On Concept of Hybrid in Colloid Sciences
Abstract
:1. Introduction: Hybrids, Freaks and Visions
2. A Brief Historical Background on the Concept of Hybrid in Chemistry
3. More Remarks
3.1. Generals
3.2. Polymer-Coated Hybrid Formation: Some Thermodynamic Remarks
3.3. Some Details on the Preparation of Hybrid Particles
3.3.1. Nanoparticles
3.3.2. Polymers
3.4. Size and Shapes
4. Materials Preparation
4.1. Preparation Procedures for Getting Hybrids
4.2. Optimization Procedures
5. Applications
5.1. Heterogeneous Catalysis
5.2. Wastewater Treatment
5.3. Molecular Medicine
5.4. Food Sciences
5.5. Electronics and Micro-Devices
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References and Notes
- Posthumus, L. Hybrid Monsters in the Classical World. The Nature and Function of Hybrid Monsters in Greek Mythology, Literature and Art. Ph.D. Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2011. [Google Scholar]
- Morrison, E. (Ed.) Book of Beasts: The Bestiary in the Medieval World; Getty Publications: New York, NY, USA, 1989. [Google Scholar]
- Cox, L.R. Thoughts on the classification of the Gastropoda. J. Molluscan Stud. 1960, 33, 239–261. [Google Scholar]
- Piperno, D.R.; Ranere, A.J.; Holst, I.; Iriarte, J.; Dickau, R. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proc. Natl. Acad. Sci. USA 2009, 106, 5019–5024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belmonte-Ureña, L.J.; Garrido-Cardenas, J.A.; Camacho-Ferre, F. Analysis of world research on grafting in horticultural plants. HortScience 2019, 55, 112–120. [Google Scholar] [CrossRef]
- der Manuelian, P. Egypt: The World of the Pharaohs; Könemann: Cologne, Germany, 1998; p. 381. [Google Scholar]
- Nicholson, P.T. Ancient Egyptian Materials and Technology; Cambridge Univ. Press: Cambridge, UK, 2000; p. 409. [Google Scholar]
- Clutton-Brock, J. Domesticated Animals from Early Times; Heinemann: London, UK, 1981; p. 145. [Google Scholar]
- Davison, A.; Birks, J.D.S.; Griffiths, H.I.; Kitchener, A.C.; Biggins, D.; Butlin, R.K. Hybridization and the phylogenetic relationship between polecats and domestic ferrets in Britain. Biol. Conserv. 1999, 87, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Thomson, A.P.D. A history of the ferret. J. Hist. Med. Allied Sci. 1951, 6, 471–480. [Google Scholar] [CrossRef]
- Zhang, F.; Wen, Y.; Guo, X. CRISPR/Cas9 for genome editing: Progress, implications and challenges. Hum. Mol. Genet. 2014, 23, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Dawkins, R. The Ancestor’s Tale. The Dawn of Evolution; Mariner Books, Eamon Dolan Book; Houghton Mifflin Hartcourt: Boston, MA, USA; New York, NY, USA, 2016. [Google Scholar]
- Mahla, R.S. Stem cells applications in regenerative medicine and disease therapeutic. Intern. J. Cell Biol. 2016, 2016, 6940283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gourzones-Dmitriev, C.; Kassambara, A.; Sahota, S.; Rème, T.; Moreaux, J.; Bourquard, P.; Hose, D.; Pasero, P.; Constantinou, A.; Klein, B. DNA repair pathways in human multiple myeloma. Role in oncogenesis and potential targets for treatment. Cell Cycle 2013, 12, 2760–2773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Leibniz, G.W. New Essays on Human Understanding; Langley, P., Ed.; Cambridge University Press: Cambridge, UK, 1996; Wiener III.6 (part). [Google Scholar]
- Linnaeus, C. Systema Naturae, Sive Regna tria Naturae Systematice Proposita per Classes, Ordines, Genera, & Species; Haak: Leiden, The Netherlands, 1735; pp. 1–12. [Google Scholar]
- Rocke, A.J. Image and Reality: Kekulé, Kopp, and the Scientific Imagination; The University of Chicago Press: Chicago, IL, USA; New York, NY, USA, 2010. [Google Scholar]
- Pauling, L. The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J. Am. Chem. Soc. 1931, 53, 1367–1400. [Google Scholar] [CrossRef]
- Pauling, L. The nature of the chemical bond. II. The one-electron bond and the three-electron bond. J. Am. Chem. Soc. 1931, 53, 3225–3237. [Google Scholar] [CrossRef]
- Pauling, L. The nature of the chemical bond. III. The transition from one extreme bond type to another. J. Am. Chem. Soc. 1932, 54, 988–1003. [Google Scholar] [CrossRef]
- Pauling, L. The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Chem. Soc. 1932, 54, 3570–3582. [Google Scholar] [CrossRef]
- Pauling, L. The nature of the chemical bond—1992. J. Chem. Ed. 1992, 69, 519–521. [Google Scholar] [CrossRef]
- Zott, R. Friedrich Wilhelm Ostwald (1853–1932), Now 150 years young. Angew. Chem. Int. Ed. 2003, 42, 3990–3995. [Google Scholar] [CrossRef] [PubMed]
- Ertl, G. Wilhelm Ostwald: Founder of physical chemistry and nobel laureate 1909. Angew. Chem. Intern. Ed. 2009, 48, 6600–6606. [Google Scholar] [CrossRef] [PubMed]
- McBain, J.W.; and colleagues published their first article on Ber., 1910, 43, 321. Others appeared on Trans. Chem. Soc. 1911, 99, 191; Z. Physik. Chem. 1911, 75, 191; ibid., 1912, 76, 179; Kolloid Zh. 1913, 13, 56; and in 1914. N.B. Due to the 1st world war, some were rewritten, or reissued, after 1919.
- N.B. In an international congress Wilhelm Ostwald, an outstanding physical and colloid chemist, Nobel Graduate in Chemistry 1909, and excellent polemicist, vividly rejected the concept of “colloidal electrolytes” with the vivid sentence “Paradox, McBain!”.
- McBain, J.W.; Salmon, C.S. Colloidal electrolytes. Soap solutions and their constitution. Proc. R. Soc. A 1920, 97, 44–65. [Google Scholar] [CrossRef] [Green Version]
- Murray, R.C.; Hartley, G.S. Equilibrium between micelles and simple ions, with particular reference to the solubility of long-chain salts. Trans. Faraday Soc. 1935, 31, 183–189. [Google Scholar] [CrossRef]
- Ringsdorf, H. Hermann Staudinger and the future of polymer research jubilees-beloved occasions for cultural piety. Angew. Chem. Intern. Ed. 2004, 43, 1064–1076. [Google Scholar] [CrossRef]
- Gunay, K.A.; Theato, P.; Klok, H.-A. Standing on the shoulders of Herman Staudinger. Post-Polymerization modification from past to present. J. Polym. Sci. A Polym. Chem. 2013, 51, 1–28. [Google Scholar] [CrossRef]
- N.B. Until the 20’s of the XX century it was firmly supposed that polymers and association colloids substantially differed each from the other in physical nature and properties. At the end of that decade most scientists became conscious of the fact that both belong to the category of colloids, either intrinsic or association ones. They sense nearly the same forces, and can be investigated on similar grounds, as suggested from a lot of experimental evidence.
- Feynman, R.P. There’s plenty of room at the bottom. Engin. Sci. 1960, 2, 1–11. [Google Scholar]
- Li, A.; Kung, L.; Kam, J.S.; Hovis, S.J.; Boxer, S.G. Patterning hybrid surfaces of proteins and supported lipid bilayers. Langmuir 2000, 16, 6773–6776. [Google Scholar]
- Gupta, M.K.; Srivastava, R.K. Mechanical properties of hybrid fibers-reinforced polymer composite: A review. Polym. Plast. Technol. Eng. 2016, 55, 226–242. [Google Scholar] [CrossRef]
- Mallick, K.; Witcomb, M.J.; Scurrell, M.S. Polymer stabilized silver nanoparticles: A photochemical synthesis route. J. Mater. Sci. 2004, 39, 4459–4463. [Google Scholar] [CrossRef]
- Louguet, S.; Kumar, A.C.; Guidolin, N.; Sigaud, G.; Duguet, E.; Lecommandoux, S.; Schatz, C. Control of the PEO chain conformation on nanoparticles by adsorption of PEO-block-Poly(L-lysine) copolymers and its significance on colloidal stability and protein repellency. Langmuir 2011, 27, 12891–12901. [Google Scholar] [CrossRef] [PubMed]
- Tanford, C. The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd ed.; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Rance, G.A.; Marsh, D.H.; Bourne, S.J.; Reade, T.J.; Khlobystov, A.N. van der Waals interactions between nanotubes and nanoparticles for controlled assembly of composite nanostructures. ACS Nano 2010, 4, 4920–4928. [Google Scholar] [CrossRef]
- Shi, X.; Cassagneau, T.; Caruso, F. Electrostatic interactions between polyelectrolytes and a titania precursor: Thin film and solution studies. Langmuir 2002, 18, 904–910. [Google Scholar] [CrossRef]
- Quaroni, L.; Chumanov, G. Preparation of polymer-coated functionalized silver nanoparticles. J. Am. Chem. Soc. 1999, 121, 10642–10643. [Google Scholar] [CrossRef]
- Gregory, J.; Barany, S. Adsorption and flocculation by polymers and polymer mixtures. Adv. Colloid Interface Sci. 2011, 169, 1–12. [Google Scholar] [CrossRef]
- Veronovski, N.; Andreozzi, P.; la Mesa, C.; Sfiligoj-Smole, M.; Ribitsch, V. Use of gemini surfactants to stabilize TiO2 P-25 colloidal dispersions. Colloid Polym. Sci. 2010, 288, 387–394. [Google Scholar] [CrossRef]
- Flory, P.J. Statistical mechanics of swelling of network structures. J. Chem. Phys. 1950, 18, 108–114. [Google Scholar] [CrossRef]
- Flory, P.J. Statistical Mechanics of Chain Molecules; Inter-science Publishers: Geneva, Switzerland, 1969. [Google Scholar]
- Tallury, S.S.; Pasquinelli, M.A. Molecular dynamics simulations of flexible polymer chains wrapping single-walled carbon nanotubes. J. Phys. Chem. B 2010, 114, 4122–4129. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, D.; Mays, J.W.; Bratcher, M.S. Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes. Chem. Mater. 2005, 17, 3389–3397. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.J.; Zhang, Y.; Wang, D.; Dai, H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 2001, 123, 3838–3839. [Google Scholar] [CrossRef] [PubMed]
- Gittins, D.I.; Caruso, F. Tailoring the polyelectrolyte coating of metal nanoparticles. J. Phys. Chem. B 2001, 105, 6846–6852. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, W.; Li, S.; Li, F. Electrostatic self-assembly of Fe3O4 nanoparticles on carbon nanotubes. Appl. Surf. Sci. 2009, 255, 7999–8002. [Google Scholar] [CrossRef]
- Liu, H.; Lv, M.; Deng, B.; Li, J.; Yu, M.; Huang, Q.; Fan, C. Laundering durable antibacterial cotton fabrics grafted with pomegranate-shaped polymer wrapped in silver nanoparticle aggregations. Sci. Rep. 2014, 4, 5920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, D.Y.; Tu, N.D.K.; Lee, S.J.; Lee, E.; Jeon, S.-R.; Hwang, S.; Lim, H.S.; Kim, J.K.; Ju, B.K.; Kim, H.; et al. Graphene oxide nanosheet wrapped white-emissive conjugated polymer nanoparticles. ACS Nano 2014, 8, 4248–4256. [Google Scholar] [CrossRef]
- Chapman, R.; Stenzel, M.H. All wrapped up: Stabilization of enzymes within single enzyme nanoparticles. J. Am. Chem. Soc. 2019, 141, 2754–2769. [Google Scholar] [CrossRef]
- Gittins, D.I.; Caruso, F. Multilayered polymer nanocapsules derived from gold nanoparticle templates. Adv. Mater. 2000, 12, 1947–1949. [Google Scholar] [CrossRef]
- Vold, R.D.; Vold, M.J. Colloid and Interface Chemistry; Addison-Wesley: Reading, UK, 1983; Chapter IV. [Google Scholar]
- Adamson, A.W. Physical Chemistry of Surfaces, 5th ed.; Wiley: New York, NY, USA, 1990; Chapter XI. [Google Scholar]
- Nikas, Y.J.; Blankschtein, D. Complexation of nonionic polymers and surfactants in dilute aqueous solutions. Langmuir 1994, 10, 3512–3528. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces, 3rd ed.; Acad. Press: Waltham, MA, USA, 2011; Chapter X. [Google Scholar]
- de Gennes, P.G. Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, NY, USA, 1979. [Google Scholar]
- Andreozzi, P.; La Mesa, C.; Masci, G.; Suber, L. Formation and Physicochemical Characterization of Silica-Based Blackberry-like Nanoparticles Capped by Polysaccharides. J. Phys. Chem. C 2007, 111, 18004–18009. [Google Scholar] [CrossRef]
- Robertson, C.G.; Roland, C.M. Glass transition and interfacial segmental dynamics in polymer-particle composites. Rubber Chem. 2008, 81, 506–522. [Google Scholar] [CrossRef]
- Stornes, M.; Linse, P.; Dias, R.S. Monte Carlo simulations of complexation between weak polyelectrolytes and a charged nanoparticle. Influence of polyelectrolyte chain length and concentration. Macromolecules 2017, 50, 5978–5988. [Google Scholar] [CrossRef]
- Wu, S.-H.; Mou, C.-Y.; Lin, H.-P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 2013, 42, 3862–3875. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, W.; Tan, W. Bioconjugated silica nanoparticles: Development and applications. Nano Res. 2008, 1, 99–115. [Google Scholar] [CrossRef] [Green Version]
- Koutsos, V.; van der Vegte, E.W.; Pelletier, E.; Stamouli, A.; Hadziioannou, G. Structure of chemically end-grafted polymer chains studied by scanning force microscopy in bad-solvent conditions. Macromolecules 1997, 30, 4719–4726. [Google Scholar] [CrossRef]
- Sarkar, B.; Venugopal, V.; Tsianou, M.; Alexandridis, P. Adsorption of Pluronic block copolymers on silica nanoparticles. Colloids Surf. A Physicochem. Engin. Asp. 2013, 422, 155–164. [Google Scholar] [CrossRef]
- Gan, Q.; Wang, T.; Cochrane, C.; McCarron, P. Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids Surf. B Biointerfaces 2005, 44, 65–73. [Google Scholar] [CrossRef]
- Pucci, C.; Scipioni, A.; la Mesa, C. Albumin binding onto synthetic vesicles. Soft Matter 2012, 8, 9669–9675. [Google Scholar] [CrossRef]
- Badaire, S.; Zakri, C.; Maugey, M.; Derre, A.; Barisci, J.N.; Wallace, G.; Poulin, P. Liquid crystals of DNA-stabilized carbon nanotubes. Adv. Mater. 2005, 17, 1673–1676. [Google Scholar] [CrossRef]
- Tardani, F.; la Mesa, C.; Poulin, P.; Maugey, M. Phase behavior of DNA-based dispersions containing carbon nanotubes: Effects of added polymers and ionic strength on excluded volume. J. Phys. Chem. C 2012, 116, 9888–9894. [Google Scholar] [CrossRef]
- Kockmanna, A.; Porsiela, J.C.; Saadata, R.; Garnweitner, G. Impact of nanoparticle surface modification on the mechanical properties of polystyrene-based nanocomposites. RSC Adv. 2018, 8, 11109–11118. [Google Scholar] [CrossRef] [Green Version]
- Ali, U.; Karim, K.J.B.A.; Buang, N.A. A review of the properties and applications of poly (Methyl Methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Xu, F.; Cai, R.; Zeng, Q.; Zou, C.; Wu, D.; Li, F.; Lu, X.; Liang, Y.; Fu, R. Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for super-capacitors. J. Mater. Chem. 2011, 21, 1970–1976. [Google Scholar] [CrossRef]
- van Os, N.M.; Haak, J.R.; Rupert, L.A.M. Physico-Chemical Properties of Selected Anionic, Cationic and Nonionic Surfactants; Elsevier: Amsterdam, The Netherlands, 1993. [Google Scholar]
- La Mesa, C. Polymer-Surfactant and protein-surfactant interactions. J. Colloid Interface Sci. 2005, 268, 148–157. [Google Scholar] [CrossRef]
- Bonincontro, A.; Falivene, M.; la Mesa, C.; Risuleo, G.; Pena, M.R. Dynamics of DNA adsorption on and release from SDS−DDAB Cat−Anionic vesicles: A multitechnique study. Langmuir 2008, 24, 1973–1978. [Google Scholar] [CrossRef]
- Aiello, C.; Andreozzi, P.; la Mesa, C.; Risuleo, G. Biological activity of SDS-CTAB cat-anionic vesicles in cultured cells and assessment of their cytotoxicity ending in apoptosis. Colloids Surf. B Biointerfaces 2010, 78, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Mal, A.; Bag, S.; Ghosh, S.; Moulik, S.P. Physicochemistry of CTAB-SDS interacted catanionic micelle-vesicle forming system: An extended exploration. Colloids Surf. A Physicochem. Engin. Asp. 2018, 553, 633–644. [Google Scholar] [CrossRef]
- Milchovich, G.; Antunes, F.E.; Grassi, M.; Asaro, F. Soft nano-onions: A dynamic overview onto catanionic vesicles temperature-driven transition. Int. J. Mol. Sci. 2020, 21, 6804. [Google Scholar] [CrossRef] [PubMed]
- Lozano, N.; Pérez, L.; Pons, R.; Pinazo, A. Diacyl glycerol arginine-based surfactants: Biological and physicochemical properties of catanionic formulations. Amino Acids 2011, 40, 721–729. [Google Scholar] [CrossRef]
- Barbetta, A.; Pucci, C.; Tardani, F.; Andreozzi, P.; la Mesa, C. Size and charge modulation of surfactant-based vesicles. J. Phys. Chem. B 2011, 115, 12751–12758. [Google Scholar] [CrossRef]
- Louguet, S.; Kumar, A.C.; Sigaud, G.; Duguet, E.; Lecommandoux, S.; Schatz, C. A physico-chemical investigation of poly(ethylene oxide)-block-poly(l-lysine) copolymer adsorption onto silica nanoparticles. J. Colloid Interface Sci. 2011, 359, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Suber, L.; Plunkett, W.R. Formation mechanism of silver nanoparticle 1D microstructures and their hierarchical assembly into 3D superstructures. Nanoscale 2010, 2, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Romio, M.; La Mesa, C. Hybrid nano-composites made of ss-DNA/wrapped carbon nanotubes and titania. Colloids Surf. B Biointerfaces 2017, 152, 12–17. [Google Scholar] [CrossRef]
- Dobrynin, A.V.; Deshkovskj, A.; Rubinstein, M. Adsorption of polyelectrolytes at oppositely charged surfaces. Macromolecules 2001, 34, 3421–3436. [Google Scholar] [CrossRef]
- Dobrynin, A.V.; Deshkovskj, A.; Rubinstein, M. Adsorption of polyelectrolytes at an oppositely charged surface. Phys. Rev. Lett. 2000, 84, 3101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisht, H.S.; Chatterjee, A.K. Living free-radical polymerization—A review. J. Macromol. Sci. C 2007, 41, 139–173. [Google Scholar] [CrossRef]
- Han, C.; Luque, R.; Dionysiou, D.D. Facile preparation of controllable size monodisperse anatase titania nanoparticles. Chem. Commun. 2012, 48, 1860–1862. [Google Scholar] [CrossRef]
- de Gennes, P.G. Polymer Solutions near an Interface. 1. Adsorption and depletion layers. Macromolecules 1981, 14, 1637–1644. [Google Scholar] [CrossRef]
- de Gennes, P.G. Polymers at an interface; a simplified view. Adv. Colloid Interface Sci. 1987, 27, 189–209. [Google Scholar] [CrossRef]
- Feigin, R.I.; Napper, D.H. Depletion stabilization and depletion flocculation. J. Colloid Interface Sci. 1980, 75, 525–541. [Google Scholar] [CrossRef]
- Tardani, F.; La Mesa, C. Attempts to control depletion in the surfactant-assisted stabilization of single-walled carbon nanotubes. Colloids Surf. A Physicochem. Eng. Asp. 2014, 443, 123–128. [Google Scholar] [CrossRef]
- Giacalone, F.; Campisciano, V.; Calabrese, C.; la Parola, V.; Syrgiannis, Z.; Prato, M.; Gruttadauria, M. Single-walled carbon nanotube–polyamidoamine dendrimer hybrids for heterogeneous catalysis. ACS Nano 2016, 10, 4627–4636. [Google Scholar] [CrossRef] [PubMed]
- Song, H. Metal hybrid nanoparticles for catalytic organic and photochemical transformations. Acc. Chem. Res. 2015, 48, 491–499. [Google Scholar] [CrossRef]
- Meilikhov, M.; Yusenko, K.; Esken, D.; Turner, S.; van Tender, G.; Fischer, R.A. Metals@ MOFs–loading MOFs with metal nanoparticles for hybrid functions. Eur. J. Inorg. Chem. 2010, 3701–3714. [Google Scholar] [CrossRef]
- Poupart, R.; Carbonnier, D.G.B.; le Droumaguet, B. Porous polymers and metallic nanoparticles: A hybrid wedding as a robust method toward efficient supported catalytic systems. Progr. Polym. Sci. 2019, 96, 21–42. [Google Scholar] [CrossRef]
- Li, Y.; Fan, X.; Qi, J.; Ji, J.; Wang, S.; Zhang, G.; Zhang, F. Gold nanoparticles–graphene hybrids as active catalysts for Suzuki reaction. Mater. Res. Bull. 2010, 45, 1413–1418. [Google Scholar] [CrossRef]
- Hakke, V.S.; Seepana, M.M.; Sanowane, S.H.; Kola, A.K.; Vooradi, R. Hybrid treatment technologies for the treatment of industrial wastewater. In Water Pollution and Remediation: Heavy Metals. Environmental Chemistry for a Sustainable World; Inamuddin, A.M.I., Lichtfouse, E., Eds.; Springer: Heidelberg, Germany, 2020; Volume 53, pp. 211–241. [Google Scholar]
- Patil, B.B.T. Wastewater treatment using nanoparticles. J. Adv. Chem. Eng. 2015, 5, 1000131. [Google Scholar]
- Hu, B.; Yu, S.; Shi, C.; Gu, J.; Shao, Y.; Chen, Q.; Li, Y.; Mezzenga, R. Amyloid–Polyphenol hybrid nanofilaments mitigate colitis and regulate gut microbial dysbiosis. ACS Nano 2020, 14, 2760–2776. [Google Scholar] [CrossRef]
- Thanki, K.; Zeng, X.; Justesen, S.; Tejlmann, S.; Falkenberg, E.; van Driessche, E.; Nielsen, H.; Franzyk, H.; Foged, C. Engineering of small interfering RNA-loaded lipidoid-poly(DL-lactic-co-glycolic acid) hybrid nanoparticles for highly efficient and safe gene silencing: A quality by design-based approach. Eur. J. Pharm. Biopharm. 2017, 120, 22–33. [Google Scholar] [CrossRef]
- Heo, D.N.; Castro, N.J.; Lee, S.-J.; Noh, H.; Zhu, W.; Zhang, L.G. Enhanced bone tissue regeneration using a 3D printed microstructure incorporated with a hybrid nano hydrogel. Nanoscale 2017, 9, 5055–5062. [Google Scholar] [CrossRef]
- Webster, A.; Greenman, J.; Haswell, S.J. Development of microfluidic devices for biomedical and clinical application. J. Chem. Technol. Biotechnol. 2011, 86, 10–17. [Google Scholar] [CrossRef]
- Pang, L.; Shen, Y.; Hu, H.; Zeng, X.; Huang, W.; Gao, H.; Wang, H.; Wang, D. Chemically and physically cross-linked polyvinyl alcohol-borosilicate gel hybrid scaffolds for bone regeneration. Mat. Sci. Engin. C 2019, 105, 110076. [Google Scholar] [CrossRef]
- Shalumon, K.T.; Kuo, C.-Y.; Wong, C.-B.; Chien, Y.-M.; Chen, H.-A.; Chen, J.-P. Gelatin/Nanohyroxyapatite Cryogel Embedded Poly(lactic-co-glycolic Acid)/Nanohydroxyapatite microsphere hybrid scaffolds for simultaneous bone regeneration and load-bearing. Polymers 2018, 10, 620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mertaniemi, H.; Escobedo-Lucea, C.; Sanz-Garcia, A.; Gandía, C.; Mäkitie, A.; Partanen, J.; Ikkala, O.; Yliperttula, M. Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials 2016, 82, 208–220. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.A.; Chung, I.-M.; Rajakumar, G.; Alzohairy, M.A.; Alomary, M.N.; Thiruvengadam, M.; Pottoo, F.H.; Ahmad, N. Current nanoparticle approaches in nose to brain drug delivery and anticancer therapy—A review. Curr. Pharm. Des. 2020, 26, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, E. (Ed.) Food Polymers, Gels and Colloids; And Many Books in the Same Series; Woodhead Publishing Co.: Cambridge, UK, 1991. [Google Scholar]
- La Mesa, C.; Risuleo, G. Some Remarks on Colloid Stability: Selected Examples Taken from the Milk Chain for Food Prepares. Colloids Interfaces 2020, 4, 58. [Google Scholar] [CrossRef]
- Wijaya, W.; Patel, A.R.; Setiowati, A.D.; van der Meeren, P. Functional colloids from proteins and polysaccharides for food applications. Trends Food Sci. Technol. 2017, 68, 56–69. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, K.; Liu, Y.; Tan, Y.; Zhao, X.; Wu, J.; Niu, X.; Ran, F. Novel hybrid nanoparticles of vanadium nitride/porous carbon as an anode material for symmetrical supercapacitor. Nano Micro Lett. 2017, 9, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.G.; Ham, D.S.; Lee, D.Y.; Bong, H.; Cho, K. Transparent superhydrophobic/translucent superamphiphobic coatings based on silica–fluoropolymer hybrid nanoparticles. Langmuir 2013, 29, 15051–15057. [Google Scholar] [CrossRef]
- Sidik, N.A.C.; Adamu, I.M.; Jamil, M.M.; Kefayati, G.H.R.; Mamat, R.; Najafi, G. Recent progress on hybrid nanofluids in heat transfer applications: A comprehensive review. Intern. Comm. Heat Mass Trans. 2016, 78, 68–79. [Google Scholar] [CrossRef]
- de Kruif, C.G.; Huppertz, T.; Urban, V.S.; Petukhov, A.V. Casein micelles and their internal structure. Adv. Colloid Interface Sci. 2012, 171–172, 36–52. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Mesa, C.; Risuleo, G. On Concept of Hybrid in Colloid Sciences. Colloids Interfaces 2021, 5, 33. https://doi.org/10.3390/colloids5020033
La Mesa C, Risuleo G. On Concept of Hybrid in Colloid Sciences. Colloids and Interfaces. 2021; 5(2):33. https://doi.org/10.3390/colloids5020033
Chicago/Turabian StyleLa Mesa, Camillo, and Gianfranco Risuleo. 2021. "On Concept of Hybrid in Colloid Sciences" Colloids and Interfaces 5, no. 2: 33. https://doi.org/10.3390/colloids5020033
APA StyleLa Mesa, C., & Risuleo, G. (2021). On Concept of Hybrid in Colloid Sciences. Colloids and Interfaces, 5(2), 33. https://doi.org/10.3390/colloids5020033