Continual Semi-Supervised Malware Detection
Abstract
:1. Introduction
- (i)
- Formulate a semi-supervised one-class continual malware detection workflow, which is essential for real-world applications but has received limited attention in previous research.
- (ii)
- Devise two model-agnostic experience replay strategies that support anomaly detection models popular in conventional learning settings.
- (iii)
- Conduct a comprehensive empirical evaluation and analysis involving seven diverse models, three real-world malware detection datasets, and two continual learning scenarios, assessing the effectiveness of experience replay strategies compared to proposed lower and upper-bound baselines.
2. Background
2.1. Malware Detection
2.2. Continual Learning
3. Methodology
3.1. Experience Replay Strategies
3.2. Scenarios
- A: clustered anomaly concepts assigned to the closest normal concept.
- C: clustered anomaly concepts assigned randomly to normal concepts.
Algorithm 1: Scenario creation protocol [44] |
4. Experiments
4.1. Datasets
4.2. Strategies
4.3. Anomaly Detection Models
4.4. Model Evaluation
4.5. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Model Hyperparameters
LOF | leaf_size = 20, n_neighbors = 5 |
IF | n_estimators = 85 |
OCSVM | kernel = rbf, gamma = 8, shrinking = True |
COPOD | parameterless |
Appendix A.1. Qualitative Analysis
Appendix A.2. Ablation Experiments
Scenario: A | ||||||||||||
Strategy | OCSVM | IF | LOF | COPOD | ||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | |
ER (Random) 0.05 | 0.395 | 0.002 | 0.454 | 0.462 | 0.006 | 0.512 | 0.575 | 0.054 | 0.639 | 0.365 | 0.007 | 0.442 |
ER (Random) 0.1 | 0.398 | 0.001 | 0.456 | 0.461 | −0.001 | 0.51 | 0.584 | 0.059 | 0.647 | 0.366 | 0.008 | 0.444 |
ER (Random) 0.15 | 0.4 | 0.001 | 0.459 | 0.461 | 0.001 | 0.511 | 0.594 | 0.059 | 0.659 | 0.367 | 0.01 | 0.447 |
ER (Random) 0.2 | 0.397 | 0.001 | 0.456 | 0.462 | −0.006 | 0.511 | 0.601 | 0.064 | 0.669 | 0.368 | 0.011 | 0.448 |
ER (Selective) 0.05 | 0.389 | 0.001 | 0.453 | 0.452 | 0.001 | 0.499 | 0.566 | 0.058 | 0.633 | 0.361 | 0.005 | 0.436 |
ER (Selective) 0.1 | 0.387 | −0.003 | 0.458 | 0.446 | 0.001 | 0.497 | 0.573 | 0.059 | 0.643 | 0.359 | 0.007 | 0.437 |
ER (Selective) 0.15 | 0.39 | −0.005 | 0.459 | 0.44 | −0.005 | 0.485 | 0.586 | 0.072 | 0.662 | 0.359 | 0.008 | 0.438 |
ER (Selective) 0.2 | 0.393 | −0.007 | 0.458 | 0.434 | −0.007 | 0.479 | 0.602 | 0.076 | 0.673 | 0.36 | 0.006 | 0.439 |
Strategy | HBOS | ABOD | AE | |||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | ||||
ER (Random) 0.05 | 0.454 | 0.001 | 0.511 | 0.612 | −0.098 | 0.536 | 0.587 | 0.001 | 0.569 | |||
ER (Random) 0.1 | 0.455 | 0.0 | 0.511 | 0.587 | −0.156 | 0.476 | 0.588 | 0.001 | 0.57 | |||
ER (Random) 0.15 | 0.454 | 0.001 | 0.511 | 0.549 | −0.2 | 0.419 | 0.588 | 0.0 | 0.571 | |||
ER (Random) 0.2 | 0.454 | 0.001 | 0.511 | 0.511 | −0.223 | 0.372 | 0.588 | −0.001 | 0.57 | |||
ER (Selective) 0.05 | 0.449 | −0.001 | 0.504 | 0.616 | −0.042 | 0.576 | 0.588 | 0.001 | 0.569 | |||
ER (Selective) 0.1 | 0.445 | −0.002 | 0.501 | 0.604 | −0.049 | 0.558 | 0.588 | −0.0 | 0.57 | |||
ER (Selective) 0.15 | 0.444 | −0.004 | 0.498 | 0.591 | −0.053 | 0.546 | 0.588 | −0.0 | 0.571 | |||
ER (Selective) 0.2 | 0.445 | −0.008 | 0.493 | 0.577 | −0.049 | 0.534 | 0.588 | 0.001 | 0.571 | |||
Scenario: C | ||||||||||||
Strategy | OCSVM | IF | LOF | COPOD | ||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | |
ER (Random) 0.05 | 0.384 | 0.002 | 0.476 | 0.497 | 0.001 | 0.486 | 0.624 | 0.042 | 0.616 | 0.37 | 0.001 | 0.446 |
ER (Random) 0.1 | 0.38 | 0.001 | 0.472 | 0.495 | 0.004 | 0.485 | 0.63 | 0.05 | 0.634 | 0.374 | 0.003 | 0.448 |
ER (Random) 0.15 | 0.381 | 0.001 | 0.474 | 0.496 | 0.001 | 0.483 | 0.632 | 0.061 | 0.648 | 0.382 | 0.002 | 0.45 |
ER (Random) 0.2 | 0.382 | 0.001 | 0.476 | 0.495 | 0.002 | 0.483 | 0.639 | 0.072 | 0.669 | 0.387 | 0.004 | 0.451 |
ER (Selective) 0.05 | 0.403 | −0.013 | 0.453 | 0.485 | −0.009 | 0.466 | 0.615 | 0.045 | 0.607 | 0.367 | −0.004 | 0.437 |
ER (Selective) 0.1 | 0.406 | −0.009 | 0.448 | 0.472 | −0.011 | 0.46 | 0.621 | 0.05 | 0.623 | 0.374 | −0.004 | 0.436 |
ER (Selective) 0.15 | 0.409 | −0.008 | 0.444 | 0.465 | −0.011 | 0.45 | 0.63 | 0.064 | 0.654 | 0.384 | −0.005 | 0.435 |
ER (Selective) 0.2 | 0.411 | −0.01 | 0.441 | 0.464 | −0.01 | 0.447 | 0.641 | 0.072 | 0.667 | 0.386 | −0.006 | 0.434 |
Strategy | HBOS | ABOD | AE | |||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | ||||
ER (Random) 0.05 | 0.495 | −0.001 | 0.479 | 0.59 | −0.145 | 0.455 | 0.562 | 0.001 | 0.591 | |||
ER (Random) 0.1 | 0.496 | −0.001 | 0.479 | 0.538 | −0.25 | 0.321 | 0.573 | 0.001 | 0.593 | |||
ER (Random) 0.15 | 0.495 | −0.001 | 0.479 | 0.512 | −0.265 | 0.286 | 0.564 | 0.001 | 0.595 | |||
ER (Random) 0.2 | 0.495 | −0.001 | 0.479 | 0.498 | −0.247 | 0.294 | 0.564 | 0.0 | 0.593 | |||
ER (Selective) 0.05 | 0.489 | −0.006 | 0.469 | 0.617 | −0.014 | 0.582 | 0.566 | 0.002 | 0.593 | |||
ER (Selective) 0.1 | 0.481 | −0.01 | 0.462 | 0.605 | −0.021 | 0.568 | 0.564 | 0.001 | 0.595 | |||
ER (Selective) 0.15 | 0.474 | −0.012 | 0.458 | 0.59 | −0.029 | 0.553 | 0.566 | 0.0 | 0.594 | |||
ER (Selective) 0.2 | 0.473 | −0.014 | 0.455 | 0.574 | −0.029 | 0.542 | 0.564 | 0.001 | 0.593 |
Scenario: A | ||||||||||||
Strategy | OCSVM | IF | LOF | COPOD | ||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | |
ER (Random) 0.05 | 0.187 | −0.279 | 0.399 | 0.555 | −0.086 | 0.698 | 0.2 | −0.263 | 0.557 | 0.507 | −0.089 | 0.613 |
ER (Random) 0.1 | 0.191 | −0.282 | 0.379 | 0.558 | −0.13 | 0.7 | 0.186 | −0.079 | 0.674 | 0.508 | −0.051 | 0.628 |
ER (Random) 0.15 | 0.186 | −0.266 | 0.383 | 0.564 | −0.111 | 0.704 | 0.184 | −0.022 | 0.712 | 0.51 | −0.022 | 0.642 |
ER (Random) 0.2 | 0.187 | −0.257 | 0.388 | 0.563 | −0.106 | 0.689 | 0.184 | −0.033 | 0.702 | 0.51 | −0.008 | 0.652 |
ER (Selective) 0.05 | 0.187 | −0.196 | 0.518 | 0.544 | −0.095 | 0.711 | 0.199 | −0.303 | 0.537 | 0.508 | −0.09 | 0.61 |
ER (Selective) 0.1 | 0.186 | −0.179 | 0.513 | 0.557 | −0.084 | 0.721 | 0.196 | −0.163 | 0.624 | 0.51 | −0.037 | 0.63 |
ER (Selective) 0.15 | 0.187 | −0.178 | 0.507 | 0.565 | −0.107 | 0.721 | 0.184 | −0.123 | 0.66 | 0.511 | −0.013 | 0.644 |
ER (Selective) 0.2 | 0.185 | −0.18 | 0.503 | 0.564 | −0.052 | 0.731 | 0.184 | −0.115 | 0.668 | 0.511 | 0.002 | 0.653 |
Strategy | HBOS | ABOD | AE | |||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | ||||
ER (Random) 0.05 | 0.561 | −0.026 | 0.778 | 0.239 | −0.122 | 0.842 | 0.427 | −0.004 | 0.617 | |||
ER (Random) 0.1 | 0.56 | −0.01 | 0.776 | 0.216 | −0.102 | 0.853 | 0.346 | −0.017 | 0.615 | |||
ER (Random) 0.15 | 0.557 | −0.002 | 0.776 | 0.221 | −0.084 | 0.864 | 0.376 | −0.049 | 0.54 | |||
ER (Random) 0.2 | 0.553 | −0.002 | 0.773 | 0.221 | −0.071 | 0.875 | 0.371 | −0.016 | 0.551 | |||
ER (Selective) 0.05 | 0.557 | −0.022 | 0.782 | 0.203 | −0.306 | 0.718 | 0.432 | −0.165 | 0.513 | |||
ER (Selective) 0.1 | 0.559 | −0.017 | 0.778 | 0.237 | −0.2 | 0.794 | 0.382 | −0.144 | 0.517 | |||
ER (Selective) 0.15 | 0.558 | −0.008 | 0.779 | 0.232 | −0.172 | 0.814 | 0.315 | −0.028 | 0.578 | |||
ER (Selective) 0.2 | 0.555 | −0.009 | 0.775 | 0.204 | −0.145 | 0.832 | 0.451 | −0.069 | 0.569 | |||
Scenario: C | ||||||||||||
Strategy | OCSVM | IF | LOF | COPOD | ||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | |
ER (Random) 0.05 | 0.383 | −0.471 | 0.561 | 0.626 | −0.245 | 0.722 | 0.552 | −0.025 | 0.666 | 0.579 | −0.109 | 0.611 |
ER (Random) 0.1 | 0.378 | −0.429 | 0.551 | 0.657 | −0.18 | 0.734 | 0.551 | 0.075 | 0.754 | 0.582 | −0.083 | 0.625 |
ER (Random) 0.15 | 0.373 | −0.419 | 0.538 | 0.652 | −0.138 | 0.728 | 0.48 | 0.067 | 0.781 | 0.594 | −0.07 | 0.631 |
ER (Random) 0.2 | 0.372 | −0.411 | 0.525 | 0.629 | −0.09 | 0.715 | 0.482 | 0.04 | 0.761 | 0.596 | −0.059 | 0.637 |
ER (Selective) 0.05 | 0.372 | −0.464 | 0.582 | 0.635 | −0.239 | 0.717 | 0.502 | −0.155 | 0.636 | 0.574 | −0.108 | 0.611 |
Strategy | HBOS | ABOD | AE | |||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | ||||
ER (Selective) 0.1 | 0.374 | −0.398 | 0.574 | 0.641 | −0.161 | 0.709 | 0.414 | −0.05 | 0.754 | 0.58 | −0.082 | 0.624 |
ER (Selective) 0.15 | 0.375 | −0.383 | 0.565 | 0.664 | −0.138 | 0.733 | 0.405 | −0.068 | 0.761 | 0.592 | −0.067 | 0.633 |
ER (Selective) 0.2 | 0.376 | −0.368 | 0.552 | 0.663 | −0.132 | 0.719 | 0.389 | 0.022 | 0.767 | 0.595 | −0.055 | 0.638 |
ER (Random) 0.05 | 0.7 | −0.121 | 0.772 | 0.483 | −0.144 | 0.792 | 0.396 | −0.254 | 0.516 | |||
ER (Random) 0.1 | 0.704 | −0.074 | 0.775 | 0.489 | −0.103 | 0.818 | 0.419 | −0.176 | 0.535 | |||
ER (Random) 0.15 | 0.708 | −0.063 | 0.773 | 0.488 | −0.09 | 0.821 | 0.471 | −0.27 | 0.541 | |||
ER (Random) 0.2 | 0.708 | −0.051 | 0.77 | 0.487 | −0.077 | 0.821 | 0.454 | −0.182 | 0.536 | |||
ER (Selective) 0.05 | 0.698 | −0.125 | 0.755 | 0.38 | −0.264 | 0.728 | 0.352 | −0.081 | 0.577 | |||
ER (Selective) 0.1 | 0.703 | −0.096 | 0.746 | 0.411 | −0.162 | 0.791 | 0.428 | 0.141 | 0.507 | |||
ER (Selective) 0.15 | 0.706 | −0.075 | 0.753 | 0.422 | −0.155 | 0.794 | 0.481 | −0.169 | 0.566 | |||
ER (Selective) 0.2 | 0.706 | −0.058 | 0.758 | 0.417 | −0.155 | 0.794 | 0.495 | −0.186 | 0.535 |
Scenario: A | ||||||||||||
Strategy | OCSVM | IF | LOF | COPOD | ||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | |
ER (Random) 0.05 | 0.62 | −0.103 | 0.644 | 0.619 | −0.055 | 0.644 | 0.616 | −0.091 | 0.642 | 0.518 | −0.095 | 0.484 |
ER (Random) 0.1 | 0.606 | −0.102 | 0.648 | 0.599 | −0.054 | 0.656 | 0.596 | −0.129 | 0.622 | 0.522 | −0.098 | 0.5 |
ER (Random) 0.15 | 0.608 | −0.105 | 0.648 | 0.594 | −0.036 | 0.673 | 0.589 | −0.102 | 0.636 | 0.524 | −0.1 | 0.51 |
ER (Random) 0.2 | 0.604 | −0.099 | 0.646 | 0.609 | −0.027 | 0.665 | 0.581 | −0.089 | 0.643 | 0.526 | −0.098 | 0.52 |
ER (Selective) 0.05 | 0.666 | −0.123 | 0.635 | 0.596 | −0.063 | 0.639 | 0.654 | −0.122 | 0.62 | 0.52 | −0.097 | 0.488 |
ER (Selective) 0.1 | 0.664 | −0.12 | 0.638 | 0.597 | −0.042 | 0.662 | 0.648 | −0.135 | 0.61 | 0.524 | −0.098 | 0.506 |
ER (Selective) 0.15 | 0.664 | −0.114 | 0.641 | 0.602 | −0.063 | 0.645 | 0.637 | −0.1 | 0.629 | 0.526 | −0.096 | 0.518 |
ER (Selective) 0.2 | 0.662 | −0.107 | 0.645 | 0.594 | −0.015 | 0.678 | 0.631 | −0.089 | 0.635 | 0.528 | −0.091 | 0.528 |
Strategy | HBOS | ABOD | AE | |||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | ||||
ER (Random) 0.05 | 0.535 | −0.04 | 0.622 | 0.616 | −0.003 | 0.673 | 0.584 | −0.005 | 0.642 | |||
ER (Random) 0.1 | 0.538 | −0.031 | 0.626 | 0.591 | 0.005 | 0.675 | 0.612 | −0.006 | 0.649 | |||
ER (Random) 0.15 | 0.539 | −0.026 | 0.628 | 0.6 | 0.003 | 0.674 | 0.594 | −0.013 | 0.65 | |||
ER (Random) 0.2 | 0.542 | −0.018 | 0.631 | 0.602 | 0.006 | 0.682 | 0.588 | −0.009 | 0.641 | |||
ER (Selective) 0.05 | 0.532 | −0.04 | 0.623 | 0.675 | −0.057 | 0.652 | 0.603 | 0.012 | 0.651 | |||
ER (Selective) 0.1 | 0.532 | −0.032 | 0.628 | 0.68 | −0.03 | 0.668 | 0.598 | 0.001 | 0.654 | |||
ER (Selective) 0.15 | 0.533 | −0.025 | 0.631 | 0.68 | −0.029 | 0.668 | 0.622 | −0.002 | 0.652 | |||
ER (Selective) 0.2 | 0.533 | −0.02 | 0.633 | 0.68 | −0.031 | 0.666 | 0.667 | 0.001 | 0.653 | |||
Scenario: C | ||||||||||||
Strategy | OCSVM | IF | LOF | COPOD | ||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | |
ER (Random) 0.05 | 0.6 | −0.262 | 0.683 | 0.587 | −0.236 | 0.673 | 0.6 | −0.214 | 0.677 | 0.431 | −0.159 | 0.545 |
ER (Random) 0.1 | 0.591 | −0.242 | 0.686 | 0.579 | −0.167 | 0.68 | 0.585 | −0.201 | 0.707 | 0.438 | −0.143 | 0.553 |
ER (Random) 0.15 | 0.591 | −0.224 | 0.692 | 0.592 | −0.151 | 0.678 | 0.573 | −0.184 | 0.729 | 0.444 | −0.13 | 0.56 |
ER (Random) 0.2 | 0.595 | −0.211 | 0.69 | 0.575 | −0.144 | 0.672 | 0.569 | −0.158 | 0.751 | 0.449 | −0.119 | 0.565 |
ER (Selective) 0.05 | 0.602 | −0.275 | 0.687 | 0.572 | −0.214 | 0.688 | 0.562 | −0.262 | 0.694 | 0.431 | −0.157 | 0.546 |
ER (Selective) 0.1 | 0.601 | −0.254 | 0.696 | 0.604 | −0.185 | 0.672 | 0.552 | −0.227 | 0.714 | 0.438 | −0.138 | 0.556 |
ER (Selective) 0.15 | 0.602 | −0.234 | 0.701 | 0.595 | −0.154 | 0.678 | 0.553 | −0.197 | 0.726 | 0.444 | −0.122 | 0.563 |
ER (Selective) 0.2 | 0.601 | −0.22 | 0.703 | 0.593 | −0.138 | 0.671 | 0.552 | −0.176 | 0.739 | 0.449 | −0.111 | 0.568 |
Strategy | HBOS | ABOD | AE | |||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | ||||
ER (Random) 0.05 | 0.555 | −0.108 | 0.63 | 0.593 | −0.18 | 0.707 | 0.626 | −0.036 | 0.635 | |||
ER (Random) 0.1 | 0.555 | −0.092 | 0.63 | 0.594 | −0.15 | 0.721 | 0.613 | −0.035 | 0.629 | |||
ER (Random) 0.15 | 0.557 | −0.083 | 0.628 | 0.586 | −0.135 | 0.726 | 0.615 | −0.036 | 0.63 | |||
ER (Random) 0.2 | 0.559 | −0.076 | 0.629 | 0.59 | −0.131 | 0.727 | 0.619 | −0.036 | 0.628 | |||
ER (Selective) 0.05 | 0.552 | −0.107 | 0.621 | 0.576 | −0.211 | 0.717 | 0.613 | −0.055 | 0.646 | |||
ER (Selective) 0.1 | 0.553 | −0.095 | 0.626 | 0.581 | −0.179 | 0.729 | 0.614 | −0.061 | 0.641 | |||
ER (Selective) 0.15 | 0.554 | −0.086 | 0.624 | 0.581 | −0.169 | 0.73 | 0.616 | −0.058 | 0.647 | |||
ER (Selective) 0.2 | 0.557 | −0.076 | 0.627 | 0.583 | −0.156 | 0.737 | 0.625 | −0.045 | 0.644 |
References
- Almashhadani, A.O.; Carlin, D.; Kaiiali, M.; Sezer, S. MFMCNS: A multi-feature and multi-classifier network-based system for ransomworm detection. Comput. Secur. 2022, 121, 102860. [Google Scholar] [CrossRef]
- Qiu, J.; Han, Q.L.; Luo, W.; Pan, L.; Nepal, S.; Zhang, J.; Xiang, Y. Cyber code intelligence for android malware detection. IEEE Trans. Cybern. 2022, 53, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.j.; Gu, W.; Wang, L.m.; Xu, Z.c.; Sheng, V.S. Android malware detection based on multi-head squeeze-and-excitation residual network. Expert Syst. Appl. 2023, 212, 118705. [Google Scholar] [CrossRef]
- Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Ostrovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; Silver, D. Rainbow: Combining improvements in deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Gu, S.; Lillicrap, T.; Sutskever, I.; Levine, S. Continuous deep q-learning with model-based acceleration. In Proceedings of the International Conference on Machine Learning, PMLR, New York, NY, USA, 20–22 June 2016; pp. 2829–2838. [Google Scholar]
- Saglam, B.; Mutlu, F.B.; Cicek, D.C.; Kozat, S.S. Actor prioritized experience replay. J. Artif. Intell. Res. 2023, 78, 639–672. [Google Scholar] [CrossRef]
- Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong, R.; Welinder, P.; McGrew, B.; Tobin, J.; Pieter Abbeel, O.; Zaremba, W. Hindsight experience replay. arXiv 2017, arXiv:1707.01495. [Google Scholar]
- Parisi, G.I.; Kemker, R.; Part, J.L.; Kanan, C.; Wermter, S. Continual lifelong learning with neural networks: A review. Neural Netw. 2019, 113, 54–71. [Google Scholar] [CrossRef]
- Shakya, A.K.; Pillai, G.; Chakrabarty, S. Reinforcement learning algorithms: A brief survey. Expert Syst. Appl. 2023, 231, 120495. [Google Scholar] [CrossRef]
- Bensaoud, A.; Kalita, J.; Bensaoud, M. A survey of malware detection using deep learning. Mach. Learn. Appl. 2024, 16, 100546. [Google Scholar] [CrossRef]
- Zhu, D.; Jin, H.; Yang, Y.; Wu, D.; Chen, W. DeepFlow: Deep learning-based malware detection by mining Android application for abnormal usage of sensitive data. In Proceedings of the 2017 IEEE Symposium on Computers and Communications (ISCC), Heraklion, Greece, 3–6 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 438–443. [Google Scholar]
- HaddadPajouh, H.; Dehghantanha, A.; Khayami, R.; Choo, K.K.R. A deep recurrent neural network based approach for internet of things malware threat hunting. Future Gener. Comput. Syst. 2018, 85, 88–96. [Google Scholar] [CrossRef]
- Lee, Y.; Wang, X.; Liao, X.; Wang, X. Understanding illicit UI in iOS apps through hidden UI analysis. IEEE Trans. Dependable Secur. Comput. 2019, 18, 2390–2402. [Google Scholar] [CrossRef]
- Beaman, C.; Barkworth, A.; Akande, T.D.; Hakak, S.; Khan, M.K. Ransomware: Recent advances, analysis, challenges and future research directions. Comput. Secur. 2021, 111, 102490. [Google Scholar] [CrossRef] [PubMed]
- Fernando, D.W.; Komninos, N. FeSA: Feature selection architecture for ransomware detection under concept drift. Comput. Secur. 2022, 116, 102659. [Google Scholar] [CrossRef]
- Liu, M.; Yang, Q.; Wang, W.; Liu, S. Semi-Supervised Encrypted Malicious Traffic Detection Based on Multimodal Traffic Characteristics. Sensors 2024, 24, 6507. [Google Scholar] [CrossRef] [PubMed]
- Memon, M.; Unar, A.A.; Ahmed, S.S.; Daudpoto, G.H.; Jaffari, R. Feature-based semi-supervised learning approach to android malware detection. Eng. Proc. 2023, 32, 6. [Google Scholar] [CrossRef]
- Yu, X.; Lin, G.; Hu, X.; Keung, J.W.; Xia, X. Less is More: Unlocking Semi-Supervised Deep Learning for Vulnerability Detection. Acm Trans. Softw. Eng. Methodol. 2024. [Google Scholar] [CrossRef]
- Eren, M.E.; Alexandrov, B.S.; Nicholas, C. Classifying Malware Using Tensor Decomposition. In Malware: Handbook of Prevention and Detection; Springer: Berlin/Heidelberg, Germany, 2024; pp. 3–36. [Google Scholar]
- Eren, M.E.; Bhattarai, M.; Joyce, R.J.; Raff, E.; Nicholas, C.; Alexandrov, B.S. Semi-supervised classification of malware families under extreme class imbalance via hierarchical non-negative matrix factorization with automatic model selection. ACM Trans. Priv. Secur. 2023, 26, 1–27. [Google Scholar] [CrossRef]
- Van de Ven, G.M.; Tolias, A.S. Three scenarios for continual learning. arXiv 2019, arXiv:1904.07734. [Google Scholar]
- De Lange, M.; Tuytelaars, T. Continual Prototype Evolution: Learning Online From Non-Stationary Data Streams. In Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 8250–8259. [Google Scholar]
- Cossu, A.; Graffieti, G.; Pellegrini, L.; Maltoni, D.; Bacciu, D.; Carta, A.; Lomonaco, V. Is Class-Incremental Enough for Continual Learning? arXiv 2022, arXiv:2112.02925. [Google Scholar] [CrossRef]
- Dragoi, M.; Burceanu, E.; Haller, E.; Manolache, A.; Brad, F. AnoShift: A distribution shift benchmark for unsupervised anomaly detection. Adv. Neural Inf. Process. Syst. 2022, 35, 32854–32867. [Google Scholar]
- Sharif Razavian, A.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNN features off-the-shelf: An astounding baseline for recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 806–813. [Google Scholar]
- Lomonaco, V.; Maltoni, D. Core50: A new dataset and benchmark for continuous object recognition. In Proceedings of the Conference on Robot Learning—PMLR, Mountain View, CA, USA, 13–15 November 2017; pp. 17–26. [Google Scholar]
- Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-Barwinska, A.; et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. USA 2017, 114, 3521–3526. [Google Scholar] [CrossRef]
- Li, Z.; Hoiem, D. Learning without Forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2935–2947. [Google Scholar] [CrossRef] [PubMed]
- Diethe, T.; Borchert, T.; Thereska, E.; Balle, B.; Lawrence, N. Continual learning in practice. arXiv 2018, arXiv:1903.05202. [Google Scholar]
- Mignone, P.; Corizzo, R.; Ceci, M. Distributed and explainable GHSOM for anomaly detection in sensor networks. Mach. Learn. 2024, 113, 4445–4486. [Google Scholar] [CrossRef]
- Mallya, A.; Lazebnik, S. PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning. arXiv 2017, arXiv:1711.05769. [Google Scholar]
- Kang, H.; Mina, R.J.L.; Rizky, S.; Madjid, H.; Yoon, J.; Hasegawa-Johnson, M.; Ju-Hwang, S.; Yoo, C.D. Forget-free Continual Learning with Winning Subnetworks. ICML 2022, 162, 10734–10750. [Google Scholar]
- Pietroń, M.; Żurek, D.; Faber, K.; Corizzo, R. Ada-QPacknet–adaptive pruning with bit width reduction as an efficient continual learning method without forgetting. In Proceedings of the European Conference on Artificial Intelligence (ECAI), Krakow, Poland, 30 September–4 October 2023; pp. 1882–1889. [Google Scholar]
- Kumari, L.; Wang, S.; Zhou, T.; Bilmes, J.A. Retrospective adversarial replay for continual learning. Adv. Neural Inf. Process. Syst. 2022, 35, 28530–28544. [Google Scholar]
- Van de Ven, G.M.; Siegelmann, H.T.; Tolias, A.S. Brain-inspired replay for continual learning with artificial neural networks. Nat. Commun. 2020, 11, 4069. [Google Scholar] [CrossRef]
- Li, X.; Tang, B.; Li, H. AdaER: An adaptive experience replay approach for continual lifelong learning. Neurocomputing 2024, 572, 127204. [Google Scholar] [CrossRef]
- Wang, Q.; Ji, Z.; Pang, Y.; Zhang, Z. Uncertainty-aware enhanced dark experience replay for continual learning. Appl. Intell. 2024, 54, 7135–7150. [Google Scholar] [CrossRef]
- Lim, W.S.; Zhou, Y.; Kim, D.W.; Lee, J. MixER: Mixup-Based Experience Replay for Online Class-Incremental Learning. IEEE Access 2024, 12, 41801–41814. [Google Scholar] [CrossRef]
- Buzzega, P.; Boschini, M.; Porrello, A.; Calderara, S. Rethinking experience replay: A bag of tricks for continual learning. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 2180–2187. [Google Scholar]
- Faber, K.; Sniezynski, B.; Corizzo, R. Distributed Continual Intrusion Detection: A Collaborative Replay Framework. In Proceedings of the 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 15–18 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 3255–3263. [Google Scholar]
- Shin, H.; Lee, J.K.; Kim, J.; Kim, J. Continual Learning with Deep Generative Replay. In Proceedings of the NeurIPS; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Faber, K.; Corizzo, R.; Sniezynski, B.; Japkowicz, N. VLAD: Task-agnostic VAE-based lifelong anomaly detection. Neural Netw. 2023, 165, 248–273. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Coull, S.; Wright, M. On the Limitations of Continual Learning for Malware Classification. arXiv 2022, arXiv:2208.06568. [Google Scholar]
- Faber, K.; Corizzo, R.; Sniezynski, B.; Japkowicz, N. Lifelong Learning for Anomaly Detection: New Challenges, Perspectives, and Insights. arXiv 2023, arXiv:2303.07557. [Google Scholar] [CrossRef]
- Fayek, H.M.; Cavedon, L.; Wu, H.R. Progressive learning: A deep learning framework for continual learning. Neural Netw. 2020, 128, 345–357. [Google Scholar] [CrossRef]
- Faber, K.; Zurek, D.; Pietron, M.; Japkowicz, N.; Vergari, A.; Corizzo, R. From MNIST to ImageNet and back: Benchmarking continual curriculum learning. Mach. Learn. 2024, 113, 8137–8164. [Google Scholar] [CrossRef]
- Kesgin, H.T.; Amasyali, M.F. Cyclical curriculum learning. IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 12864–12872. [Google Scholar] [CrossRef]
- Carrier, T. Detecting obfuscated malware using memory feature engineering. In Proceedings of the ICISSP, Virtual, 11–13 February 2022; pp. 177–188. [Google Scholar]
- Issakhani, M.; Victor, P.; Tekeoglu, A.; Lashkari, A.H. PDF Malware Detection based on Stacking Learning. In Proceedings of the ICISSP, Virtual, 9–11 February 2022; pp. 562–570. [Google Scholar]
- Lashkari, A.H.; Kadir, A.F.A.; Taheri, L.; Ghorbani, A.A. Toward developing a systematic approach to generate benchmark android malware datasets and classification. In Proceedings of the 2018 International Carnahan Conference on Security Technology (ICCST), Madrid, Spain, 22–25 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–7. [Google Scholar]
- Breunig, M.M.; Kriegel, H.P.; Ng, R.T.; Sander, J. LOF: Identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, TX, USA, 15–18 May 2000; pp. 93–104. [Google Scholar]
- Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; IEEE: Piscataway, NJ, USA; pp. 413–422. [Google Scholar]
- Schölkopf, B.; Williamson, R.C.; Smola, A.J.; Shawe-Taylor, J.; Platt, J.C. Support vector method for novelty detection. In Advances in Neural Information Processing Systems; MIT Press: Denver, CO, USA, 2000; pp. 582–588. [Google Scholar]
- Li, Z.; Zhao, Y.; Botta, N.; Ionescu, C.; Hu, X. COPOD: Copula-Based Outlier Detection. In Proceedings of the 2020 IEEE International Conference on Data Mining (ICDM), Sorrento, Italy, 17–20 November 2020; pp. 1118–1123. [Google Scholar] [CrossRef]
- Goldstein, M.; Score, A.D.H.b.O. A fast Unsupervised Anomaly Detection Algorithm. In Proceedings of the KI-2012: Poster and Demo Track, Saarbrücken, Germany, 24–27 September 2012; pp. 59–63. [Google Scholar]
- Kriegel, H.; Schubert, M.; Zimek, A. Angle-based outlier detection in high-dimensional data. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008; pp. 444–452. [Google Scholar] [CrossRef]
- Gehring, J.; Miao, Y.; Metze, F.; Waibel, A. Extracting deep bottleneck features using stacked auto-encoders. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 3377–3381. [Google Scholar]
- Díaz-Rodríguez, N.; Lomonaco, V.; Filliat, D.; Maltoni, D. Don’t forget, there is more than forgetting: New metrics for Continual Learning. arXiv 2018, arXiv:1810.13166. [Google Scholar]
- Zhao, Y.; Nasrullah, Z.; Li, Z. PyOD: A Python Toolbox for Scalable Outlier Detection. J. Mach. Learn. Res. 2019, 20, 1–7. [Google Scholar]
Reinforcement Learning (RL) | Continual Learning (CL) | |
---|---|---|
Goal | Improve convergence | Mitigate catastrophic forgetting |
Stored Data | Transitions or episodes | Task data or summaries |
Sampling | Random or prioritized | Task or diversity-aware |
Constraints | Less constrained by memory | Highly memory-constrained |
Focus | Single task, dynamic exploration | Multi-task knowledge retention |
Approaches | Learn from Known Malware Patterns | Generalize to Unseen Malware types | Provide Adaptation and Knowledge Retention |
---|---|---|---|
MFMCNS [1] | X | ||
Qiu et al. [2] | X | ||
Zhu et al. [3] | X | ||
Deepflow [11] | X | ||
HaddadPajouh et al. [12] | X | ||
Lee et al. [13] | X | ||
Beaman et al. [14] | X | ||
FeSA [15] | X | ||
Liu et al. [16] | X | X | |
Memon et al. [17] | X | X | |
Yu et al. [18] | X | X | |
Eren et al. [19] | X | X | |
Eren et al. [20] | X | X | |
Razavian et al. [25] | X | ||
EWC [27] | X | ||
LWF [28] | X | ||
Diethe et al. [29] | X | ||
Mignone et al. [30] | X | ||
Packnet [31] | X | ||
WSN [32] | X | ||
Ada-Q-Packnet [33] | X | ||
RAR [34] | X | ||
Van De Ven et al. [35] | X | ||
AdaER [36] | X | ||
UAS [37] | X | ||
MixER [38] | X | ||
Buzzega et al. [39] | X | ||
Faber et al. [40] | X | ||
Shin et al. [41] | X | ||
Rahman et al. [43] | X | X | |
Proposed | X | X | X |
Scenario: A | ||||||||||||
Strategy | OCSVM | IF | LOF | COPOD | ||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | |
Naive | 0.398 | 0.004 | 0.458 | 0.46 | 0.003 | 0.511 | 0.561 | 0.049 | 0.621 | 0.364 | 0.006 | 0.44 |
Cumulative | 0.395 | 0.0 | 0.455 | 0.462 | 0.0 | 0.51 | 0.669 | 0.122 | 0.783 | 0.383 | 0.006 | 0.469 |
ER (Random) | 0.4 | 0.001 | 0.459 | 0.461 | 0.001 | 0.511 | 0.594 | 0.059 | 0.659 | 0.367 | 0.01 | 0.447 |
ER (Selective) | 0.39 | −0.005 | 0.459 | 0.44 | −0.005 | 0.485 | 0.586 | 0.072 | 0.662 | 0.359 | 0.008 | 0.438 |
Strategy | HBOS | ABOD | AE | |||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | ||||
Naive | 0.455 | 0.001 | 0.511 | 0.624 | −0.04 | 0.586 | 0.586 | 0.0 | 0.569 | |||
Cumulative | 0.455 | −0.001 | 0.511 | 0.315 | −0.049 | 0.289 | 0.587 | −0.001 | 0.569 | |||
ER (Random) | 0.454 | 0.001 | 0.511 | 0.549 | −0.2 | 0.419 | 0.588 | 0.0 | 0.571 | |||
ER (Selective) | 0.444 | −0.004 | 0.498 | 0.591 | −0.053 | 0.546 | 0.588 | −0.0 | 0.571 | |||
Scenario: C | ||||||||||||
Strategy | OCSVM | IF | LOF | COPOD | ||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | |
Naive | 0.383 | 0.001 | 0.472 | 0.498 | 0.003 | 0.485 | 0.61 | 0.025 | 0.586 | 0.368 | 0.001 | 0.444 |
Cumulative | 0.381 | 0.001 | 0.475 | 0.495 | 0.002 | 0.482 | 0.698 | 0.16 | 0.822 | 0.405 | 0.004 | 0.455 |
ER (Random) | 0.381 | 0.001 | 0.474 | 0.496 | 0.001 | 0.483 | 0.632 | 0.061 | 0.648 | 0.382 | 0.002 | 0.45 |
ER (Selective) | 0.409 | −0.008 | 0.444 | 0.465 | −0.011 | 0.45 | 0.63 | 0.064 | 0.654 | 0.384 | −0.005 | 0.435 |
Strategy | HBOS | ABOD | AE | |||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | ||||
Naive | 0.495 | −0.001 | 0.478 | 0.629 | −0.009 | 0.591 | 0.562 | 0.0 | 0.592 | |||
Cumulative | 0.495 | −0.0 | 0.478 | 0.323 | −0.071 | 0.283 | 0.562 | −0.0 | 0.591 | |||
ER (Random) | 0.495 | −0.001 | 0.479 | 0.512 | −0.265 | 0.286 | 0.564 | 0.001 | 0.595 | |||
ER (Selective) | 0.474 | −0.012 | 0.458 | 0.59 | −0.029 | 0.553 | 0.566 | 0.0 | 0.594 |
Scenario: A | ||||||||||||
Strategy | OCSVM | IF | LOF | COPOD | ||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | |
Naive | 0.187 | −0.356 | 0.508 | 0.566 | −0.138 | 0.739 | 0.205 | −0.401 | 0.484 | 0.505 | −0.204 | 0.559 |
Cumulative | 0.18 | −0.154 | 0.41 | 0.549 | −0.061 | 0.699 | 0.173 | −0.014 | 0.733 | 0.515 | 0.054 | 0.698 |
ER (Random) | 0.186 | −0.266 | 0.383 | 0.564 | −0.111 | 0.704 | 0.184 | −0.022 | 0.712 | 0.51 | −0.022 | 0.642 |
ER (Selective) | 0.187 | −0.178 | 0.507 | 0.565 | −0.107 | 0.721 | 0.184 | −0.123 | 0.66 | 0.511 | −0.013 | 0.644 |
Strategy | HBOS | ABOD | AE | |||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | ||||
Naive | 0.56 | −0.077 | 0.784 | 0.249 | −0.512 | 0.591 | 0.27 | −0.17 | 0.507 | |||
Cumulative | 0.558 | 0.006 | 0.771 | 0.214 | −0.016 | 0.909 | 0.315 | 0.043 | 0.573 | |||
ER (Random) | 0.557 | −0.002 | 0.776 | 0.221 | −0.084 | 0.864 | 0.376 | −0.049 | 0.54 | |||
ER (Selective) | 0.558 | −0.008 | 0.779 | 0.232 | −0.172 | 0.814 | 0.315 | −0.028 | 0.578 | |||
Scenario: C | ||||||||||||
Strategy | OCSVM | IF | LOF | COPOD | ||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | |
Naive | 0.37 | −0.649 | 0.534 | 0.575 | −0.374 | 0.703 | 0.439 | −0.541 | 0.492 | 0.574 | −0.139 | 0.596 |
Cumulative | 0.301 | −0.199 | 0.399 | 0.651 | −0.024 | 0.7 | 0.392 | 0.002 | 0.749 | 0.606 | −0.003 | 0.671 |
ER (Random) | 0.373 | −0.419 | 0.538 | 0.652 | −0.138 | 0.728 | 0.48 | 0.067 | 0.781 | 0.594 | −0.07 | 0.631 |
ER (Selective) | 0.375 | −0.383 | 0.565 | 0.664 | −0.138 | 0.733 | 0.405 | −0.068 | 0.761 | 0.592 | −0.067 | 0.633 |
Strategy | HBOS | ABOD | AE | |||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | ||||
Naive | 0.656 | −0.273 | 0.759 | 0.395 | −0.626 | 0.559 | 0.568 | −0.396 | 0.528 | |||
Cumulative | 0.728 | −0.008 | 0.775 | 0.411 | −0.031 | 0.85 | 0.397 | −0.013 | 0.581 | |||
ER (Random) | 0.708 | −0.063 | 0.773 | 0.488 | −0.09 | 0.821 | 0.471 | −0.27 | 0.541 | |||
ER (Selective) | 0.706 | −0.075 | 0.753 | 0.422 | −0.155 | 0.794 | 0.481 | −0.169 | 0.566 |
Scenario: A | ||||||||||||
Strategy | OCSVM | IF | LOF | COPOD | ||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | |
Naive | 0.668 | −0.107 | 0.635 | 0.616 | −0.09 | 0.615 | 0.652 | −0.076 | 0.65 | 0.508 | −0.084 | 0.462 |
Cumulative | 0.606 | −0.082 | 0.655 | 0.604 | −0.024 | 0.658 | 0.579 | −0.003 | 0.673 | 0.526 | −0.037 | 0.586 |
ER (Random) | 0.608 | −0.105 | 0.648 | 0.594 | −0.036 | 0.673 | 0.589 | −0.102 | 0.636 | 0.524 | −0.1 | 0.51 |
ER (Selective) | 0.664 | −0.114 | 0.641 | 0.602 | −0.063 | 0.645 | 0.637 | −0.1 | 0.629 | 0.526 | −0.096 | 0.518 |
Strategy | HBOS | ABOD | AE | |||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | ||||
Naive | 0.532 | −0.063 | 0.612 | 0.663 | −0.118 | 0.613 | 0.66 | −0.002 | 0.66 | |||
Cumulative | 0.55 | −0.005 | 0.644 | 0.595 | 0.001 | 0.679 | 0.61 | −0.008 | 0.645 | |||
ER (Random) | 0.539 | −0.026 | 0.628 | 0.6 | 0.003 | 0.674 | 0.594 | −0.013 | 0.65 | |||
ER (Selective) | 0.533 | −0.025 | 0.631 | 0.68 | −0.029 | 0.668 | 0.622 | −0.002 | 0.652 | |||
Scenario: C | ||||||||||||
Strategy | OCSVM | IF | LOF | COPOD | ||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | |
Naive | 0.595 | −0.343 | 0.67 | 0.583 | −0.306 | 0.654 | 0.584 | −0.317 | 0.671 | 0.42 | −0.18 | 0.536 |
Cumulative | 0.606 | −0.109 | 0.69 | 0.612 | −0.051 | 0.671 | 0.535 | −0.071 | 0.758 | 0.471 | −0.044 | 0.58 |
ER (Random) | 0.591 | −0.224 | 0.692 | 0.592 | −0.151 | 0.678 | 0.573 | −0.184 | 0.729 | 0.444 | −0.13 | 0.56 |
ER (Selective) | 0.602 | −0.234 | 0.701 | 0.595 | −0.154 | 0.678 | 0.553 | −0.197 | 0.726 | 0.444 | −0.122 | 0.563 |
Strategy | HBOS | ABOD | AE | |||||||||
FWT | BWT | AUC | FWT | BWT | AUC | FWT | BWT | AUC | ||||
Naive | 0.55 | −0.141 | 0.622 | 0.571 | −0.347 | 0.669 | 0.622 | −0.092 | 0.64 | |||
Cumulative | 0.569 | −0.029 | 0.632 | 0.566 | −0.082 | 0.727 | 0.624 | −0.037 | 0.659 | |||
ER (Random) | 0.557 | −0.083 | 0.628 | 0.586 | −0.135 | 0.726 | 0.615 | −0.036 | 0.63 | |||
ER (Selective) | 0.554 | −0.086 | 0.624 | 0.581 | −0.169 | 0.73 | 0.616 | −0.058 | 0.647 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chin, M.; Corizzo, R. Continual Semi-Supervised Malware Detection. Mach. Learn. Knowl. Extr. 2024, 6, 2829-2854. https://doi.org/10.3390/make6040135
Chin M, Corizzo R. Continual Semi-Supervised Malware Detection. Machine Learning and Knowledge Extraction. 2024; 6(4):2829-2854. https://doi.org/10.3390/make6040135
Chicago/Turabian StyleChin, Matthew, and Roberto Corizzo. 2024. "Continual Semi-Supervised Malware Detection" Machine Learning and Knowledge Extraction 6, no. 4: 2829-2854. https://doi.org/10.3390/make6040135
APA StyleChin, M., & Corizzo, R. (2024). Continual Semi-Supervised Malware Detection. Machine Learning and Knowledge Extraction, 6(4), 2829-2854. https://doi.org/10.3390/make6040135