A Selective, Efficient, Facile, and Reusable Natural Clay/Metal Organic Framework as a Promising Adsorbent for the Removal of Drug Residue and Heavy Metal Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Co/Ni/Cu-NH2BDC MOF Metal-Organic Frameworks
2.3. Synthesis of Zeolite/MOF Composite
2.4. Characterization
2.5. Adsorption Experiments
2.6. Effect of Temperature
2.7. Regeneration Experiments
2.8. Real Sample Investigation
2.9. Cytotoxicity Study
3. Results and Discussion
3.1. Characterization of Adsorbents
3.2. Adsorption Study
3.2.1. Effect of pH
3.2.2. Effect of Adsorbent Dose
3.2.3. Adsorption Isotherm
3.2.4. Adsorption Kinetics Investigation
3.3. Desorption Study
3.4. Adsorbent Stability and Selectivity
3.5. Thermodynamic Investigation
3.6. Real Water Sample Analysis
3.7. Adsorbent Cost Analysis
3.8. Adsorption Mechanism
3.9. Cytotoxicity of the Investigated Adsorbent
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anfar, Z.; Zbair, M.; Ait Ahsiane, H.; Jada, A.; El Alem, N. Microwave assisted green synthesis of Fe2O3/biochar for ultrasonic removal of nonsteroidal anti-inflammatory pharmaceuticals. RSC Adv. 2020, 10, 11371–11380. [Google Scholar] [CrossRef] [PubMed]
- Solanki, A.; Boyer, T.H. Pharmaceutical removal in synthetic human urine using biochar. Environ. Sci. Water Res. Technol. 2017, 3, 553–565. [Google Scholar] [CrossRef]
- Insight into Adsorption of Combined Antibiotic-Heavy Metal Contaminants on Graphene Oxide in Water—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S1383586619340122 (accessed on 26 August 2024).
- Su, Z.; Qin, F.; Zhang, H.; Huang, Z.; Guan, K.; Zheng, M.; Dai, Z.; Song, W.; Li, X. Evaluation of Developmental Toxicity of Safinamide in Zebrafish Larvae (Danio rerio). Ecotoxicol. Environ. Saf. 2023, 262, 115284. [Google Scholar] [CrossRef]
- Gao, L.; Liu, Q.; Zhang, X.-R. Enhancing the Solubility and Dissolution Performance of Safinamide Using Salts. Crystals 2020, 10, 989. [Google Scholar] [CrossRef]
- Calisto, V.; Ferreira, C.I.A.; Oliveira, J.A.B.P.; Otero, M.; Esteves, V.I. Adsorptive removal of pharmaceuticals from water by commercial and waste-based carbons. J. Environ. Manag. 2015, 152, 83–90. [Google Scholar] [CrossRef]
- Ouyang, J.; Zhou, L.; Liu, Z.; Heng, J.Y.Y.; Chen, W. Biomass-derived activated carbons for the removal of pharmaceutical micropollutants from wastewater: A review. Sep. Purif. Technol. 2020, 253, 117536. [Google Scholar] [CrossRef]
- Abdulkareem, A.S.; Hamzat, W.A.; Tijani, J.O.; Egbosiuba, T.C.; Mustapha, S.; Abubakre, O.K.; Okafor, B.O.; Babayemi, A.K. Isotherm, Kinetics, Thermodynamics and Mechanism of Metal Ions Adsorption from Electroplating Wastewater Using Treated and Functionalized Carbon Nanotubes. J. Environ. Chem. Eng. 2023, 11, 109180. [Google Scholar] [CrossRef]
- Topare, N.S.; Wadgaonkar, V.S. A review on application of low-cost adsorbents for heavy metals removal from wastewater. Mater. Today Proc. 2023, 77, 8–18. [Google Scholar] [CrossRef]
- Afroze, S.; Sen, T.K. A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water Air Soil Pollut. 2018, 229, 225. [Google Scholar] [CrossRef]
- Rani, L.; Kaushal, J.; Srivastav, A.L.; Mahajan, P. A critical review on recent developments in MOF adsorbents for the elimination of toxic heavy metals from aqueous solutions. Environ. Sci. Pollut. Res. 2020, 27, 44771–44796. [Google Scholar] [CrossRef]
- Wang, S.; Hu, Y.; Wang, J. Biodegradation of typical pharmaceutical compounds by a novel strain Acinetobacter sp. J. Environ. Manag. 2018, 217, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.; Costa, R.; Quinta-Ferreira, R.M.; Martins, R.C. Application of ozonation for pharmaceuticals and personal care products removal from water. Sci. Total Environ. 2017, 586, 265–283. [Google Scholar] [CrossRef]
- Gholami, P.; Khataee, A.; Soltani, R.D.C.; Dinpazhoh, L.; Bhatnagar, A. Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@biochar nanocomposite. J. Hazard. Mater. 2020, 382, 121070. [Google Scholar] [CrossRef] [PubMed]
- Kamrani, M.; Akbari, A.; Yunessnia Lehi, A. Chitosan-modified acrylic nanofiltration membrane for efficient removal of pharmaceutical compounds. J. Environ. Chem. Eng. 2018, 6, 583–587. [Google Scholar] [CrossRef]
- Barkade, S.; Sable, S.; Ashtekar, V.; Pandit, V. Removal of lead and copper from wastewater using Bael fruit shell as an adsorbent. Mater. Today Proc. 2022, 53, 65–70. [Google Scholar] [CrossRef]
- Selective Adsorption Mechanisms of Antilipidemic and Non-Steroidal Anti-Inflammatory Drug Residues on Functionalized Silica-Based Porous Materials in a Mixed Solute—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0045653515004622 (accessed on 26 August 2024).
- Bhattacharya, A.K.; Mandal, S.N.; Das, S.K. Adsorption of Zn(II) from aqueous solution by using different adsorbents. Chem. Eng. J. 2006, 123, 43–51. [Google Scholar] [CrossRef]
- Zheng, M.; Chen, J.; Zhang, L.; Cheng, Y.; Lu, C.; Liu, Y.; Singh, A.; Trivedi, M.; Kumar, A.; Liu, J. Metal Organic Frameworks as Efficient Adsorbents for Drugs from Wastewater. Mater. Today Commun. 2022, 31, 103514. [Google Scholar] [CrossRef]
- Mansouri, H.; Carmona, R.J.; Gomis-Berenguer, A.; Souissi-Najar, S.; Ouederni, A.; Ania, C.O. Competitive Adsorption of Ibuprofen and Amoxicillin Mixtures from Aqueous Solution on Activated Carbons. J. Colloid Interface Sci. 2015, 449, 252–260. [Google Scholar] [CrossRef]
- Huang, D.; Wu, J.; Wang, L.; Liu, X.; Meng, J.; Tang, X.; Tang, C.; Xu, J. Novel Insight into Adsorption and Co-Adsorption of Heavy Metal Ions and an Organic Pollutant by Magnetic Graphene Nanomaterials in Water. Chem. Eng. J. 2019, 358, 1399–1409. [Google Scholar] [CrossRef]
- Zhou, Y.; He, Y.; Xiang, Y.; Meng, S.; Liu, X.; Yu, J.; Yang, J.; Zhang, J.; Qin, P.; Luo, L. Single and Simultaneous Adsorption of Pefloxacin and Cu(II) Ions from Aqueous Solutions by Oxidized Multiwalled Carbon Nanotube. Sci. Total Environ. 2019, 646, 29–36. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Li, J.; Li, Y.; Xia, S.; Zhao, J.; Minale, T.M.; Gu, Z. Coadsorption of Tetracycline and Copper(II) onto Struvite Loaded Zeolite—An Environmentally Friendly Product Recovered from Swine Biogas Slurry. Chem. Eng. J. 2019, 371, 366–377. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, P.; Ye, L.; Xu, D. Progress of anaerobic membrane bioreactor in municipal wastewater treatment. Sci. Adv. Mater. 2023, 15, 1277–1298. [Google Scholar] [CrossRef]
- Akhtar, F.; Andersson, L.; Ogunwumi, S.; Hedin, N.; Bergström, L. Structuring adsorbents and catalysts by processing of porous powders. J. Eur. Ceram. Soc. 2014, 34, 1643–1666. [Google Scholar] [CrossRef]
- Velarde, L.; Nabavi, M.S.; Escalera, E.; Antti, M.-L.; Akhtar, F. Adsorption of heavy metals on natural zeolites: A review. Chemosphere 2023, 328, 138508. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.; Wu, P.; Zhu, Y.; Yang, L.; Zhu, N. Highly enhanced adsorption for the removal of Hg(II) from aqueous solution by Mercaptoethylamine/Mercaptopropyltrimethoxysilane functionalized vermiculites. J. Colloid Interface Sci. 2015, 445, 348–356. [Google Scholar] [CrossRef]
- Ul Mehdi, S.; Aravamudan, K. Adsorption of cadmium ions on silica coated metal organic framework. Mater. Today Proc. 2022, 61, 487–497. [Google Scholar] [CrossRef]
- Nabipour, H.; Rohani, S.; Batool, S.; Yusuff, A.S. An overview of the use of water-stable metal-organic frameworks in the removal of cadmium ion. J. Environ. Chem. Eng. 2023, 11, 109131. [Google Scholar] [CrossRef]
- Abdel-Magied, A.F.; Abdelhamid, H.N.; Ashour, R.M.; Fu, L.; Dowaidar, M.; Xia, W.; Forsberg, K. Magnetic Metal-Organic Frameworks for Efficient Removal of Cadmium(II), and Lead(II) from Aqueous Solution. J. Environ. Chem. Eng. 2022, 10, 107467. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Amira, M.F.; Seleim, S.M.; Mohamed, A.K. Amino-decorated magnetic metal-organic framework as a potential novel platform for selective removal of chromium (Vl), cadmium (II) and lead (II). J. Hazard. Mater. 2020, 381, 120979. [Google Scholar] [CrossRef]
- Kalantar, Z.; Ghanavati Nasab, S. Modeling and optimizing Cd(II) ions adsorption onto Corn Silk/Zeolite-Y composite from industrial effluents applying response surface methodology: Isotherm, kinetic, and reusability studies. J. Iran. Chem. Soc. 2022, 19, 4209–4221. [Google Scholar] [CrossRef]
- Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8) Using Different Solvents for Lead and Cadmium Adsorption|Applied Nanoscience. Available online: https://link.springer.com/article/10.1007/s13204-022-02680-7 (accessed on 26 August 2024).
- Mansoorianfar, M.; Nabipour, H.; Pahlevani, F.; Zhao, Y.; Hussain, Z.; Hojjati-Najafabadi, A.; Hoang, H.Y.; Pei, R. Recent Progress on Adsorption of Cadmium Ions from Water Systems Using Metal-Organic Frameworks (MOFs) as an Efficient Class of Porous Materials. Environ. Res. 2022, 214, 114113. [Google Scholar] [CrossRef] [PubMed]
- Yusuff, A.S.; Popoola, L.T.; Babatunde, E.O. Adsorption of cadmium ion from aqueous solutions by copper-based metal organic framework: Equilibrium modeling and kinetic studies. Appl. Water Sci. 2019, 9, 106. [Google Scholar] [CrossRef]
- Peng, Z.; Lin, X.; Zhang, Y.; Hu, Z.; Yang, X.; Chen, C.; Chen, H.; Li, Y.; Wang, J. Removal of Cadmium from Wastewater by Magnetic Zeolite Synthesized from Natural, Low-Grade Molybdenum. Sci. Total Environ. 2021, 772, 145355. [Google Scholar] [CrossRef]
- Abdelmoaty, A.S.; El-Wakeel, S.T.; Fathy, N.; Hanna, A.A. High Performance of UiO-66 Metal–Organic Framework Modified with Melamine for Uptaking of Lead and Cadmium from Aqueous Solutions. J. Inorg. Organomet. Polym. Mater. 2022, 32, 2557–2567. [Google Scholar] [CrossRef]
- Roushani, M.; Saedi, Z.; Baghelani, Y.M. Removal of cadmium ions from aqueous solutions using TMU-16-NH 2 metal organic framework. Environ. Nanotechnol. Monit. Manag. 2017, 7, 89–96. [Google Scholar] [CrossRef]
- Liang, Z.; Gao, Q.; Wu, Z.; Gao, H. Removal and kinetics of cadmium and copper ion adsorption in aqueous solution by zeolite NaX synthesized from coal gangue. Environ. Sci. Pollut. Res. 2022, 29, 84651–84660. [Google Scholar] [CrossRef]
- Shawabkeh, R.; Al-Harahsheh, A.; Hami, M.; Khlaifat, A. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater. Fuel 2004, 83, 981–985. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, G.; Chen, H.; Hu, X.; Niu, Z.; Ma, S. Functionalized Metal–Organic Framework as a New Platform for Efficient and Selective Removal of Cadmium(II) from Aqueous Solution. J. Mater. Chem. A 2015, 3, 15292–15298. [Google Scholar] [CrossRef]
- Jorfi, S.; Shooshtarian, M.R.; Pourfadakari, S. Decontamination of cadmium from aqueous solutions using zeolite decorated by Fe3O4 nanoparticles: Adsorption modeling and thermodynamic studies. Int. J. Environ. Sci. Technol. 2020, 17, 273–286. [Google Scholar] [CrossRef]
- Gutiérrez-Segura, E.; Solache-Ríos, M.; Colín-Cruz, A.; Fall, C. Adsorption of cadmium by Na and Fe modified zeolitic tuffs and carbonaceous material from pyrolyzed sewage sludge. J. Environ. Manag. 2012, 97, 6–13. [Google Scholar] [CrossRef]
- Merrikhpour, H.; Jalali, M. Comparative and competitive adsorption of cadmium, copper, nickel, and lead ions by Iranian natural zeolite. Clean Technol. Environ. Policy 2013, 15, 303–316. [Google Scholar] [CrossRef]
- El-Shafie, A.S.; Rahman, E.; GadelHak, Y.; Mahmoud, R.; El-Azazy, M. Techno-economic assessment of waste mandarin biochar as a green adsorbent for binary dye wastewater effluents of methylene blue and basic fuchsin: Lab- and large-scale investigations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 306, 123621. [Google Scholar] [CrossRef] [PubMed]
- Treatment of CrVI-Containing Mg(OH)2 Nanowaste—Liu—2008—Angewandte Chemie—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/ange.200800172 (accessed on 26 August 2024).
- GadelHak, Y.; Salama, E.; Abd-El Tawab, S.; Mouhmed, E.A.; Alkhalifah, D.H.M.; Hozzein, W.N.; Mohaseb, M.; Mahmoud, R.K.; Amin, R.M. Waste Valorization of a Recycled ZnCoFe Mixed Metal Oxide/Ceftriaxone Waste Layered Nanoadsorbent for Further Dye Removal. ACS Omega 2022, 7, 44103–44115. [Google Scholar] [CrossRef] [PubMed]
- Microorganisms|Free Full-Text|Controlling Multi-Drug-Resistant Traits of Salmonella Obtained from Retail Poultry Shops Using Metal–Organic Framework (MOF) as a Novel Technique. Available online: https://www.mdpi.com/2076-2607/11/10/2506 (accessed on 26 August 2024).
- Nagalakshmi, G.; Nandeesh, I.M.; Yallur, B.C.; Adimule, V.; Batakurki, S. Synthesis and Optical Properties of Copper Terephthalate Metal Organic Frame Works. Eng. Chem. 2023, 2, 3–11. [Google Scholar] [CrossRef]
- Gokila, N.; Muthumalai, K.; Haldorai, Y.; Kumar, R.T.R. Electrochemical Non-enzymatic sensor based on Co-H2ABDC Metal Organic Framework for detection of glyphosate. Chem. Phys. Lett. 2022, 795, 139481. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the “Debye-Scherrer equation”. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.C.; Bandyopadhyay, B.; Mosley, J.D.; Duncan, M.A. IR spectroscopy of protonation in benzene-water nanoclusters: Hydronium, zundel, and eigen at a hydrophobic interface. J. Am. Chem. Soc. 2012, 134, 13046–13055. [Google Scholar] [CrossRef]
- Sarabadan, M.; Bashiri, H.; Mousavi, S.M. Adsorption of crystal violet dye by a zeolite-montmorillonite nano-adsorbent: Modelling, kinetic and equilibrium studies. Clay Miner. 2019, 54, 357–368. [Google Scholar] [CrossRef]
- Water|Free Full-Text|Chromium Removal from Aqueous Solution Using Natural Clinoptilolite. Available online: https://www.mdpi.com/2073-4441/15/9/1667 (accessed on 26 August 2024).
- Naikoo, R.A.; Bhat, S.U.; Mir, M.A.; Tomar, R.; Khanday, W.A.; Dipak, P.; Tiwari, D.C. Polypyrrole and Its Composites with Various Cation Exchanged Forms of Zeolite X and Their Role in Sensitive Detection of Carbon Monoxide. RSC Adv. 2016, 6, 99202–99210. [Google Scholar] [CrossRef]
- Dehghan, A.; Zarei, A.; Jaafari, J.; Shams, M.; Khaneghah, A.M. Tetracycline removal from aqueous solutions using zeolitic imidazolate frameworks with different morphologies: A mathematical modeling. Chemoshphere 2019, 217, 250–260. [Google Scholar] [CrossRef]
- Karge, H.G.; Weitkamp, J. (Eds.) Characterization I; Molecular Sieves; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–540. [Google Scholar]
- Rezaei Kahkha, M.R.; Oveisi, A.R.; Kaykhaii, M.; Rezaei Kahkha, B. Determination of carbamazepine in urine and water samples using amino-functionalized metal–organic framework as sorbent. Chem. Cent. J. 2018, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Matin, M.A.; Bhattacharjee, S.; Shaikh, M.A.A.; Debnath, T.; Aziz, M.A. A Density Functional Theory (DFT) Investigation on the Structure and Spectroscopic Behavior of 2-Aminoterephthalic Acid and Its Sodium Salts. Green Sustain. Chem. 2020, 10, 39. [Google Scholar] [CrossRef]
- Mehdinia, A.; Mollazadeh-Moghaddam, A.; Jabbari, A. Fabrication of Silver–2–Aminoterephthalic Acid Coordination Polymer-Coated Fe3O4 for Effective Removal of Lead from Aqueous Media. Int. J. Environ. Res. 2021, 15, 631–644. [Google Scholar] [CrossRef]
- Isaeva, V.I.; Timofeeva, M.N.; Lukoyanov, I.A.; Gerasimov, E.Y.; Panchenko, V.N.; Chernyshev, V.V.; Glukhov, L.M.; Kustov, L.M. Novel MOF Catalysts Based on Calix[4]Arene for the Synthesis of Propylene Carbonate from Propylene Oxide and CO2. J. CO2 Util. 2022, 66, 102262. [Google Scholar] [CrossRef]
- Natarajan, T.S.; Bajaj, H.C.; Tayade, R.J. Preferential adsorption behavior of methylene blue dye onto surface hydroxyl group enriched TiO2 nanotube and its photocatalytic regeneration. J. Colloid Interface Sci. 2014, 433, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Desaphy, J.-F.; Farinato, A.; Altamura, C.; De Bellis, M.; Imbrici, P.; Tarantino, N.; Caccia, C.; Melloni, E.; Padoani, G.; Vailati, S.; et al. Safinamide’s Potential in Treating Nondystrophic Myotonias: Inhibition of Skeletal Muscle Voltage-Gated Sodium Channels and Skeletal Muscle Hyperexcitability In Vitro and In Vivo. Exp. Neurol. 2020, 328, 113287. [Google Scholar] [CrossRef]
- Chauhan, D.; Jaiswal, M.; Sankararamakrishnan, N. Removal of cadmium and hexavalent chromium from electroplating waste water using thiocarbamoyl chitosan. Carbohydr. Polym. 2012, 88, 670–675. [Google Scholar] [CrossRef]
- Purna Chandra Rao, G.; Satyaveni, S.; Ramesh, A.; Seshaiah, K.; Murthy, K.S.N.; Choudary, N.V. Sorption of Cadmium and Zinc from Aqueous Solutions by Zeolite 4A, Zeolite 13X and Bentonite. J. Environ. Manage. 2006, 81, 265–272. [Google Scholar] [CrossRef]
- Vedula, S.S.; Yadav, G.D. Wastewater treatment containing methylene blue dye as pollutant using adsorption by chitosan lignin membrane: Development of membrane, characterization and kinetics of adsorption. J. Indian Chem. Soc. 2022, 99, 100263. [Google Scholar] [CrossRef]
- Ohale, P.E.; Onu, C.E.; Ohale, N.J.; Oba, S.N. Adsorptive kinetics, isotherm and thermodynamic analysis of fishpond effluent coagulation using chitin derived coagulant from waste Brachyura shell. Chem. Eng. J. Adv. 2020, 4, 100036. [Google Scholar] [CrossRef]
- Ma, Y.; Jamili, A. Modeling the density profiles and adsorption of pure and mixture hydrocarbons in shales. J. Unconv. Oil Gas Resour. 2016, 14, 128–138. [Google Scholar] [CrossRef]
- Podder, M.S.; Majumder, C.B. Studies on the removal of As(III) and As(V) through their adsorption onto granular activated carbon/MnFe2O4 composite: Isotherm studies and error analysis. Compos. Interfaces 2016, 23, 327–372. [Google Scholar] [CrossRef]
- Syafiuddin, A.; Salmiati, S.; Jonbi, J.; Fulazzaky, M.A. Application of the kinetic and isotherm models for better understanding of the behaviors of silver nanoparticles adsorption onto different adsorbents. J. Environ. Manag. 2018, 218, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Ramadoss, R.; Subramaniam, D. Removal of divalent nickel from aqueous solution using blue-green marine algae: Adsorption modeling and applicability of various isotherm models. Sep. Sci. Technol. 2019, 54, 943–961. [Google Scholar] [CrossRef]
- Fritz, W.; Schluender, E.-U. Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activated carbon. Chem. Eng. Sci. 1974, 29, 1279–1282. [Google Scholar] [CrossRef]
- Renewable Conversion of Coal Gangue to 13-X Molecular Sieve for Cd2+-Containing Wastewater Adsorption Performance|Rare Metals. Available online: https://link.springer.com/article/10.1007/s12598-023-02461-3 (accessed on 26 August 2024).
- Lin, G.; Zeng, B.; Li, J.; Wang, Z.; Wang, S.; Hu, T.; Zhang, L. A Systematic Review of Metal Organic Frameworks Materials for Heavy Metal Removal: Synthesis, Applications and Mechanism. Chem. Eng. J. 2023, 460, 141710. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Ebelegi, A.N.; Ayawei, N.; Wankasi, D. Interpretation of adsorption thermodynamics and kinetics. Open J. Phys. Chem. 2020, 10, 166–182. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Azizian, S.; Douven, S. Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review. BioResources 2019, 14, 7582–7626. [Google Scholar] [CrossRef]
- Verma, B. Phytoremediation of Heavy Metals, Soil Health Impacts and Productivity of Calendula (Calendula officinalis L.) under Irrigation with Heavy Metals Spiked Wastewater; Water Science and Technology Icar-Indian Agricultural Research Institute: New Delhi, India, 2022. [Google Scholar]
- Bezerra de Araujo, C.M.; Wernke, G.; Ghislandi, M.G.; Diório, A.; Vieira, M.F.; Bergamasco, R.; Alves da Motta Sobrinho, M.; Rodrigues, A.E. Continuous Removal of Pharmaceutical Drug Chloroquine and Safranin-O Dye from Water Using Agar-Graphene Oxide Hydrogel: Selective Adsorption in Batch and Fixed-Bed Experiments. Environ. Res. 2023, 216, 114425. [Google Scholar] [CrossRef] [PubMed]
- Metal Organic Framework–Derived Recyclable Magnetic Coral Co@Co3O4/C for Adsorptive Removal of Antibiotics from Wastewater|Environmental Science and Pollution Research. Available online: https://link.springer.com/article/10.1007/s11356-023-25846-4 (accessed on 26 August 2024).
- Abdel-Hady, E.E.; Mahmoud, R.; Hafez, S.H.M.; Mohamed, H.F.M. Hierarchical ternary ZnCoFe layered double hydroxide as efficient adsorbent and catalyst for methanol electrooxidation. J. Mater. Res. Technol. 2022, 17, 1922–1941. [Google Scholar] [CrossRef]
- GadelHak, Y.; El-Azazy, M.; Shibl, M.F.; Mahmoud, R.K. Cost estimation of synthesis and utilization of nano-adsorbents on the laboratory and industrial scales: A detailed review. Sci. Total Environ. 2023, 875, 162629. [Google Scholar] [CrossRef] [PubMed]
Adsorbent | pH | Equilibrium Time (min) | Adsorbent Dose | Removal Percent (%) | qmax (mg/g) | Reference |
---|---|---|---|---|---|---|
TMU-5 metal organic framework | 7 | - | 15 mg/L | - | 1929 | [28] |
MoS4-Cu-BTC | - | 30 | - | - | 833.3 | [29] |
CaFu-MOF | 7 | 350 | - | - | 781.2 | [29] |
Fe3O4@UiO-66–NH2 | 6 | 300 | - | - | 714.3 | [30] |
MIL-53(Fe)-1 | - | 50 | - | - | 714.28 | [31] |
Amino-decorated magnetic metal-organic framework | 7 | 20 | 0.05 g | - | 693 | [31] |
silica-coated metal organic framework | 6 | - | 15 mg/L | - | 634 | [28] |
Co/Ni/Cu-NH2BDC MOF/natural Zeolite ore | 9 | 25 | 550.69 | This work | ||
PAN/chitosan/UiO-66-NH2 nanofibers | - | 90 | - | - | 415.6 | [29] |
UiO-66@mSi-SO3H | 7 | 100 mg/L | - | 410 | [28] | |
Fe3O4@ZIF-8 | 6 | 300 | - | - | 370 | [30] |
Corn Silk/Corn Silk/Zeolite-Y | 5 | 7 | 0.009 g | - | 315.27 | [32] |
zeolitic imidazolate framework-8 | 7 | 240 | 20 mg | 80 | 312.5 | [33] |
Bimetallic Ag–Fe MOF | 7 | 120 | - | - | 265 | [34] |
zeolitic imidazolate framework-8 | 7 | 15 | 20 mg | 40 | 263.16 | [33] |
Cu-MOF | - | 60 | 0.5 g | 98.62 | 219.05 | [35] |
magnetic zeolite | 5 | 240 | - | - | 204.2 | [36] |
UiO-66 MOF modified with Melamine | 5 | 50 | 1 g/L | 84 | 146.6 | [37] |
TMU-16-NH2 MOF | 6 | 30 | 0.05 g | 98.91 | 126.6 | [38] |
zeolite NaX | 5 | 120 | 2 g/L | >90% | 100.11 | [39] |
Zeolite from oil shale ash | - | - | - | - | 95.6 | [40] |
SO3H Functionalized Cu3(BTC)2 MOF | 6 | 10 | 1 mg/mL | 99 | 88.7 | [41] |
natural clinoptilolite zeolite decorated by Fe3O4 nanoparticles | 6 | 60 | 1 g/L | 68.9 | 19.9 | [42] |
Na- and Fe-modified zeolitic tuffs | 6 | 420 | - | - | 18 | [43] |
Iranian natural zeolite | 3 | 1440 | 1 g | >90% | 4 | [44] |
Nanomaterial | Surface Area (m2/g) | Pore Volume (cm3 g−1) | Pore Size (nm) |
---|---|---|---|
zeolite | 24.63 | 0.091 | 14.7 |
zeolite/MOF | 41.86 | 0.173 | 16.5 |
Isotherm Models | Parameter | Value | |
---|---|---|---|
Zeolite | Zeolite/MOF | ||
Langmuir | Qmax (mg/g) | 88.91 | 500.69 |
KL (L/mg) | 0.003 | 0.00042 | |
R2 | 0.998 | 0.999 | |
Freundlich | 1/n | 0.79 | 0.79 |
KF | 0.52 | 0.52 | |
R2 | 0.994 | 0.992 | |
Redlich–Peterson | KR | 0.75 | 0.3 |
aR | 0.007 | 0.0017 | |
R2 | 0.887 | 0.985 | |
Temkin | AT (L/mg) | 2.612330 | 1.612330 |
bT | 390.6960 | 600.6960 | |
R2 | 0.715 | 0.858 | |
Sips | qm (mg/g) | 64.03 | 23.76 |
Ks | 0.006 | 0.01 | |
1/n | 1.01 | 1.24 | |
R2 | 0.978 | 0.928 | |
Langmuir–Freundlich | qMLF (mg/g) | 62.19 | 19.32 |
KLF (L/mg) | 0.0063 | 0.027 | |
MLF | 1.13 | 6 | |
R2 | 0.999 | 0.956 | |
Toth | Ke | 0.5 | 0.55 |
KL | 0.00001 | 0.007 | |
N | 2.3 | 1.2 | |
R2 | 0.999 | 0.899 | |
Kahn | Qm (mg/g) | 34.32 | 31.11 |
bK | 0.006 | 0.006 | |
aK | 0.32 | 0.18 | |
R2 | 0.986 | 0.985 | |
Fritz–Schlunder | qmFSS (mg/g) | 19.17 | 55.19 |
K1 | 0.67 | 0.04 | |
K2 | 3.29 | 0.79 | |
m1 | 0.47 | 0.58 | |
m2 | 0.00006 | 0 | |
R2 | 0.936 | 0.952 |
Isotherm Models | Parameter | Value | |
---|---|---|---|
Zeolite | Zeolite/MOF | ||
Langmuir | Qmax (mg/g) | 500.69 | 550.69 |
KL (L/mg) | 0.0021 | 0.0021 | |
R2 | 0.970 | 0.962 | |
Freundlich | 1/n | 0.67 | 1.49 |
KF | 1.43 | 0.71 | |
R2 | 0.987 | 0.923 | |
Temkin | AT (L/mg) | 1.15 | 1.05 |
bT | 4.31 | 4.15 | |
R2 | 0.981 | 0.646 | |
Redlich–Peterson | KR | 0.91 | 1.18 |
aR | 0.00001 | 0.0000001 | |
R2 | 0.822 | 0.847 | |
Langmuir–Freundlich | qMLF (mg/g) | 5.52 | 34.47 |
KLF (L/mg) | 0.39 | 0.089 | |
MLF | 1.09 | 1.61 | |
R2 | 0.999 | 0.922 | |
Sips | qm (mg/g) | 5.52 | 42.5 |
Ks | 0.37 | 0.02 | |
1/n | 1.09 | 1.6 | |
R2 | 0.999 | 0.923 | |
Toth | Ke | 2.22 | 8.5 |
KL | 0.17 | 0.00012 | |
N | 1.3 | 7.3 | |
R2 | 0.999 | 0.852 | |
Kahn | Qm (mg/g) | 180.1 | 79.1 |
bK | 0.006 | 0.014 | |
aK | 0.29 | 0 | |
R2 | 0.986 | 0.875 | |
Fritz–Schlunder | qmFSS (mg/g) | 13.9 | 9.84 |
K1 | 0.11 | 0.077 | |
K2 | 0.068 | 0.068 | |
m1 | 0.67 | 1.49 | |
m2 | 00.93 | 0 | |
R2 | 0.987 | 0.923 |
Function | Lang | Fran | Lan-Fru | Toth | Sips | Baudu |
---|---|---|---|---|---|---|
SSE/ERRSQ | 10.79858 | 11.1424 | 15.76554 | 2.280182 | 2428.948 | 120.6874 |
X2 | 0.729908 | 2.394497 | 1.41119 | 0.116225 | 72.10261 | 5.226423 |
R2 | 0.996188 | 0.995554 | 0.993709 | 0.999195 | 0.030706 | 0.9574 |
Adjusted R2 | 0.989855 | 0.987578 | 0.978049 | 0.997426 | −0.74835 | 0.83323 |
MAE | 0.810396 | 1.019874 | 0.870645 | 0.380207 | 12.64043 | 2.652084 |
MAPE/ARE | 15.80149 | 52.83145 | 11.676 | 5.258558 | 48.56495 | 30.09969 |
RMSE | 1.095373 | 1.18017 | 1.403814 | 0.503342 | 17.42465 | 3.661927 |
RMSE_2 | 1.242036 | 1.362742 | 1.775699 | 0.616466 | 22.04064 | 4.912991 |
NRMSE | 0.07872 | 0.107368 | 0.127715 | 0.036173 | 1.585245 | 0.263167 |
HYBRID | 20.3162 | 70.44194 | 18.6816 | 7.887836 | 77.70393 | 54.17944 |
HYBRID_2 | 10.42725 | 39.90828 | 28.22381 | 1.937082 | 1442.052 | 104.5285 |
HYBRID_3 | 0.729908 | 2.394497 | 1.41119 | 0.116225 | 72.10261 | 5.226423 |
MPSD | 25.10817 | 95.37887 | 21.69583 | 8.622271 | 70.97156 | 49.45509 |
MPSD_2 | 0.441294 | 5.458277 | 0.235355 | 0.044606 | 2.518481 | 1.222903 |
SAE/EABS | 7.293566 | 8.15899 | 6.965158 | 3.421867 | 101.1235 | 23.86876 |
RMS | 22.14333 | 82.60052 | 17.15206 | 7.040055 | 56.10795 | 36.86164 |
NSD | 0.221433 | 0.826005 | 0.171521 | 0.070401 | 0.561079 | 0.368616 |
ARE_2 | 4.903269 | 68.22847 | 2.941933 | 0.495624 | 31.48102 | 13.58781 |
ARE_3 | 7.381109 | 29.2037 | 6.06417 | 2.346685 | 19.83716 | 12.28721 |
Function | Lang | Fran | Lan-Fru | Sips | Khan | Baudu | Toth |
---|---|---|---|---|---|---|---|
SSE/ERRSQ | 0.073115 | 5.544945 | 0.023627 | 0.02859 | 10.00939 | 0.002155 | 0.003454 |
X2 | 0.008005 | 1.640773 | 0.021021 | 0.024026 | 0.470037 | 0.002722 | 0.000346 |
R2 | 0.99991 | 0.993175 | 0.999971 | 0.999965 | 0.987679 | 0.999997 | 0.999996 |
Adjusted R2 | 0.99973 | 0.979594 | 0.999884 | 0.999859 | 0.95102 | 0.999984 | 0.999983 |
MAE | 0.073833 | 0.677543 | 0.049058 | 0.052634 | 0.792977 | 0.014302 | 0.015911 |
MAPE/ARE | 2.485364 | 92.30731 | 11.54097 | 12.32377 | 4.118834 | 4.164361 | 0.838876 |
RMSE | 0.102201 | 0.89002 | 0.058097 | 0.063908 | 1.195789 | 0.017545 | 0.022214 |
RMSE_2 | 0.120926 | 1.053085 | 0.076856 | 0.084542 | 1.581881 | 0.026801 | 0.029387 |
NRMSE | 0.019267 | 0.167784 | 0.010952 | 0.012048 | 0.225427 | 0.003308 | 0.004188 |
HYBRID | 3.47951 | 129.2302 | 20.1967 | 21.5666 | 7.207959 | 9.716842 | 1.468033 |
HYBRID_2 | 0.160104 | 32.81547 | 0.525521 | 0.600651 | 11.75092 | 0.090731 | 0.00864 |
HYBRID_3 | 0.008005 | 1.640773 | 0.021021 | 0.024026 | 0.470037 | 0.002722 | 0.000346 |
MPSD | 3.606687 | 158.6748 | 22.77803 | 24.33586 | 7.571163 | 9.513039 | 1.482882 |
MPSD_2 | 0.006504 | 12.58885 | 0.207535 | 0.236894 | 0.022929 | 0.027149 | 0.00088 |
SAE/EABS | 0.516831 | 4.742802 | 0.343404 | 0.368441 | 5.550836 | 0.100114 | 0.111375 |
RMS | 3.048207 | 134.1047 | 17.21857 | 18.39618 | 5.723261 | 6.227746 | 1.120953 |
NSD | 0.030482 | 1.341047 | 0.172186 | 0.183962 | 0.057233 | 0.062277 | 0.01121 |
ARE_2 | 0.092916 | 179.8407 | 2.964791 | 3.384194 | 0.327557 | 0.387848 | 0.012565 |
ARE_3 | 1.152114 | 50.68681 | 6.508007 | 6.953102 | 2.163189 | 2.353867 | 0.42368 |
Function | Lang | Fran | Lan-fru | Sips | Khan | Baudu | Toth |
---|---|---|---|---|---|---|---|
SSE/ERRSQ | 0.631032 | 0.066719 | 0.005373 | 0.005373 | 0.023602 | 0.007703 | 0.004007 |
X2 | 0.401996 | 0.053206 | 0.002827 | 0.002826 | 0.021668 | 0.004508 | 0.002607 |
R2 | 0.944472 | 0.994129 | 0.999527 | 0.999527 | 0.997923 | 0.999322 | 0.999647 |
Adjusted R2 | 0.784055 | 0.976585 | 0.996219 | 0.996219 | 0.983403 | 0.994579 | 0.99718 |
MAE | 0.345894 | 0.10486 | 0.026754 | 0.026736 | 0.05676 | 0.03204 | 0.023335 |
MAPE/ARE | 25.07276 | 8.765816 | 1.560858 | 1.55893 | 5.491793 | 2.2793 | 1.605197 |
RMSE | 0.355256 | 0.115516 | 0.032781 | 0.032781 | 0.068704 | 0.03925 | 0.028308 |
RMSE_2 | 0.458633 | 0.14913 | 0.051831 | 0.051831 | 0.108631 | 0.06206 | 0.044759 |
NRMSE | 0.512145 | 0.16653 | 0.047258 | 0.047258 | 0.099046 | 0.056584 | 0.04081 |
HYBRID | 41.78793 | 14.60969 | 3.902146 | 3.897326 | 13.72948 | 5.698251 | 4.012993 |
HYBRID_2 | 13.39987 | 1.773532 | 0.141374 | 0.141324 | 1.083419 | 0.225414 | 0.130363 |
HYBRID_3 | 0.401996 | 0.053206 | 0.002827 | 0.002826 | 0.021668 | 0.004508 | 0.002607 |
MPSD | 35.21014 | 15.38348 | 2.90513 | 2.903674 | 11.742 | 4.605424 | 3.155022 |
MPSD_2 | 0.371926 | 0.070995 | 0.001688 | 0.001686 | 0.027575 | 0.004242 | 0.001991 |
SAE/EABS | 1.72947 | 0.524301 | 0.133772 | 0.133678 | 0.283799 | 0.160201 | 0.116673 |
RMS | 27.27366 | 11.916 | 1.837366 | 1.836445 | 7.426292 | 2.912726 | 1.995411 |
NSD | 0.272737 | 0.11916 | 0.018374 | 0.018364 | 0.074263 | 0.029127 | 0.019954 |
ARE_2 | 7.438525 | 1.419909 | 0.033759 | 0.033725 | 0.551498 | 0.08484 | 0.039817 |
ARE_3 | 12.19715 | 5.328995 | 0.821695 | 0.821283 | 3.321139 | 1.302611 | 0.892375 |
Function | Lang | Fran | Lan-Fru | Sips | Baudu |
---|---|---|---|---|---|
SSE/ERRSQ | 0.748248 | 0.4551 | 0.458208 | 0.457622 | 0.455174 |
X2 | 0.68922 | 0.506278 | 0.522122 | 0.519105 | 0.506484 |
R2 | 0.937409 | 0.961931 | 0.961671 | 0.96172 | 0.961925 |
Adjusted R2 | 0.757472 | 0.850623 | 0.699245 | 0.699622 | 0.701197 |
MAE | 0.369643 | 0.266439 | 0.263353 | 0.26411 | 0.266297 |
MAPE/ARE | 33.05395 | 27.58417 | 27.57689 | 27.59684 | 27.57782 |
RMSE | 0.386846 | 0.301695 | 0.302724 | 0.30253 | 0.30172 |
RMSE_2 | 0.499416 | 0.389487 | 0.478648 | 0.478342 | 0.477061 |
NRMSE | 0.563751 | 0.439661 | 0.441159 | 0.440877 | 0.439696 |
HYBRID | 55.08992 | 45.97362 | 68.94222 | 68.99209 | 68.94454 |
HYBRID_2 | 22.97401 | 16.87592 | 26.10608 | 25.95527 | 25.32418 |
HYBRID_3 | 0.68922 | 0.506278 | 0.522122 | 0.519105 | 0.506484 |
MPSD | 52.01103 | 50.45494 | 63.20967 | 62.93608 | 61.81552 |
MPSD_2 | 0.811544 | 0.76371 | 0.799092 | 0.79219 | 0.764232 |
SAE/EABS | 1.848213 | 1.332195 | 1.316763 | 1.320549 | 1.331485 |
RMS | 40.28757 | 39.08223 | 39.9773 | 39.80427 | 39.09557 |
NSD | 0.402876 | 0.390822 | 0.399773 | 0.398043 | 0.390956 |
ARE_2 | 16.23089 | 15.27421 | 15.98185 | 15.8438 | 15.28464 |
ARE_3 | 18.01715 | 17.47811 | 17.87839 | 17.80101 | 17.48407 |
Model | Parameters | Values | |
---|---|---|---|
Zeolite | Zeolite/MOF | ||
Pseudo first-order | K1 (min−1) | 0.02 | 8.06589 × 108 |
qe (mg/g) | 0.29 | 0.82 | |
Adjusted R2 | 0.76 | 0.74 | |
Reduced chi-square | 0.002 | 0.02 | |
R2 | 0.78 | 0.77 | |
Pseudo second-order | K2 (g/(mg min)) | 0.1 | 4.48995 × 1044 |
qe (mg/g) | 0.32 | 0.82 | |
Adjusted R2 | 0.82 | 0.75 | |
Reduced chi-square | 0.001 | 0.022 | |
R2 | 0.84 | 0.77 | |
Intraparticle diffusion | Kip | 0.06 | 0.013 |
Cip | 0.017 | 0.0011 | |
R2 | 0.983 | 0.994 | |
Reduced chi-square | 0.001 | 0.01 | |
Adjusted R2 | 0.981 | 0.993 | |
Mixed first- and second-order | K (g/(mg min)) | 0.0048 | 0.25 |
qe (mg/g) | 0.39 | 0.89 | |
f2 | 0.098 | 0.03 | |
R2 | 0.967 | 0.950 | |
Reduced chi-square | 0.003 | 0.099 | |
Adjusted R2 | 0.958 | 0.942 | |
Avrami model | Kav (min−1) | 0.012 | 0.23 |
nav | 1.43 | 0.23 | |
qe (mg/g) | 0.29 | 0.88 | |
R2 | 0.769 | 0.949 | |
Reduced chi-square | 0.005 | 0.03 | |
Adjusted R2 | 0.743 | 0.941 |
Model | Parameters | Values | |
---|---|---|---|
Zeolite | Zeolite/MOF | ||
Pseudo first-order | K1 (min−1) | 0.28 ± 0.05 | 2.23 ± 0.07 |
qe (mg/g) | 3.84 | 1.04 × 1011 | |
Adjusted R2 | 0.97 | 0.95 | |
Reduced chi-square | 0.06 | 0.034 | |
R2 | 0.97 | 0.96 | |
Pseudo second-order | K2 (g/(mg min)) | 0.14 | 0.304 ± 0.04 |
qe (mg/g) | 4.04 | 2.4 ± 0.03 | |
Adjusted R2 | 0.993 | 0.99 | |
Reduced chi-square | 0.012 | 0.0024 | |
R2 | 0.994 | 0.99 | |
Intraparticle diffusion | Kip | 3.13 | 0.013 |
Cip | 0.08 | 0.001 | |
R2 | 0.992 | 0.994 | |
Reduced chi-square | 0.009 | 0.01 | |
Adjusted R2 | 0.990 | 0.993 | |
Mixed first- and second-order | K (g/(mg min)) | 0.0048 | 0.33 |
qe (mg/g) | 0.39 | 2.31 | |
f2 | 0.098 | 0.0064 | |
R2 | 0.967 | 0.982 | |
Reduced chi-square | 0.0001 | 0.00006 | |
Adjusted R2 | 0.960 | 0.979 | |
Avrami model | Kav (min−1) | 0.012 | 0.29 |
nav | 1.43 | 1.16 | |
qe (mg/g) | 0.29 | 2.31 | |
R2 | 0.769 | 0.975 | |
Reduced chi-square | 0.0005 | 0.0003 | |
Adjusted R2 | 0.722 | 0.971 |
Drug | T (K) | %R | ΔG° (KJ/mol) | ΔH° (KJ/mol) | ΔS° (J/mol K) |
---|---|---|---|---|---|
Safinamide | 298 | 99 | −13.1021 | −118.973 | −365.7329 |
308 | 80 | −5.32485 | |||
318 | 56 | −2.47018 | |||
328 | 54 | −2.32746 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelazeem, R.; Younes, H.A.; Eldin, Z.E.; Allam, A.A.; Rudayni, H.A.; Othman, S.I.; Farghali, A.A.; Mahmoud, H.M.; Mahmoud, R. A Selective, Efficient, Facile, and Reusable Natural Clay/Metal Organic Framework as a Promising Adsorbent for the Removal of Drug Residue and Heavy Metal Ions. Colloids Interfaces 2024, 8, 50. https://doi.org/10.3390/colloids8050050
Abdelazeem R, Younes HA, Eldin ZE, Allam AA, Rudayni HA, Othman SI, Farghali AA, Mahmoud HM, Mahmoud R. A Selective, Efficient, Facile, and Reusable Natural Clay/Metal Organic Framework as a Promising Adsorbent for the Removal of Drug Residue and Heavy Metal Ions. Colloids and Interfaces. 2024; 8(5):50. https://doi.org/10.3390/colloids8050050
Chicago/Turabian StyleAbdelazeem, Rania, Heba A. Younes, Zienab E. Eldin, Ahmed A. Allam, Hassan Ahmed Rudayni, Sarah I. Othman, Ahmed A. Farghali, Hamada M. Mahmoud, and Rehab Mahmoud. 2024. "A Selective, Efficient, Facile, and Reusable Natural Clay/Metal Organic Framework as a Promising Adsorbent for the Removal of Drug Residue and Heavy Metal Ions" Colloids and Interfaces 8, no. 5: 50. https://doi.org/10.3390/colloids8050050
APA StyleAbdelazeem, R., Younes, H. A., Eldin, Z. E., Allam, A. A., Rudayni, H. A., Othman, S. I., Farghali, A. A., Mahmoud, H. M., & Mahmoud, R. (2024). A Selective, Efficient, Facile, and Reusable Natural Clay/Metal Organic Framework as a Promising Adsorbent for the Removal of Drug Residue and Heavy Metal Ions. Colloids and Interfaces, 8(5), 50. https://doi.org/10.3390/colloids8050050