Cholate Adsorption Behavior at Carbon Electrode Interface and Its Promotional Effect in Laccase Direct Bioelectrocatalysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Dependence of SC Effect on Electrode Type
3.2. SC Adsorption Behavior
3.3. Analysis of SC Adsorption Phenomena at HOPG Interface
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References and Note
- Jones, M.B.; Garrison, J.C. Instability of the G-protein β5 subunit in detergent. Anal. Biochem. 1999, 268, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 309, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wenseleers, W.; Vlasov, I.I.; Goovaerts, E.; Obraztsova, E.D.; Lobach, A.S.; Bouwen, A. Efficient isolation and solubilization of pristine single-walled nanotubes in vile salt micelles. Adv. Funct. Mater. 2004, 14, 1105–1112. [Google Scholar] [CrossRef]
- Ishibashi, A.; Nakashima, N. Individual dissolution of single-walled carbon nanotubes in aqueous solutions of steroid or sugar compounds and their Raman and near-IR spectral properties. Chem. Eur. J. 2006, 12, 7595–7602. [Google Scholar] [CrossRef] [PubMed]
- Solomon, E.I.; Sundaram, U.M.; Machonkin, T.E. Multicopper Oxidases and Oxygenases. Chem. Rev. 1996, 96, 2563–2605. [Google Scholar] [CrossRef] [PubMed]
- Cracknell, J.A.; Vincent, K.A.; Armstrong, F.A. Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem. Rev. 2008, 108, 2439–2461. [Google Scholar] [CrossRef] [PubMed]
- Shleev, S.; Tkac, J.; Christenson, A.; Ruzgas, T.; Yaropolov, A.I.; Whittaker, J.W.; Gorton, L. Direct electron transfer between copper-containing proteins and electrodes. Biosens. Bioelectron. 2005, 20, 2517–2554. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, F.A.; Wilson, G.S. Recent developments in faradaic bioelectrochemistry. Electrochim. Acta 2000, 45, 2623–2645. [Google Scholar] [CrossRef]
- Cosnier, S.J.; Gross, A.; Le Goff, A.; Holzinger, M. Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations. J. Power Sources 2016, 325, 252–263. [Google Scholar] [CrossRef]
- Willner, I.; Willner, B.; Katz, E. Biomolecule–nanoparticle hybrid systems for bioelectronic applications. Bioelectrochemistry 2007, 70, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Shleev, S.; Andoralov, V.; Falk, M.; Reimann, C.T.; Ruzgas, T.; Srnec, M.; Ryde, U.; Rulíšek, L. On the possibility of uphill intramolecular electron transfer in multicopper oxidases: Electrochemical and quantum chemical study of bilirubin oxidase. Electroanalysis 2012, 24, 1524–1540. [Google Scholar] [CrossRef]
- Barton, S.C.; Gallaway, J.; Atanassov, P. Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 2004, 104, 4867–4886. [Google Scholar] [CrossRef] [PubMed]
- Leech, D.; Kavanagh, P.; Schuhmann, W. Enzymatic fuel cells: Recent progress. Electrochim. Acta 2012, 84, 223–234. [Google Scholar] [CrossRef]
- Mano, N.; Edembe, L. Bilirubin oxidases in bioelectrochemistry: Features and recent findings. Biosens. Bioelectron. 2013, 50, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Katsounaros, I.; Cherevko, S.; Zeradjanin, A.R.; Mayrhofer, J.J. Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chim. Int. Ed. 2014, 53, 102–121. [Google Scholar] [CrossRef] [PubMed]
- Kamitaka, Y.; Tsujimura, S.; Setoyama, N.; Kajino, T.; Kano, K. Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis. Phys. Chem. Chem. Phys. 2007, 9, 1793–1801. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, U.N.; Singh, P.; Pandey, V.P.; Kumar, A. Structure–function relationship among bacterial, fungal and plant laccases. J. Mol. Catal. B Enzym. 2011, 68, 117–128. [Google Scholar] [CrossRef]
- Johnson, D.L.; Thompson, J.L.; Brinkmann, S.M.; Schuller, K.A.; Martin, L.L. Electrochemical characterization of purified Rhus Vernicifera Laccase: Voltammetric evidence for a sequential four-electron transfer. Biochemistry 2003, 42, 10229–10237. [Google Scholar] [CrossRef] [PubMed]
- Betancor, L.; Johnson, G.R.; Luckarift, H.R. Stabilized laccases as heterogeneous bioelectrocatalysts. ChemCatChem 2013, 5, 46–60. [Google Scholar] [CrossRef]
- Shleev, S.; Shumakovich, G.; Morozova, O.; Yaropolov, A. Stable ‘Floating’ air diffusion biocathode based on direct electron transfer reactions between carbon particles and high redox potential laccase. Fuell Cells 2010, 10, 726. [Google Scholar] [CrossRef]
- Pita, M.; Mate, D.; Gonzalez-Perez, D.; Shleev, S.; Fernandez, V.M.; Alcalde, M.; Lacey, A.L.D. Bioelectrochemical oxidation of water. J. Am. Chem. Soc. 2014, 136, 5892–5895. [Google Scholar] [CrossRef] [PubMed]
- Matijošyte, I.; Arends, I.W.C.E.; Sheldon, R.A.; Vries, S. Pre-steady state kinetic studies on the microsecond time scale of the laccase from Trametes versicolor. Inorg. Chim. Acta 2008, 361, 1202–1206. [Google Scholar] [CrossRef]
- Tarasevich, M.R.; Yaropolov, A.I.; Bogdanovskaya, V.A.; Varfolomeev, S.D. Electrocatalysis of a cathodic oxygen reduction by laccase. Bioelectrochem. Bioenergy 1979, 6, 393–403. [Google Scholar] [CrossRef]
- Wu, F.; Su, L.; Yu, P.; Mao, L. Role of organicsolvents in immobilizing fungus laccase on single-walled carbon nanotubes for improved current response in direct bioelectrocatalysis. J. Am. Chem. Soc. 2017, 139, 1565–1574. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, M.; Sasaki, A.; Togami, M. Laccase bioelectrocatalyst at a steroid-type biosurfactant-modified carbon nanotube interface. Anal. Chem. 2015, 87, 5417–5421. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, M.; Sasaki, A.; Tsushida, M.; Togami, M. Biosurfactants functionalized single-walled carbon nanotubes to promote laccase bioelectrocatalysis. New J. Chem. 2017, 41, 231–236. [Google Scholar] [CrossRef]
- Tominaga, M.; Sasaki, A.; Togami, M. Bioelectrocatalytic oxygen reaction and chloride inhibition resistance of laccase immobilized on single-walled carbon nanotube and carbon paper electrodes. Electrochemistry 2016, 84, 315–318. [Google Scholar] [CrossRef]
- Watanabe, N.; Devanathan, M.A.V. Reversible oxygen electrode. J. Electrochem. Soc. 1964, 111, 615–619. [Google Scholar] [CrossRef]
- Santucci, R.; Ferri, T.; Morpurgo, L.; Savini, I.; Avigliano, L. Unmediated heterogeneous electron transfer reaction of ascorbate oxidase and laccase at a gold electrode. Biochem. J. 1998, 332, 611–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tominaga, M.; Hirata, N.; Taniguchi, I. UV-ozone dry-cleaning process for indium oxide electrodes for protein electrochemistry. Electrochem. Commun. 2005, 7, 1423–1428. [Google Scholar] [CrossRef]
- Rodolph, M.; Reddy, D.P.; Feldberg, S.W. A simulator for cyclic voltammetric responses. Anal. Chem. 1994, 66, 589A–600A. [Google Scholar] [CrossRef]
- Wong, C.H.A.; Pumera, M. Surfactants show both large positive and negative effects on observed electron transfer rates at thermally reduced graphenes. Electrochem. Commun. 2012, 22, 105–108. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Characterization of graphite fiber surfaces with Raman spectroscopy. J. Compos. Mater. 1970, 4, 492–499. [Google Scholar] [CrossRef]
- McCreery, R.L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646–2687. [Google Scholar] [CrossRef] [PubMed]
- Ago, H.; Kugler, T.; Cacialli, F.; Salaneck, W.R.; Shaffer, M.S.P.; Windle, A.H.; Friend, R.H.J. Work functions and surface functional groups of multiwall carbon nanotubes. Phys. Chem. B 1999, 103, 8116–8121. [Google Scholar] [CrossRef]
- Tominaga, M.; Sakamoto, S.; Yamaguchi, H. Jungle-gym structured-film of single-walled carbon nanotubes on a gold surface: Oxidative treatment and electrochemical properties. J. Phys. Chem. C 2012, 116, 9498–9506. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods, Funtamentals and Applications; John Wiley & Sons: New York, NY, USA, 1980; pp. 515–519. ISBN 0-4771-08753-X. [Google Scholar]
- Marcus, R.A.; Sutin, N. Electron transfer in chemistry and biology. Biochim. Biophys. Acta 1985, 811, 265–322. [Google Scholar] [CrossRef]
- Marcus, R.A. Electron transfer reactions in chemistry: Theory and experiment. Angew. Chem. Int. Ed. 1993, 32, 1111–1121. [Google Scholar] [CrossRef]
- Christopher, C.P.; Christopher, C.M.; Xiaoxi, C.; Dutton, P.L. Natural engineering principles of electron tunnelling in biological oxidation–reduction. Nature 1999, 402, 47–52. [Google Scholar]
- The ρ can range from values of 1 to 0, corresponding to a fully packed medium (β = 0.9 Å−1) and the interstitial space in the protein structure outside the united van der Waals atomic radii (β = 2.8 Å−1), respectively. The ρ weighting of β and β = (ρ)0.9 Å−1 + (1 − ρ)2.8 Å−1 generates the (1.2–0.8ρ) coefficient in Equation (3). The log of the optimal rate at 3.6 Å van der Waals contact is 13.
- Pionetek, K.; Antorini, M.; Choinowski, T. Crystal structure of a laccase from the fungus trametes versicolor at 1.90-Å resolution containing a full complement of coppers. J. Biol. Chem. 2002, 277, 37663–37669. [Google Scholar] [CrossRef] [PubMed]
Measurement Condition | Г/10−15 mol cm−2 | k˚/s−1 | E˚’/V | α |
---|---|---|---|---|
SC- and Lac-modified HOPG | 6.5 | 115 | 0.6 | 0.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tominaga, M.; Tsutsui, M.; Takatori, T. Cholate Adsorption Behavior at Carbon Electrode Interface and Its Promotional Effect in Laccase Direct Bioelectrocatalysis. Colloids Interfaces 2018, 2, 33. https://doi.org/10.3390/colloids2030033
Tominaga M, Tsutsui M, Takatori T. Cholate Adsorption Behavior at Carbon Electrode Interface and Its Promotional Effect in Laccase Direct Bioelectrocatalysis. Colloids and Interfaces. 2018; 2(3):33. https://doi.org/10.3390/colloids2030033
Chicago/Turabian StyleTominaga, Masato, Motofumi Tsutsui, and Takuya Takatori. 2018. "Cholate Adsorption Behavior at Carbon Electrode Interface and Its Promotional Effect in Laccase Direct Bioelectrocatalysis" Colloids and Interfaces 2, no. 3: 33. https://doi.org/10.3390/colloids2030033
APA StyleTominaga, M., Tsutsui, M., & Takatori, T. (2018). Cholate Adsorption Behavior at Carbon Electrode Interface and Its Promotional Effect in Laccase Direct Bioelectrocatalysis. Colloids and Interfaces, 2(3), 33. https://doi.org/10.3390/colloids2030033