Next Issue
Volume 8, December
Previous Issue
Volume 8, August
 
 

Colloids Interfaces, Volume 8, Issue 5 (October 2024) – 10 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
15 pages, 1257 KiB  
Article
The Potential of Colloidal Systems Based on Carbamate-Containing Hexadecylpiperidinium Surfactants in Biomedical Applications
by Rushana Kushnazarova, Alla Mirgorodskaya, Dmitry Bekrenev, Denis Kuznetsov, Anna Lyubina, Alexandra Voloshina and Lucia Zakharova
Colloids Interfaces 2024, 8(5), 57; https://doi.org/10.3390/colloids8050057 - 17 Oct 2024
Viewed by 741
Abstract
New hexadecylpiperidinium surfactants, containing one or two butylcarbamate fragments, were synthesized. The antimicrobial activity, toxicity, aggregation behavior in aqueous solutions, and solubilization capacity of these surfactants towards the hydrophobic drug ibuprofen were characterized. These surfactants demonstrated a high antimicrobial activity against a wide [...] Read more.
New hexadecylpiperidinium surfactants, containing one or two butylcarbamate fragments, were synthesized. The antimicrobial activity, toxicity, aggregation behavior in aqueous solutions, and solubilization capacity of these surfactants towards the hydrophobic drug ibuprofen were characterized. These surfactants demonstrated a high antimicrobial activity against a wide range of pathogenic bacteria, including both Gram-positive and Gram-negative strains, as well as fungi. By forming mixed-micellar compositions of the cationic surfactant 1-CB(Bu)-P-16 and the nonionic surfactant Brij®35, highly functional and low-toxic formulations were obtained. Furthermore, the transition from mixed micelles to niosomes was accomplished, enhancing their potential as drug delivery systems. Niosomes were found to be less toxic compared to mixed micelles, while also increasing the solubility of ibuprofen in water. The modification of niosomes with cationic surfactants made it possible to increase the stability of the system and improve the solubility of the drug. The data obtained indicate that these new carbamate-containing hexadecylpiperidinium surfactants have significant potential in biomedical applications, particularly in the formulation of advanced drug delivery systems. Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces: 2nd Edition)
Show Figures

Graphical abstract

20 pages, 3892 KiB  
Article
Exploring the Antifungal Effectiveness of a Topical Innovative Formulation Containing Voriconazole Combined with Pinus sylvestris L. Essential Oil for Onychomycosis
by Safaa Halool Mohammed Al-Suwaytee, Olfa Ben Hadj Ayed, Raja Chaâbane-Banaoues, Tahsine Kosksi, Maytham Razaq Shleghm, Leila Chekir-Ghedira, Hamouda Babba, Souad Sfar and Mohamed Ali Lassoued
Colloids Interfaces 2024, 8(5), 56; https://doi.org/10.3390/colloids8050056 - 17 Oct 2024
Viewed by 791
Abstract
(1) Background: The present study aimed to assess the antifungal effectiveness of a topical innovative formulation containing the association of an antifungal agent, voriconazole (VCZ), and the essential oil of Pinus sylvestris L. (PSEO). (2) Methods: Pseudo-ternary phase diagram and D-optimal mixture design [...] Read more.
(1) Background: The present study aimed to assess the antifungal effectiveness of a topical innovative formulation containing the association of an antifungal agent, voriconazole (VCZ), and the essential oil of Pinus sylvestris L. (PSEO). (2) Methods: Pseudo-ternary phase diagram and D-optimal mixture design approaches were applied for the development and the optimization of the o/w nanoemulsion. The optimized formulation (NE) was subjected to physicochemical characterization and to physical stability studies. In vitro permeation studies were carried out using the Franz cell diffusion system. The antimycotic efficacy against Microsporum canis was carried out in vitro. (3) Results: Optimal nanoemulsion showed great physical stability and was characterized by a small droplet size (19.015 nm ± 0.110 nm), a PDI of 0.146 ± 0.011, a zeta potential of −16.067 mV ± 1.833 mV, a percentage of transmittance of 95.352% ± 0.175%, and a pH of 5.64 ± 0.03. Furthermore, it exhibited a significant enhancement in apparent permeability coefficient (p < 0.05) compared to the VCZ free drug. Finally, NE presented the greatest antifungal activity against Microsporum canis in comparison with VCZ and PSEO tested alone. (4) Conclusions: These promising results suggest that this topical innovative formulation could be a good candidate to treat onychomycosis. Further ex vivo and clinical investigations are needed to support these findings. Full article
Show Figures

Figure 1

23 pages, 19550 KiB  
Article
Bio-Pesticidal Potential of Nanostructured Lipid Carriers Loaded with Thyme and Rosemary Essential Oils against Common Ornamental Flower Pests
by Alejandro Múnera-Echeverri, José Luis Múnera-Echeverri and Freimar Segura-Sánchez
Colloids Interfaces 2024, 8(5), 55; https://doi.org/10.3390/colloids8050055 - 12 Oct 2024
Viewed by 1139
Abstract
The encapsulation of essential oils (EOs) in nanostructured lipid carriers (NLCs) represents a modern and sustainable approach within the agrochemical industry. This research evaluated the colloidal properties and insecticidal activity of NLCs loaded with thyme essential oil (TEO-NLC) and rosemary essential oil (REO-NLC) [...] Read more.
The encapsulation of essential oils (EOs) in nanostructured lipid carriers (NLCs) represents a modern and sustainable approach within the agrochemical industry. This research evaluated the colloidal properties and insecticidal activity of NLCs loaded with thyme essential oil (TEO-NLC) and rosemary essential oil (REO-NLC) against three common arthropod pests of ornamental flowers: Frankliniella occidentalis, Myzus persicae, and Tetranychus urticae. Gas chromatography–mass spectrometry (GC-MS) analysis identified the major chemical constituents of the EOs, with TEO exhibiting a thymol chemotype and REO exhibiting an α-pinene chemotype. NLCs were prepared using various homogenization techniques, with high shear homogenization (HSH) providing the optimal particle size, size distribution, and surface electrical charge. A factorial design was employed to evaluate the effects of EO concentration, surfactant concentration, and liquid lipid/solid lipid ratio on the physicochemical properties of the nanosuspensions. The final TEO-NLC formulation had a particle size of 347.8 nm, a polydispersity index of 0.182, a zeta potential of −33.8 mV, an encapsulation efficiency of 71.9%, and a loading capacity of 1.18%. The REO-NLC formulation had a particle size of 288.1 nm, a polydispersity index of 0.188, a zeta potential of −34 mV, an encapsulation efficiency of 80.6%, and a loading capacity of 1.40%. Evaluation of contact toxicity on leaf disks showed that TEO-NLC exhibited moderate insecticidal activity against the western flower thrips and mild acaricidal activity against the two-spotted spider mite, while REO-NLC demonstrated limited effects. These findings indicate that TEO-NLCs show potential as biopesticides for controlling specific pests of ornamental flowers, and further optimization of the administration dosage could significantly enhance their effectiveness. Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces: 2nd Edition)
Show Figures

Graphical abstract

17 pages, 3637 KiB  
Article
Mobile and Immobile Obstacles in Supported Lipid Bilayer Systems and Their Effect on Lipid Mobility
by Luisa Coen, Daniel Alexander Kuckla, Andreas Neusch and Cornelia Monzel
Colloids Interfaces 2024, 8(5), 54; https://doi.org/10.3390/colloids8050054 - 24 Sep 2024
Cited by 1 | Viewed by 851
Abstract
Diffusion and immobilization of molecules in biomembranes are essential for life. Understanding it is crucial for biomimetic approaches where well-defined substrates are created for live cell assays or biomaterial development. Here, we present biomimetic model systems consisting of a supported lipid bilayer and [...] Read more.
Diffusion and immobilization of molecules in biomembranes are essential for life. Understanding it is crucial for biomimetic approaches where well-defined substrates are created for live cell assays or biomaterial development. Here, we present biomimetic model systems consisting of a supported lipid bilayer and membrane coupled proteins to study the influence of lipid–lipid and lipid–protein interactions on membrane mobility. To characterize the diffusion of lipids or proteins, the continuous photobleaching technique is used. Either Neutravidin coupled to DOPE-cap-Biotin lipids or GFP coupled to DOGS-NTA lipids is studied at 0.005–0.5 mol% concentration of the linker lipid. Neutravidin creates mobile obstacles in the membrane, while GFP coupling results in immobile obstacles. By actin filament coupling to Neutravidin-lipid complexes, obstacles are crosslinked, resulting in lipid mobility reduction along with the appearance of a membrane texture. Theoretical considerations accurately describe lipid diffusion changes at high obstacle concentration as a function of obstacle size and viscous effects. The mobility of membrane lipids depends on the concentration of protein-binding lipids and on the concentration and charge of the coupled protein. Next to diffusion and friction coefficients, we determine the effective obstacle size as well as a charge-dependent effect that dominates the decrease in lipid mobility. Full article
Show Figures

Graphical abstract

14 pages, 3264 KiB  
Article
Structure and Potential Application of Surfactant-Free Microemulsion Consisting of Heptanol, Ethanol and Water
by Martina Gudelj, Marina Kranjac, Lucija Jurko, Matija Tomšič, Janez Cerar, Ante Prkić and Perica Bošković
Colloids Interfaces 2024, 8(5), 53; https://doi.org/10.3390/colloids8050053 - 14 Sep 2024
Viewed by 758
Abstract
Microemulsions, which are thermodynamically stable and isotropic mixtures of water, oil, and surfactants, attract significant research interest due to their unique physicochemical properties and diverse industrial applications. Traditional surfactant-based microemulsions (SBMEs) stabilize the interface between two typically immiscible liquids, forming various microstructures such [...] Read more.
Microemulsions, which are thermodynamically stable and isotropic mixtures of water, oil, and surfactants, attract significant research interest due to their unique physicochemical properties and diverse industrial applications. Traditional surfactant-based microemulsions (SBMEs) stabilize the interface between two typically immiscible liquids, forming various microstructures such as oil-in-water (O/W) droplets, water-in-oil (W/O) droplets, and bicontinuous phases. However, the use of surfactants poses environmental concerns, cost implications, and potential toxicity. Consequently, there is increasing interest in developing surfactant-free microemulsions (SFMEs) that offer similar benefits without the drawbacks associated with surfactants. In this study, we explore the formation and characteristics of a new surfactant-free microemulsion in a ternary system comprising water, ethanol, and heptanol. Advanced techniques are employed to characterize the microstructures and stability of surfactant-free microemulsions. These include electrical conductivity measurements, surface tension analysis, dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FTIR). These methods have been extensively used in previous research on surfactant-free microemulsions (SFMEs) to reveal the properties and interactions within microemulsion systems. The area of interest is identified using these techniques, where silica nanoparticles are subsequently synthesized and then visualized using transmission electron microscopy (TEM). Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 2nd Edition)
Show Figures

Figure 1

15 pages, 1452 KiB  
Article
Ethanolic Cashew Leaf Extract Encapsulated in Tripolyphosphate–Chitosan Complexes: Characterization, Antimicrobial, and Antioxidant Activities
by Pitima Sinlapapanya, Jirayu Buatong, Suriya Palamae, Rasool Abdul Nazeer, Bin Zhang, Thummanoon Prodpran and Soottawat Benjakul
Colloids Interfaces 2024, 8(5), 52; https://doi.org/10.3390/colloids8050052 - 10 Sep 2024
Viewed by 1312
Abstract
Ethanolic cashew leaf extract (ECL-E) is rich in phenolic compounds and shows remarkable antioxidative and antimicrobial activities. Encapsulation could stabilize ECL-E as the core. Tripolyphosphate (TPP)–chitosan (CS) nanoparticles were used to load ECL-E, and the resulting nanoparticles were characterized. The nanoparticles loaded with [...] Read more.
Ethanolic cashew leaf extract (ECL-E) is rich in phenolic compounds and shows remarkable antioxidative and antimicrobial activities. Encapsulation could stabilize ECL-E as the core. Tripolyphosphate (TPP)–chitosan (CS) nanoparticles were used to load ECL-E, and the resulting nanoparticles were characterized. The nanoparticles loaded with ECL-E at different levels showed differences in encapsulation efficiency (47.62–89.47%), mean particle diameters (47.30–314.60 nm), positive zeta potentials (40.37–44.24 mV), and polydispersity index values (0.20–0.56). According to scanning electron micrographs, the nanoparticles had a spherical or ellipsoidal shape, and a slight agglomeration was observed. The appropriate ratio of CS/ECL-E was 1:3, in which an EE of 89.47%, a particle size of 256.05 ± 7.70 nm, a zeta potential of 40.37 ± 0.66 mV, and a PDI of 0.22 ± 0.05 were obtained. The nanoparticles also exhibited high antioxidant activities, as assayed by DPPH and ABTS radical scavenging activities, ferric reducing ability power (FRAP), and oxygen radical absorbance capacity (ORAC). Low minimum inhibitory concentration and minimum bactericidal concentration were observed against Pseudomonas aeruginosa (9.38, 75.00 mg/mL) and Shewanella putrefaciens (4.69, 75.00 mg/mL). In addition, ECL-E loaded in nanoparticles could maintain its bioactivities under various light intensities (1000–4000 Lux) for 48 h. Some interactions among TPP, CS, and ECL-E took place, as confirmed by FTIR analysis. These nanoparticles had the increased storage stability and could be used for inactivating spoilage bacteria and retarding lipid oxidation in foods. Full article
(This article belongs to the Special Issue Food Colloids: 3rd Edition)
Show Figures

Figure 1

15 pages, 2718 KiB  
Article
Study of Probiotic Bacteria Encapsulation for Potential Application in Enrichment of Fermented Beverage
by Galiya Madybekova, Elmira Turkeyeva, Botagoz Mutaliyeva, Dinara Osmanova, Saule Aidarova, Reinhard Miller, Altynai Sharipova and Assem Issayeva
Colloids Interfaces 2024, 8(5), 51; https://doi.org/10.3390/colloids8050051 - 6 Sep 2024
Viewed by 1008
Abstract
The current work is devoted to the development of probiotic microencapsulation systems with the co-encapsulation of a plant extract, which can increase the survival of beneficial bacteria and are suitable for potential applications in the enrichment of fermented beverages based on acid whey. [...] Read more.
The current work is devoted to the development of probiotic microencapsulation systems with the co-encapsulation of a plant extract, which can increase the survival of beneficial bacteria and are suitable for potential applications in the enrichment of fermented beverages based on acid whey. The encapsulation process exhibited a high level of effectiveness, achieving 83.0% for Bifidobacterium (BB), 89.2% for Stevia leaf extract (SE), and 91.3% for their combination (BB + SE). The FTIR analysis verified substantial interactions between the encapsulated agents and the polymer matrix, which enhanced the stability of the microcapsules. The BB + SE microcapsules exhibited reduced swelling and moisture content, indicating a denser structure compared to separately encapsulated BB and SE. Comparison of release kinetics of BB, SE and BB + SE loaded microcapsules showed that the combination of active agents has a quicker initial release, reaching 60% release within the first 2 h, and this value increased to 70% after 4 h. The release kinetics studies demonstrated a controlled release of active substances over 24 h. A morphology analysis shows that the surfaces of the dry microcapsules containing BB, SE, and their combination BB + SE have a porous structure. For encapsulated agents, the size of the capsules produced with BB and SE are smaller than those produced with two components (BB + SE), the sizes of which are between 760 µm and 1.1 mm. Modeling of the behavior of microcapsules in a simulated gastrointestinal tract provides information on swelling and active agents release rates as a function of pH in real biological environments. Thus, the new formulations of microcapsules with microorganisms and plant extracts have great potential for the development of fermented whey-based beverages. Full article
(This article belongs to the Special Issue Food Colloids: 3rd Edition)
Show Figures

Graphical abstract

30 pages, 7262 KiB  
Article
A Selective, Efficient, Facile, and Reusable Natural Clay/Metal Organic Framework as a Promising Adsorbent for the Removal of Drug Residue and Heavy Metal Ions
by Rania Abdelazeem, Heba A. Younes, Zienab E. Eldin, Ahmed A. Allam, Hassan Ahmed Rudayni, Sarah I. Othman, Ahmed A. Farghali, Hamada M. Mahmoud and Rehab Mahmoud
Colloids Interfaces 2024, 8(5), 50; https://doi.org/10.3390/colloids8050050 - 5 Sep 2024
Viewed by 1107
Abstract
It is imperative to eliminate heavy metals and pharmaceutical residual pollutants from wastewater to reduce their detrimental effects on the environment. In this work, natural zeolite and a 2-amino terephthalic acid-based multi-metallic organic framework were used to create a new composite that can [...] Read more.
It is imperative to eliminate heavy metals and pharmaceutical residual pollutants from wastewater to reduce their detrimental effects on the environment. In this work, natural zeolite and a 2-amino terephthalic acid-based multi-metallic organic framework were used to create a new composite that can be utilized as an adsorbent for cadmium and safinamide. The adsorption study was examined in a variety of settings (pH, adsorbent dosage, pollutant concentration, and time). Moreover, Zeta potential, BET, SEM, FTIR, XRD, and SEM measurements were used to characterize the adsorbents. The adsorption process was confirmed using FTIR, XRD, and SEM analysis. Various nonlinear adsorption isotherm models were applied to adsorption results. The results showed a significantly better adsorption ability for safinamide and cadmium using zeolite/MOF compared to zeolite. Adsorption kinetics were represented by five models: pseudo first-order, pseudo second-order, intraparticle diffusion, mixed first- and second-order, and the Avrami model. Regarding both adsorbent substances, safinamide adsorption was best represented by the intraparticle diffusion model. In contrast, the pseudo second-order and intraparticle diffusion models for zeolite and zeolite/MOF, respectively, better fit the experimental results in the case of cadmium adsorption. The thermodynamic parameters ΔH°, ΔS°, and ΔG° were investigated through temperature tests carried out at 25, 35, 45, and 55 °C. Exothermic and spontaneous adsorption processes were demonstrated by the computed values. The study of adsorbent regeneration involved the use of several chemical solvents. The DMSO solvent was shown to have the highest adsorbent regeneration method efficiency at 63%. Safinamide elimination was lessened by organic interfering species like cefixime and humic acid compared to inorganic species like chloride, sulphate, and nitrate, most likely as a result of intense competition for the few available active sites. Using zeolite/MOF nanocomposite, the percentage of safinamide removed from spiked real water samples (tap water, Nile River water, and groundwater samples) was 48.80%, 64.30%, and 44.44%, respectively. Based on cytotoxicity results, the highest percentages of cell viability for zeolite and zeolite/MOF at 24 h were 83% and 81%, respectively, in comparison to untreated controls. According to these results, zeolite and zeolite/MOF composites can be used as effective adsorbents for these pollutants in wastewater. Full article
Show Figures

Figure 1

13 pages, 3294 KiB  
Article
Transport Behavior of Paranitroaniline through a Flat-Sheet Supported Liquid Membrane Using Tributylphosphate as a Carrier
by Azizah Algreiby, Lama Alharbi, Noura Kouki, Haja Tar, Abrar Alnafisah and Lotfi Béji
Colloids Interfaces 2024, 8(5), 49; https://doi.org/10.3390/colloids8050049 - 4 Sep 2024
Viewed by 697
Abstract
4-Nitroaniline (PNA) is a toxic organic compound commonly found in wastewater, posing significant environmental concerns due to its toxicity and potential carcinogenicity. In this study, the recovery of PNA from aqueous solutions was investigated using a supported liquid membrane (SLM). The membrane, which [...] Read more.
4-Nitroaniline (PNA) is a toxic organic compound commonly found in wastewater, posing significant environmental concerns due to its toxicity and potential carcinogenicity. In this study, the recovery of PNA from aqueous solutions was investigated using a supported liquid membrane (SLM). The membrane, which consists of polypropylene Celgard 2500 (PP-Celg), was embedded with the extractant tributyl phosphate (TBP). Various factors influencing the efficiency of PNA transportation were studied, including the concentration of PNA in the source phase, pH of the source phase, NaOH concentration in the receiving phase, and choice of stripping agents. Optimal conditions for the experiment were determined to be a source phase PNA concentration of 20 ppm at pH 7, distilled water as the receiving phase, TBP as the carrier in the organic phase, and a transport time of 8 h. The extraction process was conducted under ambient temperature and pressure conditions, yielding results indicative of a first-order linearized reaction. Additionally, membrane stability and liquid membrane loss were evaluated. Full article
(This article belongs to the Topic Advances in Functional Thin Films)
Show Figures

Figure 1

15 pages, 5306 KiB  
Article
Direct Ink Writing of Highly Conductive and Strongly Adhesive PEDOT:PSS-EP Coatings for Antistatic Applications
by Ning Lv, Shuhan Liu, Guiqun Liu and Ximei Liu
Colloids Interfaces 2024, 8(5), 48; https://doi.org/10.3390/colloids8050048 - 23 Aug 2024
Viewed by 1147
Abstract
As the information age progresses, the electronics industry is evolving towards smaller and more sophisticated products. However, electrostatic potentials easily penetrate these components, causing damage. This underscores the urgent need for materials with superior antistatic properties to safeguard electronic devices from such damage. [...] Read more.
As the information age progresses, the electronics industry is evolving towards smaller and more sophisticated products. However, electrostatic potentials easily penetrate these components, causing damage. This underscores the urgent need for materials with superior antistatic properties to safeguard electronic devices from such damage. Antistatic coatings typically rely on polymers as the primary material, enhanced with conductive fillers and additives to improve performance. Despite significant progress, these coatings still face challenges related to advanced processing technologies and the integration of electrical and mechanical properties. Among various conductive fillers, the conducting polymer PEDOT:PSS stands out for its exceptional conductivity, environmental stability, and long cycle life. Additionally, epoxy resin (EP) is widely utilized in polymer coatings due to its strong adhesion to diverse substrates during curing. Here, we develop highly conductive and strongly adhesive PEDOT:PSS inks by combining PEDOT:PSS with EP using a composite engineering approach. These inks are used to fabricate PEDOT:PSS coatings by direct ink writing (DIW). We systematically evaluate the DIW of PEDOT:PSS-EP coatings, which show high electrical conductivity (ranging from 0.59 ± 0.07 to 41.50 ± 3.26 S cm−1), strong adhesion (ranging from 15.84 ± 2.18 to 99.3 ± 9.06 kPa), and robust mechanical strength (8 MPa). Additionally, we examine the surface morphology, wettability, and hardness of the coatings with varying PEDOT:PSS content. The resultant coatings demonstrate significant potential for applications in antistatic protection, electromagnetic shielding, and other flexible electronic technologies. Full article
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop