Effect of Asphaltenes and Asphaltene Dispersants on Wax Precipitation and Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Wax-Containing Synthetic Oils
2.1.2. Asphaltenes
2.1.3. Paraffin Inhibitor (PI)
2.1.4. Asphaltene Dispersants (ADs)
2.2. Methods
2.2.1. CPM and Rheological Methods
2.2.2. Asphaltene Precipitation from Toluene
3. Results and Discussion
3.1. Treatment of Asphaltenes
3.1.1. Heptane-Induced Instability Tests
3.1.2. In WT Crude
3.2. Effects of Wax and Asphaltenes on the Rheology of Simple Oils and WT Crude
3.2.1. In Simple Oils
3.2.2. In WT Crude
3.3. Treatment of Wax and Asphaltenes
3.3.1. Wax in WT Crude, Treatment with ADs
3.3.2. Wax and Asphaltenes in WT Crude, Treatment with ADs
3.3.3. Wax in WT Crude, Treatment with ADs and PI
3.3.4. Wax and Asphaltenes in WT Crude, Treatment with ADs and PI
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelland, M.A. Production Chemicals for the Oil and Gas Industry, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Huang, Z.; Zheng, S.; Fogler, H.S. Wax Deposition: Experimental Characterizations, Theoretical Modeling, and Field Practices; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Bansal, R.; Ravishankar, B.; Sharma, S.S.; Afzal, K. Dynamic Simulation for Optimising Pigging Frequency for Dewaxing. In Proceedings of the SPE Oil and Gas India Conference and Exhibition, Mumbai, India, 28–30 March 2012. [Google Scholar]
- Buckley, J.S. Asphaltene Deposition. Energy Fuels 2012, 26, 4086–4090. [Google Scholar] [CrossRef]
- Leontaritis, K.J.; Ali Mansoori, G. Asphaltene deposition: A survey of field experiences and research approaches. J. Pet. Sci. Eng. 1988, 1, 229–239. [Google Scholar] [CrossRef]
- Vilas Bôas Fávero, C.; Hanpan, A.; Phichphimok, P.; Binabdullah, K.; Fogler, H.S. Mechanistic Investigation of Asphaltene Deposition. Energy Fuels 2016, 30, 8915–8921. [Google Scholar] [CrossRef]
- Soliman, F.S. Paraffin: An Overview; IntechOpen: London, UK, 2020. [Google Scholar]
- García, M.d.C. Crude Oil Wax Crystallization. The Effect of Heavy n-Paraffins and Flocculated Asphaltenes. Energy Fuels 2000, 14, 1043–1048. [Google Scholar] [CrossRef]
- García, M.C.; Carbognani, L.; Orea, M.; Urbina, A. The influence of alkane class-types on crude oil wax crystallization and inhibitors efficiency. Pet. Sci. Eng. 2000, 25, 99–105. [Google Scholar] [CrossRef]
- Wang, K.-S.; Wu, C.-H.; Creek, J.L.; Shuler, P.J.; Tang, Y. Evaluation of Effects of Selected Wax Inhibitors on Paraffin Deposition. Pet. Sci. Technol. 2003, 21, 369–379. [Google Scholar] [CrossRef]
- Borthakur, A.; Chanda, D.; Dutta Choudhury, S.R.; Rao, K.V.; Subrahmanyam, B. Alkyl Fumarate−Vinyl Acetate Copolymer as Flow Improver for High Waxy Indian Crude Oils. Energy Fuels 1996, 10, 844–848. [Google Scholar] [CrossRef]
- Al-Sabagh, A.M.; El-Hamouly, S.H.; Khidr, T.T.; El-Ghazawy, R.A.; Higazy, S.A. Preparation the Esters of Oleic Acid-Maleic Anhydride Copolymer and Their Evaluation as Flow Improvers for Waxy Crude Oil. J. Dispers. Sci. Technol. 2013, 34, 1585–1596. [Google Scholar] [CrossRef]
- Yang, F.; Zhao, Y.; Sjöblom, J.; Li, C.; Paso, K.G. Polymeric Wax Inhibitors and Pour Point Depressants for Waxy Crude Oils: A Critical Review. J. Dispers. Sci. Technol. 2014, 36, 213–225. [Google Scholar] [CrossRef]
- Atta, A.; Al-Shafy, H.; Ismail, E. Influence of ethylene acrylic alkyl ester copolymer wax dispersants on the rhological behavior of Egyptian crude oil. J. Dispers. Sci. Technol. 2011, 32, 1296–1305. [Google Scholar] [CrossRef]
- Fang, L.; Zhang, X.; Ma, J.; Zhang, B. Investigation into a pour point depressant for Shengli crude oil. Ind. Eng. Chem. Res. 2012, 51, 11605–11612. [Google Scholar] [CrossRef]
- M’barki, O.; Clements, J.; Salazar, L.; Machac, J.; Nguyen, Q.P. Effects of Structure and Asphaltenes on Paraffin Inhibitor Efficacy in a Light Crude Oil Model. Energy Fuels 2022, 36, 7531–7541. [Google Scholar] [CrossRef]
- M’barki, O.; Clements, J.; Salazar, L.; Machac, J.; Nguyen, Q.P. Effects of oil composition on interactions between paraffinic and asphaltenic components and the performance of paraffin inhibitors. Geoenergy Sci. Eng. 2023, 225, 211699. [Google Scholar] [CrossRef]
- M’barki, O.; Clements, J.; Salazar, L.; Machac, J.; Nguyen, Q.P. Impact of Paraffin Composition on the Interactions between Waxes, Asphaltenes, and Paraffin Inhibitors in a Light Crude Oil. Colloids Interfaces 2023, 7, 13. [Google Scholar] [CrossRef]
- M’barki, O.; Clements, J.; Nguyen, Q.P. Effects of Added Asphaltenes and Paraffin Inhibitor on Wax Stability and Deposition in Oils of Varying Complexity. Energy Fuels 2023, 37, 14790–14799. [Google Scholar] [CrossRef]
- Yen, A.; Yin, Y.R.; Asomaning, S. Evaluating asphaltene inhibitors: Laboratory tests and field studies. In Proceedings of the SPE International Symposium on Oilfield Chemistry, Houston, TX, USA, 13–16 February 2001; OnePetro: Richardson, TX, USA, 2001. [Google Scholar]
- Juyal, P.; Enayat, S.; Lucente-Schultz, R.; Li, Q.; Karimipour, M.; Tavakkoli, M.; Cao, T.-B.; Yen, A.; Russell, C.; Vargas, F.M. Case Study: Investigation of the Performance of an Asphaltene Inhibitor in the Laboratory and the Field. Energy Fuels 2022, 36, 1825–1831. [Google Scholar] [CrossRef]
- Ovalles, C.; Rogel, E.; Morazan, H.; Moir, M.E. Synthesis, characterization, and mechanism of asphaltene inhibition of phosphopropoxylated asphaltenes. Fuel 2016, 180, 20–26. [Google Scholar] [CrossRef]
- Ilyin, S.; Arinina, M.; Polyakova, M.; Bondarenko, G.; Konstantinov, I.; Kulichikhin, V.; Malkin, A. Asphaltenes in heavy crude oil: Designation, precipitation, solutions, and effects on viscosity. J. Pet. Sci. Eng. 2016, 147, 211–217. [Google Scholar] [CrossRef]
- Li, C.; Zhu, H.; Yang, F.; Liu, H.; Wang, F.; Sun, G.; Yao, B. Effect of Asphaltene Polarity on Wax Precipitation and Deposition Characteristics of Waxy Oils. Energy Fuels 2019, 33, 7225–7233. [Google Scholar] [CrossRef]
- Venkatesan, R.; Östlund, J.-A.; Chawla, H.; Wattana, P.; Nydén, M.; Fogler, H.S. The Effect of Asphaltenes on the Gelation of Waxy Oils. Energy Fuels 2003, 17, 1630–1640. [Google Scholar] [CrossRef]
- Kriz, P.; Andersen, S.I. Effect of asphaltenes on crude oil wax crystallization. Energy Fuels 2005, 19, 948–953. [Google Scholar] [CrossRef]
- Tinsley, J.F.; Jahnke, J.P.; Dettman, H.D.; Prud’home, R.K. Waxy gels with asphaltenes 1: Characterization of precipitation, gelation, yield stress, and morphology. Energy Fuels 2009, 23, 2056–2064. [Google Scholar] [CrossRef]
- Ariza-León, E.; Molina-Velasco, D.-R.; Chaves-Guerrero, A. Review of studies on asphaltene-wax interaction and the effect thereof on crystallization. CTF-Cienc. Tecnol. Y Futuro 2014, 5, 39–53. [Google Scholar] [CrossRef]
- Yang, F.; Zhu, H.; Li, C.; Yao, B.; Wang, F.; Chen, J.; Sun, G. Investigation on the mechanism of wax deposition inhibition induced by asphaltenes and wax inhibitors. J. Pet. Sci. Eng. 2021, 204, 108723. [Google Scholar] [CrossRef]
- Barre, L.; Eyssautier, J.; Mullins, O.; Barre, L.; Eyssautier, J.; Mullins, O. The asphaltenes. Annu. Rev. Anal. Chem. 2011, 4, 393–418. [Google Scholar]
- Mullins, O.C.; Sabbah, H.; Eyssautier, J.; Pomerantz, A.E.; Barré, L.; Andrews, A.B.; Ruiz-Morales, Y.; Mostowfi, F.; McFarlane, R.; Goual, L.; et al. Advances in asphaltene science and the Yen–Mullins model. Energy Fuels 2012, 26, 3986–4003. [Google Scholar] [CrossRef]
- Mullins, O.C. The Modified Yen Model. Energy Fuels 2010, 24, 2179–2207. [Google Scholar] [CrossRef]
- Kok, M.V.; Saracoglu, R.O. Mathematical modelling of wax deposition in crude oil pipelines (comparative study). Pet. Sci. Technol. 2000, 18, 1121–1145. [Google Scholar] [CrossRef]
- Xiong, R.; Guo, J.; Kiyingi, W.; Feng, H.; Sun, T.; Yang, X.; Li, Q. Method for Judging the Stability of Asphaltenes in Crude Oil. ACS Omega 2020, 5, 21420–21427. [Google Scholar] [CrossRef]
- Moncayo-Riascos, I.; Taborda, E.; Hoyos, B.A.; Franco, C.A.; Cortés, F.B. Effect of resin/asphaltene ratio on the rheological behavior of asphaltene solutions in a de-asphalted oil and p-xylene: A theoretical–experimental approach. J. Mol. Liq. 2020, 315, 113754. [Google Scholar] [CrossRef]
- Asomaning, S.; Watkinson, P. Petroleum Stability and Heteroatom Species Effects in Fouling of Heat Exchangers by Asphaltenes. Heat Transf. Eng. 2000, 21, 10–16. [Google Scholar]
- Ashoori, S.; Sharifi, M.; Masoumi, M.; Mohammad Salehi, M. The relationship between SARA fractions and crude oil stability. Egypt. J. Pet. 2017, 26, 209–213. [Google Scholar] [CrossRef]
- Sinnathamb, C.M.; Nor, N.M. Relationship between SARA fractions and crude oil fouling. J. Appl. Sci. 2012, 12, 2479–2483. [Google Scholar] [CrossRef]
- Yang, F.; Li, C.; Yang, S.; Zhang, Q.; Xu, J. Effect of dodecyl benzene sulfonic acid (DBSA) and lauric amine (LA) on the associating state and rheology of heavy oils. J. Pet. Sci. Eng. 2014, 124, 19–26. [Google Scholar] [CrossRef]
Oil 1 | Base Oil | Wax (wt.%) | Asphaltenes (wt.%) | AD 2 | PI 2 |
---|---|---|---|---|---|
Dw | Dodecane | 10 | --- | --- | --- |
Dw-1A | Dodecane | 10 | 1 | --- | --- |
DTw | 1:1 Dodecane: Toluene | 10 | --- | --- | --- |
DTw-1A | 1:1 Dodecane: Toluene | 10 | 1 | --- | --- |
DLw | Diesel | 10 | --- | --- | --- |
DLw-1A | Diesel | 10 | 1 | --- | --- |
WT | WT Crude | --- | --- | --- | --- |
WT-1A | WT Crude | --- | 1 | --- | --- |
WT-1A-AD3 | WT Crude | --- | 1 | AD3 | --- |
WT-1A-AD4 | WT Crude | --- | 1 | AD4 | --- |
WTw | WT Crude | 10 | --- | --- | --- |
WTw-1A | WT Crude | 10 | 1 | --- | --- |
WTw-3A | WT Crude | 10 | 3 | --- | --- |
WTw-AD3 | WT Crude | 10 | --- | AD3 | --- |
WTw-AD4 | WT Crude | 10 | --- | AD4 | --- |
WTw-1A-AD3 | WT Crude | 10 | 1 | AD3 | --- |
WTw-1A-AD4 | WT Crude | 10 | 1 | AD4 | --- |
WTw-PI | WT Crude | 10 | --- | --- | PI |
WTw-AD3-PI | WT Crude | 10 | --- | AD3 | PI |
WTw-AD4-PI | WT Crude | 10 | --- | AD4 | PI |
WTw-1A-PI | WT Crude | 10 | 1 | --- | PI |
WTw-1A-AD3-PI | WT Crude | 10 | 1 | AD3 | PI |
WTw-1A-AD4-PI | WT Crude | 10 | 1 | AD4 | PI |
Density 1 | SARA 2 (%) | R/As | CII 3 | ||||
---|---|---|---|---|---|---|---|
S | Ar | R | As | ||||
Asphaltic crude | 948 | 24.6 | 42.8 | 16.3 | 16.2 | 1.0 | |
Dodecane | 100.0 | 0.0 | 0.0 | 0.0 | 1.0 | --- | |
Dw | 100.0 | 0.0 | 0.0 | 0.0 | 1.0 | --- | |
Dw-1A | 95.8 | 2.4 | 0.9 | 0.9 | 1.0 | 29.5 | |
1:1 Dodecane:toluene | 50.0 | 50.0 | 0.0 | 0.0 | --- | 1.0 | |
DTw | 55.0 | 45.0 | 0.0 | 0.0 | --- | 1.2 | |
DTw-1A | 53.6 | 44.6 | 0.9 | 0.9 | 1.0 | 1.2 | |
Diesel | 60.0 | 40.0 | 0.0 | 0.0 | --- | 3.0 | |
DLw | 64.0 | 36.0 | 0.0 | 0.0 | --- | 3.4 | |
DLw-1A | 62.0 | 36.2 | 0.9 | 0.9 | 1.0 | 3.1 | |
WT crude | 849 | 61.7 | 27.5 | 10.8 | 0.0 | --- | 1.6 |
WTw | 65.5 | 24.8 | 9.7 | 0.0 | --- | 1.9 | |
WTw-1A | 63.4 | 25.6 | 10.0 | 0.9 | 11.1 | 1.8 | |
WTw-3A | 59.3 | 27.3 | 10.6 | 2.7 | 3.9 | 1.6 |
AD | R | % AEAI 1 | Pendant Length 2 | Active 3 (wt.%) |
---|---|---|---|---|
AD1 | AEAI, ANPP, ALAP | 30 | 25.3 | 37 |
AD2 | AEAI, G20 | 52 | 16.9 | 50 |
AD3 | AEAI, TA | 54 | 19.2 | 50 |
AD4 | AEAI, G16 | 38 | 15.0 | 50 |
Oil | μmax (cP) | μred (%) | WAT 1 | |
---|---|---|---|---|
(°C) | Shape | |||
Dw | 331 | --- | 35 | Sharp |
Dw-1A | 91 | 72.5 2 | 23 | Gradual |
DLw | 445 | --- | 36 | Sharp |
DLw-1A | 374 | 16.0 3 | 35 | Sharp |
DTw | 96 | 72.0 2 | 30 | Medium |
DTw-1A | 246 | −156.3 4 | 29 | Medium |
WTw | 991 | --- | 38 | Sharp |
WTw-1A | 1010 | −1.9 5 | 37 | Sharp |
WTw-3A | 3133 | −216.1 5 | 37 | Sharp |
WTw-AD3 | 1111 | −12.1 5 | 39 | Sharp |
WTw-AD4 | 855 | 13.7 5 | 38 | Sharp |
WTw-1A-AD3 | 1382 | −36.8 6 | 38 | Sharp |
WTw-1A-AD4 | 1616 | −60.0 6 | 38 | Sharp |
WTw-PI | 327 | 67.0 5 | 37 | Medium |
WTw-AD3-PI | 367 | 63.1 5 | 37 | Medium |
WTw-AD4-PI | 595 | 40.0 5 | 37 | Medium |
WTw-1A-PI | 37 | 96.3 5 | --- | --- |
WTw-1A-AD3-PI | 33 | 10.8 5 | --- | --- |
WTw-1A-AD4-PI | 133 | 259.5 7 | --- | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
M’barki, O.; Clements, J.; Nguyen, Q.P. Effect of Asphaltenes and Asphaltene Dispersants on Wax Precipitation and Treatment. Colloids Interfaces 2024, 8, 30. https://doi.org/10.3390/colloids8030030
M’barki O, Clements J, Nguyen QP. Effect of Asphaltenes and Asphaltene Dispersants on Wax Precipitation and Treatment. Colloids and Interfaces. 2024; 8(3):30. https://doi.org/10.3390/colloids8030030
Chicago/Turabian StyleM’barki, Oualid, John Clements, and Quoc P. Nguyen. 2024. "Effect of Asphaltenes and Asphaltene Dispersants on Wax Precipitation and Treatment" Colloids and Interfaces 8, no. 3: 30. https://doi.org/10.3390/colloids8030030
APA StyleM’barki, O., Clements, J., & Nguyen, Q. P. (2024). Effect of Asphaltenes and Asphaltene Dispersants on Wax Precipitation and Treatment. Colloids and Interfaces, 8(3), 30. https://doi.org/10.3390/colloids8030030