scholar] [CrossRef]
- Ramos, P.; Oliveira, J.M. A procedure for identification of appropriate state space and ARIMA models based on time-series cross-validation. Algorithms 2016, 9, 76. [Google Scholar] [CrossRef]
- Ramos, P.; Oliveira, J.M.; Kourentzes, N.; Fildes, R. Forecasting Seasonal Sales with Many Drivers: Shrinkage or Dimensionality Reduction? Appl. Syst. Innov. 2023, 6, 3. [Google Scholar] [CrossRef]
- Ramos, P.; Oliveira, J.M. Robust Sales forecasting Using Deep Learning with Static and Dynamic Covariates. Appl. Syst. Innov. 2023, 6, 85. [Google Scholar] [CrossRef]
- Zhang, A.; Lipton, Z.C.; Li, M.; Smola, A.J. Dive into Deep Learning; Cambridge University Press: Cambridge, UK, 2023; Available online: https://D2L.ai (accessed on 15 June 2024).
- Goodfellow, I.J.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: http://www.deeplearningbook.org (accessed on 15 June 2024).
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef]
Hierarchical Level | Number of Series per SKU | Total Number of Series |
---|---|---|
Level 0 | 1 | 38 |
Level 1 | 2 | 76 |
Level 2 | 10 | 380 |
Total | 13 | 494 |
ARIMA | ||||||||
MASE | 1–7 | |||||||
Level 0: Total | ||||||||
Base | 0.9811 | 1.0442 | 1.0650 | 1.0773 | 1.0950 | 1.1047 | 1.1041 | 1.0673 |
Bottom-up | 1.0090 | 1.0438 | 1.0398 | 1.0327 | 1.0336 | 1.0292 | 1.0228 | 1.0301 |
Top-down | 0.9811 | 1.0442 | 1.0650 | 1.0773 | 1.0950 | 1.1047 | 1.1041 | 1.0673 |
OLS | 0.9671 | 1.0260 | 1.0463 | 1.0531 | 1.0670 | 1.0743 | 1.0735 | 1.0439 |
WLS (struct) | 0.9609 | 1.0131 | 1.0256 | 1.0288 | 1.0376 | 1.0407 | 1.0382 | 1.0207 |
Level 1: Region | ||||||||
Base | 0.8975 | 0.9381 | 0.9496 | 0.9502 | 0.9570 | 0.9592 | 0.9590 | 0.9444 |
Bottom-up | 0.9157 | 0.9439 | 0.9427 | 0.9388 | 0.9409 | 0.9377 | 0.9337 | 0.9362 |
Top-down | 0.9118 | 0.9595 | 0.9733 | 0.9814 | 0.9921 | 0.9987 | 0.9979 | 0.9735 |
OLS | 0.8976 | 0.9455 | 0.9605 | 0.9660 | 0.9761 | 0.9811 | 0.9812 | 0.9583 |
WLS (struct) | 0.8875 | 0.9274 | 0.9367 | 0.9399 | 0.9471 | 0.9490 | 0.9479 | 0.9336 |
Level 2: Store | ||||||||
Base | 0.7974 | 0.8113 | 0.8106 | 0.8109 | 0.8120 | 0.8107 | 0.8083 | 0.8088 |
Bottom-up | 0.7974 | 0.8113 | 0.8106 | 0.8109 | 0.8120 | 0.8107 | 0.8083 | 0.8088 |
Top-down | 0.8136 | 0.8412 | 0.8523 | 0.8627 | 0.8724 | 0.8796 | 0.8810 | 0.8575 |
OLS | 0.8115 | 0.8402 | 0.8523 | 0.8611 | 0.8697 | 0.8762 | 0.8775 | 0.8555 |
WLS (struct) | 0.7981 | 0.8221 | 0.8307 | 0.8369 | 0.8433 | 0.8470 | 0.8473 | 0.8322 |
RMSSE | 1–7 | |||||||
Level 0: Total | ||||||||
Base | 1.6757 | 1.7551 | 1.7809 | 1.7963 | 1.8277 | 1.8445 | 1.8332 | 1.7876 |
Bottom-up | 1.7602 | 1.7792 | 1.7691 | 1.7734 | 1.7792 | 1.7709 | 1.7613 | 1.7705 |
Top-down | 1.6757 | 1.7551 | 1.7809 | 1.7963 | 1.8277 | 1.8445 | 1.8332 | 1.7876 |
OLS | 1.6607 | 1.7311 | 1.7557 | 1.7629 | 1.7869 | 1.8006 | 1.7921 | 1.7557 |
WLS (struct) | 1.6637 | 1.7140 | 1.7264 | 1.7329 | 1.7505 | 1.7567 | 1.7481 | 1.7275 |
Level 1: Region | ||||||||
Base | 1.4903 | 1.5373 | 1.5538 | 1.5519 | 1.5621 | 1.5670 | 1.5639 | 1.5466 |
Bottom-up | 1.5476 | 1.5609 | 1.5555 | 1.5617 | 1.5673 | 1.5619 | 1.5547 | 1.5585 |
Top-down | 1.5004 | 1.5575 | 1.5737 | 1.5865 | 1.6105 | 1.6230 | 1.6152 | 1.5810 |
OLS | 1.4836 | 1.5377 | 1.5567 | 1.5645 | 1.5854 | 1.5944 | 1.5885 | 1.5587 |
WLS (struct) | 1.4825 | 1.5185 | 1.5273 | 1.5351 | 1.5496 | 1.5538 | 1.5480 | 1.5307 |
Level 2: Store | ||||||||
Base | 1.2645 | 1.2757 | 1.2723 | 1.2764 | 1.2796 | 1.2785 | 1.2736 | 1.2744 |
Bottom-up | 1.2645 | 1.2757 | 1.2723 | 1.2764 | 1.2796 | 1.2785 | 1.2736 | 1.2744 |
Top-down | 1.2591 | 1.2999 | 1.3147 | 1.3285 | 1.3455 | 1.3578 | 1.3541 | 1.3228 |
OLS | 1.2494 | 1.2897 | 1.3071 | 1.3173 | 1.3310 | 1.3415 | 1.3387 | 1.3107 |
WLS (struct) | 1.2381 | 1.2672 | 1.2771 | 1.2860 | 1.2963 | 1.3030 | 1.2998 | 1.2811 |
ARIMAX | ||||||||
MASE | 1–7 | |||||||
Level 0: Total | ||||||||
Base | 0.7795 | 0.7863 | 0.7875 | 0.7799 | 0.7795 | 0.7756 | 0.7720 | 0.7800 |
Bottom-up | 0.8141 | 0.8221 | 0.8221 | 0.8157 | 0.8161 | 0.8163 | 0.8151 | 0.8173 |
Top-down | 0.7795 | 0.7863 | 0.7875 | 0.7799 | 0.7795 | 0.7756 | 0.7720 | 0.7800 |
OLS | 0.7671 | 0.7744 | 0.7763 | 0.7693 | 0.7692 | 0.7659 | 0.7625 | 0.7692 |
WLS (struct) | 0.7587 | 0.7671 | 0.7697 | 0.7636 | 0.7643 | 0.7630 | 0.7609 | 0.7639 |
Level 1: Region | ||||||||
Base | 0.7406 | 0.7463 | 0.7457 | 0.7423 | 0.7433 | 0.7408 | 0.7377 | 0.7424 |
Bottom-up | 0.7625 | 0.7679 | 0.7682 | 0.7643 | 0.7664 | 0.7666 | 0.7657 | 0.7659 |
Top-down | 0.7532 | 0.7585 | 0.7579 | 0.7544 | 0.7545 | 0.7510 | 0.7483 | 0.7540 |
OLS | 0.7422 | 0.7482 | 0.7473 | 0.7439 | 0.7445 | 0.7417 | 0.7395 | 0.7439 |
WLS (struct) | 0.7329 | 0.7386 | 0.7391 | 0.7361 | 0.7372 | 0.7361 | 0.7340 | 0.7363 |
Level 2: Store | ||||||||
Base | 0.7268 | 0.7301 | 0.7291 | 0.7301 | 0.7318 | 0.7309 | 0.7295 | 0.7298 |
Bottom-up | 0.7268 | 0.7301 | 0.7291 | 0.7301 | 0.7318 | 0.7309 | 0.7295 | 0.7298 |
Top-down | 0.7479 | 0.7513 | 0.7506 | 0.7511 | 0.7523 | 0.7505 | 0.7489 | 0.7504 |
OLS | 0.7471 | 0.7502 | 0.7487 | 0.7492 | 0.7505 | 0.7490 | 0.7470 | 0.7488 |
WLS (struct) | 0.7330 | 0.7362 | 0.7352 | 0.7360 | 0.7376 | 0.7363 | 0.7344 | 0.7355 |
RMSSE | 1–7 | |||||||
Level 0: Total | ||||||||
Base | 1.3318 | 1.3396 | 1.3441 | 1.3459 | 1.3519 | 1.3415 | 1.3320 | 1.3410 |
Bottom-up | 1.4153 | 1.4075 | 1.4088 | 1.4093 | 1.4165 | 1.4141 | 1.4077 | 1.4113 |
Top-down | 1.3318 | 1.3396 | 1.3441 | 1.3459 | 1.3519 | 1.3415 | 1.3320 | 1.3410 |
OLS | 1.3207 | 1.3258 | 1.3298 | 1.3309 | 1.3375 | 1.3288 | 1.3187 | 1.3274 |
WLS (struct) | 1.3196 | 1.3205 | 1.3239 | 1.3249 | 1.3323 | 1.3260 | 1.3169 | 1.3234 |
Level 1: Region | ||||||||
Base | 1.2312 | 1.2279 | 1.2288 | 1.2304 | 1.2387 | 1.2344 | 1.2273 | 1.2312 |
Bottom-up | 1.2811 | 1.2714 | 1.2710 | 1.2741 | 1.2814 | 1.2794 | 1.2755 | 1.2763 |
Top-down | 1.2395 | 1.2404 | 1.2430 | 1.2468 | 1.2544 | 1.2473 | 1.2418 | 1.2447 |
OLS | 1.2244 | 1.2244 | 1.2258 | 1.2293 | 1.2368 | 1.2305 | 1.2247 | 1.2280 |
WLS (struct) | 1.2208 | 1.2171 | 1.2182 | 1.2217 | 1.2297 | 1.2253 | 1.2196 | 1.2218 |
Level 2: Store | ||||||||
Base | 1.1414 | 1.1400 | 1.1375 | 1.1417 | 1.1455 | 1.1442 | 1.1411 | 1.1416 |
Bottom-up | 1.1414 | 1.1400 | 1.1375 | 1.1417 | 1.1455 | 1.1442 | 1.1411 | 1.1416 |
Top-down | 1.1440 | 1.1476 | 1.1488 | 1.1515 | 1.1563 | 1.1529 | 1.1496 | 1.1501 |
OLS | 1.1329 | 1.1355 | 1.1328 | 1.1371 | 1.1412 | 1.1382 | 1.1341 | 1.1360 |
WLS (struct) | 1.1212 | 1.1226 | 1.1200 | 1.1245 | 1.1287 | 1.1264 | 1.1224 | 1.1237 |
MLP | ||||||||
MASE | 1–7 | |||||||
Level 0: Total | ||||||||
Base | 1.0199 | 1.0363 | 1.0260 | 1.0077 | 1.0131 | 1.0192 | 1.0110 | 1.0190 |
Bottom-up | 1.0046 | 1.0109 | 1.0003 | 0.9931 | 0.9966 | 0.9980 | 0.9900 | 0.9991 |
Top-down | 1.0199 | 1.0363 | 1.0260 | 1.0077 | 1.0131 | 1.0192 | 1.0110 | 1.0190 |
OLS | 0.9999 | 1.0132 | 1.0071 | 0.9915 | 0.9948 | 1.0007 | 0.9931 | 1.0001 |
WLS (struct) | 0.9898 | 1.0005 | 0.9938 | 0.9816 | 0.9846 | 0.9881 | 0.9815 | 0.9886 |
Level 1: Region | ||||||||
Base | 0.9263 | 0.9349 | 0.9340 | 0.9223 | 0.9263 | 0.9287 | 0.9225 | 0.9279 |
Bottom-up | 0.9210 | 0.9249 | 0.9176 | 0.9150 | 0.9171 | 0.9180 | 0.9139 | 0.9182 |
Top-down | 0.9383 | 0.9508 | 0.9457 | 0.9328 | 0.9392 | 0.9413 | 0.9371 | 0.9407 |
OLS | 0.9299 | 0.9402 | 0.9360 | 0.9242 | 0.9301 | 0.9329 | 0.9275 | 0.9315 |
WLS (struct) | 0.9130 | 0.9217 | 0.9177 | 0.9092 | 0.9127 | 0.9143 | 0.9100 | 0.9141 |
Level 2: Store | ||||||||
Base | 0.8101 | 0.8118 | 0.8085 | 0.8090 | 0.8109 | 0.8112 | 0.8086 | 0.8100 |
Bottom-up | 0.8101 | 0.8118 | 0.8085 | 0.8090 | 0.8109 | 0.8112 | 0.8086 | 0.8100 |
Top-down | 0.8306 | 0.8355 | 0.8325 | 0.8286 | 0.8319 | 0.8339 | 0.8284 | 0.8316 |
OLS | 0.8311 | 0.8340 | 0.8321 | 0.8276 | 0.8313 | 0.8338 | 0.8280 | 0.8311 |
WLS (struct) | 0.8195 | 0.8221 | 0.8200 | 0.8174 | 0.8200 | 0.8217 | 0.8171 | 0.8197 |
RMSSE | 1–7 | |||||||
Level 0: Total | ||||||||
Base | 1.7521 | 1.7263 | 1.7094 | 1.7024 | 1.7084 | 1.7157 | 1.7050 | 1.7170 |
Bottom-up | 1.7832 | 1.7510 | 1.7314 | 1.7253 | 1.7332 | 1.7333 | 1.7282 | 1.7408 |
Top-down | 1.7521 | 1.7263 | 1.7094 | 1.7024 | 1.7084 | 1.7157 | 1.7050 | 1.7170 |
OLS | 1.7423 | 1.7089 | 1.6953 | 1.6879 | 1.6927 | 1.7014 | 1.6896 | 1.7026 |
WLS (struct) | 1.7466 | 1.7114 | 1.6970 | 1.6892 | 1.6945 | 1.7015 | 1.6918 | 1.7046 |
Level 1: Region | ||||||||
Base | 1.5545 | 1.5221 | 1.5145 | 1.5096 | 1.5141 | 1.5203 | 1.5109 | 1.5209 |
Bottom-up | 1.5723 | 1.5443 | 1.5293 | 1.5290 | 1.5350 | 1.5346 | 1.5315 | 1.5394 |
Top-down | 1.5549 | 1.5348 | 1.5239 | 1.5201 | 1.5275 | 1.5289 | 1.5238 | 1.5306 |
OLS | 1.5514 | 1.5279 | 1.5160 | 1.5131 | 1.5204 | 1.5218 | 1.5155 | 1.5237 |
WLS (struct) | 1.5466 | 1.5185 | 1.5070 | 1.5047 | 1.5099 | 1.5131 | 1.5072 | 1.5153 |
Level 2: Store | ||||||||
Base | 1.2776 | 1.2669 | 1.2582 | 1.2605 | 1.2642 | 1.2638 | 1.2608 | 1.2646 |
Bottom-up | 1.2776 | 1.2669 | 1.2582 | 1.2605 | 1.2642 | 1.2638 | 1.2608 | 1.2646 |
Top-down | 1.2753 | 1.2682 | 1.2597 | 1.2620 | 1.2666 | 1.2673 | 1.2613 | 1.2658 |
OLS | 1.2749 | 1.2645 | 1.2564 | 1.2578 | 1.2622 | 1.2640 | 1.2574 | 1.2625 |
WLS (struct) | 1.2703 | 1.2589 | 1.2509 | 1.2528 | 1.2564 | 1.2580 | 1.2525 | 1.2571 |
MLP with Regressors | ||||||||
MASE | 1–7 | |||||||
Level 0: Total | ||||||||
Base | 1.2115 | 1.1893 | 1.1752 | 1.1636 | 1.1617 | 1.1567 | 1.1527 | 1.1729 |
Bottom-up | 1.0954 | 1.0709 | 1.0555 | 1.0439 | 1.0418 | 1.0377 | 1.0337 | 1.0541 |
Top-down | 1.2115 | 1.1893 | 1.1752 | 1.1636 | 1.1617 | 1.1567 | 1.1527 | 1.1729 |
OLS | 1.1962 | 1.1738 | 1.1596 | 1.1483 | 1.1467 | 1.1424 | 1.1390 | 1.1580 |
WLS (struct) | 1.1580 | 1.1349 | 1.1203 | 1.1089 | 1.1072 | 1.1029 | 1.0994 | 1.1188 |
Level 1: Region | ||||||||
Base | 1.0562 | 1.0382 | 1.0278 | 1.0202 | 1.0196 | 1.0167 | 1.0139 | 1.0275 |
Bottom-up | 0.9910 | 0.9714 | 0.9603 | 0.9524 | 0.9511 | 0.9480 | 0.9447 | 0.9598 |
Top-down | 1.0665 | 1.0484 | 1.0380 | 1.0298 | 1.0282 | 1.0241 | 1.0203 | 1.0365 |
OLS | 1.0578 | 1.0397 | 1.0292 | 1.0212 | 1.0198 | 1.0157 | 1.0122 | 1.0279 |
WLS (struct) | 1.0288 | 1.0102 | 0.9995 | 0.9915 | 0.9904 | 0.9873 | 0.9842 | 0.9988 |
Level 2: Store | ||||||||
Base | 0.8559 | 0.8454 | 0.8389 | 0.8365 | 0.8365 | 0.8347 | 0.8324 | 0.8401 |
Bottom-up | 0.8559 | 0.8454 | 0.8389 | 0.8365 | 0.8365 | 0.8347 | 0.8324 | 0.8401 |
Top-down | 0.8927 | 0.8827 | 0.8767 | 0.8740 | 0.8738 | 0.8718 | 0.8694 | 0.8773 |
OLS | 0.8933 | 0.8834 | 0.8774 | 0.8748 | 0.8748 | 0.8727 | 0.8703 | 0.8781 |
WLS (struct) | 0.8776 | 0.8675 | 0.8613 | 0.8588 | 0.8588 | 0.8570 | 0.8548 | 0.8623 |
RMSSE | 1–7 | |||||||
Level 0: Total | ||||||||
Base | 1.9013 | 1.8255 | 1.7965 | 1.7830 | 1.7824 | 1.7774 | 1.7739 | 1.8057 |
Bottom-up | 1.8506 | 1.7698 | 1.7369 | 1.7247 | 1.7246 | 1.7218 | 1.7194 | 1.7497 |
Top-down | 1.9013 | 1.8255 | 1.7965 | 1.7830 | 1.7824 | 1.7774 | 1.7739 | 1.8057 |
OLS | 1.8896 | 1.8140 | 1.7851 | 1.7724 | 1.7727 | 1.7696 | 1.7672 | 1.7958 |
WLS (struct) | 1.8705 | 1.7934 | 1.7633 | 1.7509 | 1.7513 | 1.7487 | 1.7465 | 1.7750 |
Level 1: Region | ||||||||
Base | 1.6630 | 1.6004 | 1.5786 | 1.5713 | 1.5726 | 1.5702 | 1.5679 | 1.5891 |
Bottom-up | 1.6326 | 1.5651 | 1.5404 | 1.5327 | 1.5332 | 1.5304 | 1.5279 | 1.5517 |
Top-down | 1.6670 | 1.6028 | 1.5804 | 1.5715 | 1.5711 | 1.5659 | 1.5621 | 1.5887 |
OLS | 1.6599 | 1.5969 | 1.5745 | 1.5661 | 1.5660 | 1.5611 | 1.5577 | 1.5832 |
WLS (struct) | 1.6431 | 1.5779 | 1.5548 | 1.5469 | 1.5476 | 1.5447 | 1.5423 | 1.5653 |
Level 2: Store | ||||||||
Base | 1.3141 | 1.2834 | 1.2698 | 1.2684 | 1.2693 | 1.2677 | 1.2651 | 1.2768 |
Bottom-up | 1.3141 | 1.2834 | 1.2698 | 1.2684 | 1.2693 | 1.2677 | 1.2651 | 1.2768 |
Top-down | 1.3296 | 1.3005 | 1.2882 | 1.2862 | 1.2867 | 1.2842 | 1.2811 | 1.2938 |
OLS | 1.3268 | 1.2981 | 1.2858 | 1.2840 | 1.2847 | 1.2823 | 1.2794 | 1.2916 |
WLS (struct) | 1.3180 | 1.2884 | 1.2757 | 1.2741 | 1.2750 | 1.2732 | 1.2706 | 1.2821 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, M.; Oliveira, J.M.; Ramos, P. Enhancing Hierarchical Sales Forecasting with Promotional Data: A Comparative Study Using ARIMA and Deep Neural Networks. Mach. Learn. Knowl. Extr. 2024, 6, 2659-2687. https://doi.org/10.3390/make6040128
Teixeira M, Oliveira JM, Ramos P. Enhancing Hierarchical Sales Forecasting with Promotional Data: A Comparative Study Using ARIMA and Deep Neural Networks. Machine Learning and Knowledge Extraction. 2024; 6(4):2659-2687. https://doi.org/10.3390/make6040128
Chicago/Turabian StyleTeixeira, Mariana, José Manuel Oliveira, and Patrícia Ramos. 2024. "Enhancing Hierarchical Sales Forecasting with Promotional Data: A Comparative Study Using ARIMA and Deep Neural Networks" Machine Learning and Knowledge Extraction 6, no. 4: 2659-2687. https://doi.org/10.3390/make6040128
APA StyleTeixeira, M., Oliveira, J. M., & Ramos, P. (2024). Enhancing Hierarchical Sales Forecasting with Promotional Data: A Comparative Study Using ARIMA and Deep Neural Networks. Machine Learning and Knowledge Extraction, 6(4), 2659-2687. https://doi.org/10.3390/make6040128