Water and Ion Dynamics in Confined Media: A Multi-Scale Study of the Clay/Water Interface
Abstract
:1. Introduction
2. Multi-Scale Approaches for Studies of Water and Ions Dynamics in Clay Systems
2.1. Inelastic Neutron Scattering
2.2. Quasi-Elastic Neutron Scattering
2.3. Nuclear Magnetic Resonance Relaxometry
2.4. Pulsed-Gradient Spin-Echo Attenuation
2.5. Magnetic Resonance Imaging
2.6. Macroscopic Diffusion Experiments
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BD | Brownian Dynamics |
DFT | Density Functional Theory |
GCMC | Grand Canonical Monte Carlo |
GDOS | Generalized Density Of States |
INS | Inelastic Neutron Scattering |
MC | Monte Carlo |
MD | Molecular Dynamics |
MRI | Magnetic Resonance Imaging |
NMR | Nuclear Magnetic Resonance |
OD | Out-Diffusion |
ODF | Orientation Distribution Function |
PGSE | Pulsed-Gradient Spin-Echo |
QENS | Quasi-Elastic Neutron Scattering |
TD | Through-Diffusion |
XRS | X-Ray Scattering |
References
- Li, H.; Teppen, B.J.; Johnston, C.T.; Boyd, S.A. Thermodynamics of nitroaromatic compound adsorption from water by smectite clay. Environ. Sci. Technol. 2004, 38, 5433–5442. [Google Scholar] [CrossRef] [PubMed]
- Ferrage, E.; Sakharov, B.A.; Michot, L.J.; Delville, A.; Bauer, A.; Lanson, B.; Grangeon, S.; Frapper, G.; Jiménez-Ruiz, M.; Cuello, G.J. Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge. Part 2. Toward a precise coupling between molecular simulations and diffraction data. J. Phys. Chem. C 2011, 115, 1867–1881. [Google Scholar] [CrossRef]
- Fripiat, J.; Cases, J.; François, M.; Letellier, M. Thermodynamic and microdynamic behavior of water in clay suspensions and gels. J. Colloid Interface Sci. 1982, 89, 378–400. [Google Scholar] [CrossRef]
- Norrish, K. The swelling of montmorillonite. Discuss. Faraday Soc. 1954, 18, 120–134. [Google Scholar] [CrossRef]
- Mourchid, A.; Delville, A.; Lambard, J.; Lécolier, E.; Levitz, P. Phase diagram of colloidal dispersions of anisotropic charged particles: Equilibrium properties, structure, and rheology of Laponite suspensions. Langmuir 1995, 11, 1942–1950. [Google Scholar] [CrossRef]
- Pusch, R. Highly compacted sodium Bentonite for isolating rock-deposited radioactive waste products. Nucl. Technol. 1979, 45, 153–157. [Google Scholar] [CrossRef]
- Charlet, L.; Alt-Epping, P.; Wersin, P.; Gilbert, B. Diffusive transport and reaction in clay rocks: A storage (nuclear waste, CO2, H2), energy (shale gas) and water quality issue. Adv. Water Resour. 2017, 106, 39–59. [Google Scholar] [CrossRef] [Green Version]
- Buyukdagli, S.; Blossey, R. Dipolar correlations in structured solvents under nanoconfinement. J. Chem. Phys. 2014, 140, 234903. [Google Scholar] [CrossRef] [Green Version]
- Porion, P.; Faugère, A.M.; Lécolier, E.; Gherardi, B.; Delville, A. 23Na Nuclear quadrupolar relaxation as a probe of the microstructure and dynamics of aqueous clay dispersions: An application to Laponite gels. J. Phys. Chem. B 1998, 102, 3477–3485. [Google Scholar] [CrossRef]
- Porion, P.; Faugère, A.M.; Delville, A. 7Li NMR spectroscopy and multiquantum relaxation as a probe of the microstructure and dynamics of confined Li+ cations: An application to dense clay sediments. J. Phys. Chem. C 2008, 112, 9808–9821. [Google Scholar] [CrossRef]
- Porion, P.; Rodts, S.; Al-Mukhtar, M.; Faugère, A.M.; Delville, A. Anisotropy of the solvent self-diffusion tensor as a probe of nematic ordering within dispersion of nano-composite. Phys. Rev. Lett. 2001, 87, 208302. [Google Scholar] [CrossRef]
- Michot, L.J.; Delville, A.; Humbert, B.; Plazanet, M.; Levitz, P. Diffusion of water in a synthetic clay with tetrahedral charges by combined neutron time-of-flight measurements and molecular dynamics simulations. J. Phys. Chem. C 2007, 111, 9818–9831. [Google Scholar] [CrossRef]
- Porion, P.; Michot, L.J.; Faugère, A.M.; Delville, A. Influence of confinement on the long-range mobility of water molecules within clay aggregates: A 2H NMR analysis using spin-locking relaxation rates. J. Phys. Chem. C 2007, 111, 13117–13128. [Google Scholar] [CrossRef]
- Jiménez-Ruiz, M.; Ferrage, E.; Delville, A.; Michot, L.J. Anisotropy on the collective dynamics of water confined in swelling clay minerals. J. Phys. Chem. A 2012, 116, 2379–2387. [Google Scholar] [CrossRef] [PubMed]
- White, C.E.; Kearley, G.J.; Provis, J.L.; Riley, D.P. Structure of kaolinite and influence of stacking faults: Reconciling theory and experiment using inelastic neutron scattering analysis. J. Chem. Phys. 2013, 138, 194501. [Google Scholar] [CrossRef] [PubMed]
- Cygan, R.T.; Daemen, L.L.; Ilgen, A.G.; Krumhansl, J.L.; Nenoff, T.M. Inelastic neutron scattering and molecular simulation of the dynamics of interlayer water in smectite clay minerals. J. Phys. Chem. C 2015, 119, 28005–28019. [Google Scholar] [CrossRef]
- Michot, L.J.; Ferrage, E.; Delville, A.; Jiménez-Ruiz, M. Influence of layer charge, hydration state and cation nature on the collective dynamics of interlayer water in synthetic swelling clay minerals. Appl. Clay Sci. 2016, 119, 375–384. [Google Scholar] [CrossRef]
- Jiménez-Ruiz, M.; Ferrage, E.; Blanchard, M.; Fernandez-Castanon, J.; Delville, A.; Johnson, M.R.; Michot, L.J. Combination of inelastic neutron scattering experiments and ab initio quantum calculations for the study of the hydration properties of oriented saponites. J. Phys. Chem. C 2017, 121, 5029–5040. [Google Scholar] [CrossRef]
- Gates, W.P.; Seydel, T.; Bordallo, H.N. Layer charge effects on anisotropy of interlayer water and structural OH dynamics in clay minerals probed by high-resolution neutron spectroscopy. Appl. Clay Sci. 2021, 201, 105928. [Google Scholar] [CrossRef]
- Cebula, D.J.; Thomas, R.K.; White, J.W. Diffusion of water in Li-Montmorillonite studied by quasielastic neutron scattering. Clays Clay Miner. 1981, 29, 241–248. [Google Scholar] [CrossRef]
- Tuck, J.J.; Hall, P.L.; Hayes, M.H.B.; Ross, D.K.; Hayter, J.B. Quasi-elastic neutron-scattering studies of intercalated molecules in charge-deficient layer silicates. Part 2—High-resolution measurements of the diffusion of water in montmorillonite and vermiculite. J. Chem. Soc. Faraday Trans. 1 1985, 81, 833–846. [Google Scholar] [CrossRef]
- Poinsignon, C. Protonic conductivity and water dynamics in swelling clays. Solid State Ionics 1997, 97, 399–407. [Google Scholar] [CrossRef]
- Swenson, J.; Bergman, R.; Longeville, S. A neutron spin-echo study of confined water. J. Chem. Phys. 2001, 115, 11299–11305. [Google Scholar] [CrossRef]
- Mamontov, E. Comment on “Quasielastic neutron scattering of two-dimensional water in a vermiculite clay” [J. Chem. Phys. 113, 2873 (2000)] and “A neutron spin-echo study of confined water” [J. Chem. Phys. 115, 11299 (2001)]. J. Chem. Phys. 2004, 121, 9193–9194. [Google Scholar] [CrossRef]
- Malikova, N.; Cadéne, A.; Marry, V.; Dubois, E.; Turq, P.; Zanotti, J.M.; Longeville, S. Diffusion of water in clays—microscopic simulation and neutron scattering. Chem. Phys. 2005, 317, 226–235. [Google Scholar] [CrossRef]
- Malikova, N.; Cadène, A.; Marry, V.; Dubois, E.; Turq, P. Diffusion of water in clays on the microscopic scale: Modeling and experiment. J. Phys. Chem. B 2006, 110, 3206–3214. [Google Scholar] [CrossRef]
- Skipper, N.T.; Lock, P.A.; Titiloye, J.O.; Swenson, J.; Mirza, Z.A.; Howells, W.S.; Fernandez-Alonso, F. The structure and dynamics of 2-dimensional fluids in swelling clays. Chem. Geol. 2006, 230, 182–196. [Google Scholar] [CrossRef] [Green Version]
- Michot, L.J.; Ferrage, E.; Jiménez-Ruiz, M.; Boehm, M.; Delville, A. Anisotropic features of water and ion dynamics in synthetic Na- and Ca-smectites with tetrahedral layer charge. A combined Quasi-Elastic Neutron-Scattering and Molecular Dynamics simulations study. J. Phys. Chem. C 2012, 116, 16619–16633. [Google Scholar] [CrossRef]
- Marry, V.; Dubois, E.; Malikova, N.; Breu, J.; Haussler, W. Anisotropy of water dynamics in clays: Insights from molecular simulations for experimental QENS analysis. J. Phys. Chem. C 2013, 117, 15106–15115. [Google Scholar] [CrossRef]
- Berg, M.C.; Dalby, K.N.; Tsapatsaris, N.; Okhrimenko, D.V.; Sørensen, H.O.; Jha, D.; Embs, J.P.; Stipp, S.L.S.; Bordallo, H.N. Water mobility in chalk: A quasielastic neutron scattering study. J. Phys. Chem. C 2017, 121, 14088–14095. [Google Scholar] [CrossRef]
- Korb, J.; Xu, S.; Jonas, J. Confinement effects on dipolar relaxation by translational dynamics of liquids in porous silica glasses. J. Chem. Phys. 1993, 98, 2411–2422. [Google Scholar] [CrossRef]
- Koziol, P.; Nelson, S.; Jonas, J. Low-dimensional effects on frequency dependence of proton NMR relaxation in liquid cyclohexane confined to porous glasses. Chem. Phys. Lett. 1993, 201, 383–386. [Google Scholar] [CrossRef]
- Stapf, S.; Kimmich, R.; Seiter, R.O. Proton and deuteron field-cycling NMR relaxometry of liquids in porous glasses: Evidence for Lévy-walk statistics. Phys. Rev. Lett. 1995, 75, 2855–2858. [Google Scholar] [CrossRef]
- Levitz, P. From Knudsen diffusion to Levy walks. Europhys. Lett. 1997, 39, 593–598. [Google Scholar] [CrossRef]
- Korb, J.P.; Whaley-Hodges, M.; Bryant, R.G. Translational diffusion of liquids at surfaces of microporous materials: Theoretical analysis of field-cycling magnetic relaxation measurements. Phys. Rev. E 1997, 56, 1934–1945. [Google Scholar] [CrossRef]
- Zavada, T.; Kimmich, R. The anomalous adsorbate dynamics at surfaces in porous media studied by nuclear magnetic resonance methods. The orientational structure factor and Lévy walk. J. Chem. Phys. 1998, 109, 6929–6939. [Google Scholar] [CrossRef]
- Zavada, T.; Kimmich, R.; Grandjean, J.; Kobelkov, A. Field-cycling NMR relaxometry of water in synthetic saponites: Lévy walks on finite planar surfaces. J. Chem. Phys. 1999, 110, 6977–6981. [Google Scholar] [CrossRef]
- Levitz, P.; Korb, J.P.; Bryant, R.G. Molecular diffusion in disordered interfacial media as probed by pulsed field gradients and nuclear magnetic relaxation dispersion. J. Chim. Phys. 1999, 96, 1494–1505. [Google Scholar] [CrossRef]
- Kimmich, R.; Anoardo, E. Field-cycling NMR relaxometry. Prog. Nucl. Magn. Reson. Spectrosc. 2004, 44, 257–320. [Google Scholar] [CrossRef]
- Porion, P.; Michot, L.J.; Faugère, A.M.; Delville, A. Structural and dynamical properties of the water molecules confined in dense clay sediments: A study combining 2H NMR spectroscopy and multiscale numerical modeling. J. Phys. Chem. C 2007, 111, 5441–5453. [Google Scholar] [CrossRef]
- Porion, P.; Faugère, A.M.; Delville, A. Long-time scale ionic dynamics in dense clay sediments measured by the frequency variation of the 7Li multiple-quantum NMR relaxation rates in relation with a multiscale modeling. J. Phys. Chem. C 2009, 113, 10580–10597. [Google Scholar] [CrossRef]
- Korb, J.P. Nuclear magnetic relaxation of liquids in porous media. New J. Phys. 2011, 13, 035016. [Google Scholar] [CrossRef] [Green Version]
- Porion, P.; Michot, L.J.; Warmont, F.; Faugère, A.M.; Delville, A. Long-time dynamics of confined water molecules probed by 2H NMR multiquanta relaxometry: An application to dense clay sediments. J. Phys. Chem. C 2012, 116, 17682–17697. [Google Scholar] [CrossRef]
- Porion, P.; Warmont, F.; Faugère, A.M.; Rollet, A.L.; Dubois, E.; Marry, V.; Michot, L.J.; Delville, A. 133Cs Nuclear Magnetic Resonance relaxometry as a probe of the mobility of cesium cations confined within dense clay sediments. J. Phys. Chem. C 2015, 119, 15360–15372. [Google Scholar] [CrossRef]
- Zaburdaev, V.; Denisov, S.; Klafter, J. Lévy walks. Rev. Mod. Phys. 2015, 87, 483–530. [Google Scholar] [CrossRef] [Green Version]
- Porion, P.; Faugère, A.M.; Rollet, A.L.; Dubois, E.; Marry, V.; Michot, L.J.; Delville, A. Influence of strong confinement on the structure and dynamics of liquids: A study of the clay/water interface exploiting 2H NMR spectroscopy and spin-locking relaxometry. J. Phys. Chem. C 2018, 122, 16830–16841. [Google Scholar] [CrossRef]
- Bowers, G.M.; Loring, J.S.; Schaef, H.T.; Cunniff, S.S.; Walter, E.D.; Burton, S.D.; Larsen, R.K.; Miller, Q.R.S.; Bowden, M.E.; Ilton, E.S.; et al. Chemical trapping of CO2 by clay minerals at reservoir conditions: Two mechanisms observed by in situ high-pressure and -temperature experiments. ACS Earth Space Chem. 2019, 3, 1034–1046. [Google Scholar] [CrossRef]
- Bowers, G.M.; Loring, J.S.; Walter, E.D.; Burton, S.D.; Bowden, M.E.; Hoyt, D.W.; Arey, B.; Larsen, R.K.; Kirkpatrick, R.J. Influence of smectite structure and hydration on supercritical methane binding and dynamics in smectite pores. J. Phys. Chem. C 2019, 123, 29231–29244. [Google Scholar] [CrossRef]
- Nanda, R.; Bowers, G.M.; Loganathan, N.; Burton, S.D.; Kirkpatrick, R.J. Temperature dependent structure and dynamics in smectite interlayers: 23Na MAS NMR spectroscopy of Na-hectorite. RSC Adv. 2019, 9, 12755–12765. [Google Scholar] [CrossRef] [Green Version]
- Porion, P.; Faugère, A.M.; Delville, A. 1H and 7Li NMR pulsed gradient spin echo measurements and multiscale modeling of the water and ionic mobility within aqueous dispersions of charged anisotropic nanoparticles. J. Phys. Chem. C 2008, 112, 11893–11900. [Google Scholar] [CrossRef]
- Porion, P.; Ferrage, E.; Hubert, F.; Tertre, E.; Dabat, T.; Faugère, A.M.; Condé, F.; Warmont, F.; Delville, A. Water mobility within compacted clay samples: Multi-scale analysis exploiting 1H NMR Pulsed Gradient Spin Echo and Magnetic Resonance Imaging of water density profiles. ACS Omega 2018, 3, 7399–7406. [Google Scholar] [CrossRef] [Green Version]
- Dabat, T.; Porion, P.; Hubert, F.; Paineau, E.; Dazas, B.; Grégoire, B.; Tertre, E.; Delville, A.; Ferrage, E. Influence of preferred orientation of clay particles on the diffusion of water in kaolinite porous media at constant porosity. Appl. Clay Sci. 2020, 184, 105354. [Google Scholar] [CrossRef]
- Tertre, E.; Delville, A.; Prêt, D.; Hubert, F.; Ferrage, E. Cation diffusion in the interlayer space of swelling clay minerals—A combined macroscopic and microscopic study. Geochim. Cosmochim. Acta 2015, 149, 251–267. [Google Scholar] [CrossRef]
- Tertre, E.; Dazas, B.; Asaad, A.; Ferrage, E.; Grégoire, B.; Hubert, F.; Delville, A.; Delay, F. Connecting molecular simulations and laboratory experiments for the study of time-resolved cation-exchange process in the interlayer of swelling clay minerals. Appl. Clay Sci. 2021, 200, 105913. [Google Scholar] [CrossRef]
- Asaad, A.; Hubert, F.; Ferrage, E.; Dabat, T.; Paineau, E.; Porion, P.; Savoye, S.; Gregoire, B.; Dazas, B.; Delville, A.; et al. Role of interlayer porosity and particle organization in the diffusion of water in swelling clays. Appl. Clay Sci. 2021, 207, 106089. [Google Scholar] [CrossRef]
- Rinnert, E.; Carteret, C.; Humbert, B.; Fragneto-Cusani, G.; Ramsay, J.D.F.; Delville, A.; Robert, J.L.; Bihannic, I.; Pelletier, M.; Michot, L.J. Hydration of a synthetic clay with tetrahedral charges: A multidisciplinary experimental and numerical study. J. Phys. Chem. B 2005, 109, 23745–23759. [Google Scholar] [CrossRef]
- Dazas, B.; Ferrage, E.; Delville, A.; Lanson, B. Interlayer structure model of tri-hydrated low-charge smectite by X-ray diffraction and Monte Carlo modeling in the Grand Canonical ensemble. Am. Mineral. 2014, 99, 1724–1735. [Google Scholar] [CrossRef] [Green Version]
- Pellenq, R.J.M.; Caillol, J.M.; Delville, A. Electrostatic attraction between two charged surface: A (N,V,T) Monte Carlo simulation. J. Phys. Chem. B 1997, 101, 8584–8594. [Google Scholar] [CrossRef]
- Delville, A.; Gasmi, N.; Pellenq, R.J.M.; Caillol, J.M.; Van Damme, H. Correlations between the stability of charged interfaces and ionic exchange capacity: A Monte Carlo study. Langmuir 1998, 14, 5077–5082. [Google Scholar] [CrossRef]
- Michot, L.J.; Bihannic, I.; Porsch, K.; Maddi, S.; Baravian, C.; Mougel, J.; Levitz, P. Phase diagrams of Wyoming Na-montmorillonite clay. Influence of particle anisotropy. Langmuir 2004, 20, 10829–10837. [Google Scholar] [CrossRef] [PubMed]
- Boek, E.S.; Sprik, M. Ab Initio molecular dynamics study of the hydration of a sodium smectite clay. J. Phys. Chem. B 2003, 107, 3251–3256. [Google Scholar] [CrossRef]
- Suter, J.L.; Boek, E.S.; Sprik, M. Adsorption of a sodium ion on a smectite clay from constrained ab initio Molecular Dynamics simulations. J. Phys. Chem. C 2008, 112, 18832–18839. [Google Scholar] [CrossRef]
- Delville, A. Modeling the clay water interface. Langmuir 1991, 7, 547–555. [Google Scholar] [CrossRef]
- Cygan, R.T.; Liang, J.J.; Kalinichev, A.G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 2004, 108, 1255–1266. [Google Scholar] [CrossRef]
- Marry, V.; Dubois, E.; Malikova, N.; Durand-Vidal, S.; Longeville, S.; Breu, J. Water dynamics in Hectorite clays: Influence of temperature studied by coupling neutron spin echo and molecular dynamics. Environ. Sci. Technol. 2011, 45, 2850–2855. [Google Scholar] [CrossRef] [PubMed]
- Abramov, A.; Iglauer, S. Application of the CLAYFF and the DREIDING force fields for modeling of alkylated quartz surfaces. Langmuir 2019, 35, 5746–5752. [Google Scholar] [CrossRef]
- Van Gunsteren, W.F.; Berendsen, H.J.C.; Rullmann, J.A.C. Stochastic dynamics for molecules with constraints—Brownian dynamics of n-alkanes. Mol. Phys. 1981, 44, 69–95. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces, 1st ed.; Academic Press: New York, NY, USA, 1985. [Google Scholar]
- Tournassat, C.; Steefel, C.I. Reactive transport modeling of coupled processes in nanoporous media. Rev. Mineral. Geochem. 2019, 85, 75–109. [Google Scholar] [CrossRef] [Green Version]
- Dazas, B.; Lanson, B.; Delville, A.; Robert, J.L.; Komarneni, S.; Michot, L.J.; Ferrage, E. Influence of tetrahedral layer charge on the organization of interlayer water and ions in synthetic Na-saturated smectites. J. Phys. Chem. C 2015, 119, 4158–4172. [Google Scholar] [CrossRef]
- Adams, D.J. Chemical potential of hard-sphere fluids by Monte Carlo methods. Mol. Phys. 1974, 28, 1241–1252. [Google Scholar] [CrossRef]
- Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Clarendon Press: Oxford, UK, 1994. [Google Scholar]
- Hansen, J.P.; McDonald, I.R. Theory of Simple Liquids, 2nd ed.; Academic Press: London, UK, 1990. [Google Scholar]
- Schoen, M.; Cushman, J.H.; Diestler, D.J.; Rhykerd, C.L., Jr. Fluids in micropores. II. Self-Diffusion in a simple classical fluid in a slit pore. J. Chem. Phys. 1988, 88, 1394–1406. [Google Scholar] [CrossRef]
- Kimmich, R. NMR: Tomography, Diffusometry, Relaxometry, 1st ed.; Springer: Berlin, Germany, 1997. [Google Scholar]
- Korb, J.P. Multiscale nuclear magnetic relaxation dispersion of complex liquids in bulk and confinement. Prog. Nucl. Magn. Reson. Spectrosc. 2018, 104, 12–55. [Google Scholar] [CrossRef]
- Delville, A.; Letellier, M. Structure and dynamics of simple liquids in heterogeneous condition: An NMR study of the clay-water interface. Langmuir 1995, 11, 1361–1367. [Google Scholar] [CrossRef]
- Korb, J.P.; Malier, L.; Cros, F.; Xu, S.; Jonas, J. Surface dynamics of liquids in nanopores. Phys. Rev. Lett. 1996, 77, 2312–2315. [Google Scholar] [CrossRef] [PubMed]
- Fleury, M.; Canet, D. Water orientation in smectites using NMR nutation experiments. J. Phys. Chem. C 2014, 118, 4733–4740. [Google Scholar] [CrossRef]
- Porion, P.; Faugère, A.M.; Delville, A. Structural and dynamical properties of water molecules confined within clay sediments probed by deuterium NMR spectroscopy, multiquanta relaxometry, and two-time stimulated echo attenuation. J. Phys. Chem. C 2014, 118, 20429–20444. [Google Scholar] [CrossRef]
- Bowden, G.J.; Hutchison, W.D.; Khachan, J. Tensor operator formalism for multiple-quantum NMR. 2. Spins-3/2, spin-2, and spin-5/2 and general I. J. Magn. Reson. 1986, 67, 415–437. [Google Scholar] [CrossRef]
- Van der Maarel, J.R.C. The relaxation dynamics of spin I=1 nuclei with a static quadrupolar coupling and a radio-frequency field. J. Chem. Phys. 1993, 99, 5646–5653. [Google Scholar] [CrossRef]
- Van der Maarel, J.R.C. Thermal relaxation and coherence dynamics of spin 3/2. I. Static and fluctuating quadrupolar interactions in the multipole basis. Concepts Magn. Reson. Part A 2003, 19, 97–116. [Google Scholar] [CrossRef]
- Van der Maarel, J.R.C. Thermal relaxation and coherence dynamics of spin 3/2. II. Strong radio-frequency field. Concepts Magn. Reson. Part A 2003, 19A, 117–133. [Google Scholar] [CrossRef]
- Porion, P.; Delville, A. Multi-Quanta spin-locking Nuclear Magnetic Resonance relaxation measurements: An analysis of the long-time dynamical properties of ions and water molecules confined within dense clay sediments. Magnetochemistry 2017, 3, 35. [Google Scholar] [CrossRef] [Green Version]
- Porion, P.; Faugère, A.M.; Delville, A. Multiscale water dynamics within dense clay sediments probed by 2H multiquanta NMR relaxometry and two-time stimulated echo NMR spectroscopy. J. Phys. Chem. C 2013, 117, 26119–26134. [Google Scholar] [CrossRef]
- Callaghan, P.T. Principles of Nuclear Magnetic Resonance Microscopy; Clarendon Press: Oxford, UK, 1991. [Google Scholar]
- Porion, P.; Al-Mukhtar, M.; Faugère, A.M.; Pellenq, R.J.M.; Meyer, S.; Delville, A. Water self-diffusion within nematic dispersion of nanocomposites: A multiscale analysis of 1H pulsed gradient spin-echo NMR measurements. J. Phys. Chem. B 2003, 107, 4012–4023. [Google Scholar] [CrossRef]
- Latour, L.L.; Mitra, P.P.; Kleinberg, R.L.; Sotak, C.H. Time-dependent diffusion coefficient of fluids in porous media as a probe of surface-to-volume ratio. J. Magn. Reson. Ser. A 1993, 101, 342–346. [Google Scholar] [CrossRef]
- Latour, L.L.; Kleinberg, R.L.; Mitra, P.P.; Sotak, C.H. Pore-size distributions and tortuosity in heterogeneous porous media. J. Magn. Reson. Ser. A 1995, 112, 83–91. [Google Scholar] [CrossRef]
- Dabat, T.; Hubert, F.; Paineau, E.; Launois, P.; Leforest, C.; Grégoire, B.; Dazas, B.; Tertre, E.; Delville, A.; Ferrage, E. A general orientation distribution function for clay-rich media. Nat. Commun. 2019, 10, 5456. [Google Scholar] [CrossRef]
- Bourg, I.C.; Bourg, A.C.; Sposito, G. Modeling diffusion and adsorption in compacted bentonite: A critical review. J. Contam. Hydrol. 2003, 61, 293–302. [Google Scholar] [CrossRef]
- Bourg, I.C.; Tournassat, C. Chapter 6—Self-Diffusion of Water and Ions in Clay Barriers. In Natural and Engineered Clay Barriers; Tournassat, C., Steefel, C.I., Bourg, I.C., Bergaya, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 6: Developments in Clay Science, pp. 189–226. [Google Scholar] [CrossRef]
- Tertre, E.; Savoye, S.; Hubert, F.; Prêt, D.; Dabat, T.; Ferrage, E. Diffusion of water through the dual-porosity swelling clay mineral vermiculite. Environ. Sci. Technol. 2018, 52, 1899–1907. [Google Scholar] [CrossRef] [PubMed]
- Churakov, S.V.; Gimmi, T. Up-scaling of molecular diffusion coefficients in clays: A two-step approach. J. Phys. Chem. C 2011, 115, 6703–6714. [Google Scholar] [CrossRef]
- Tyagi, M.; Gimmi, T.; Churakov, S.V. Multi-scale micro-structure generation strategy for up-scaling transport in clays. Adv. Water Resour. 2013, 59, 181–195. [Google Scholar] [CrossRef]
Sample | (10 ms ) | (10 ms ) |
---|---|---|
Na+-saponite 0.8 e/uc-1W | 2.4 ± 0.20 | |
Na+-saponite 0.8 e/uc-2W | 7.2 ± 0.50 | 3.0 ± 1.0 |
Na+-saponite 1.4 e/uc-1W | 0.6 ± 0.05 | |
Na+-saponite 1.4 e/uc-2W | 3.1 ± 0.10 | 2.0 ± 0.5 |
Ca2+-saponite 0.8 e/uc-1W | 1.6 ± 0.20 | |
Ca2+-saponite 0.8 e/uc-2W | 6.5 ± 0.30 | 3.0 ± 1.0 |
Ca2+-saponite 1.4 e/uc-1W | 0.3 ± 0.05 | |
Ca2+-saponite 1.4 e/uc-2W | 2.4 ± 0.10 | 2.0 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porion, P.; Asaad, A.; Dabat, T.; Dazas, B.; Delville, A.; Ferrage, E.; Hubert, F.; Jiménez-Ruiz, M.; Michot, L.J.; Savoye, S.; et al. Water and Ion Dynamics in Confined Media: A Multi-Scale Study of the Clay/Water Interface. Colloids Interfaces 2021, 5, 34. https://doi.org/10.3390/colloids5020034
Porion P, Asaad A, Dabat T, Dazas B, Delville A, Ferrage E, Hubert F, Jiménez-Ruiz M, Michot LJ, Savoye S, et al. Water and Ion Dynamics in Confined Media: A Multi-Scale Study of the Clay/Water Interface. Colloids and Interfaces. 2021; 5(2):34. https://doi.org/10.3390/colloids5020034
Chicago/Turabian StylePorion, Patrice, Ali Asaad, Thomas Dabat, Baptiste Dazas, Alfred Delville, Eric Ferrage, Fabien Hubert, Mónica Jiménez-Ruiz, Laurent J. Michot, Sébastien Savoye, and et al. 2021. "Water and Ion Dynamics in Confined Media: A Multi-Scale Study of the Clay/Water Interface" Colloids and Interfaces 5, no. 2: 34. https://doi.org/10.3390/colloids5020034
APA StylePorion, P., Asaad, A., Dabat, T., Dazas, B., Delville, A., Ferrage, E., Hubert, F., Jiménez-Ruiz, M., Michot, L. J., Savoye, S., & Tertre, E. (2021). Water and Ion Dynamics in Confined Media: A Multi-Scale Study of the Clay/Water Interface. Colloids and Interfaces, 5(2), 34. https://doi.org/10.3390/colloids5020034