Exploring the Safety of the Sustainable Toxicity Testing in Zebrafish and Brine Shrimp Using Nanoemulsions Formulated from Fish Byproducts and Lemon Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ethical Clearance
2.3. Preparation of the Nanoemulsion of Fish Byproducts and Lemon Oils (NE-FLO)™
2.4. Properties of Nanoemulsion of Fish Byproducts and Lemon Oils (NE-FLO™)
2.5. Diluting NE-FLO™ for Toxicity on Brine Shrimp
2.6. NE-FLO™ Dilution for Adult Zebrafish
2.7. Preparation of Artemia salina Larvae (Brine Shrimp)
2.8. Preparation of Adult Zebrafish
2.9. Experiment Setup for Artemia Larvae
2.10. Experiment Design for Adult Zebrafish
2.11. Calculation of LC50
2.12. Statistical Analysis
2.13. OpenAI Utilization
3. Results and Discussion
3.1. Properties of the Nanoemulsion of Fish Byproducts and Lemon Oils (NE-FLO™)
3.2. Artemia Larvae Toxicity Test Observations
3.3. Adult Zebrafish Toxicity Test Observation
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Back, P.I.; Balestrin, L.A.; Fachel, F.N.S.; Nemitz, M.C.; Falkembach, M.; Soares, G.; Marques, M.d.S.; Silveira, T.; Prá, M.D.; Horn, A.P.; et al. Hydrogels containing soybean isoflavone aglycones-rich fraction-loaded nanoemulsions for wound healing treatment—In vitro and in vivo studies. Colloids Surf. B Biointerfaces 2020, 196, 111301. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.; Parveen, S.; Banerjee, M. Potential of nano-phytochemicals in cervical cancer therapy. Clin. Chim. Acta 2020, 505, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.S.; Morais, J.A.V.; Vanderlei, A.; Santos, A.S.; Azevedo, R.B.; Muehlmann, L.A.; Júnior, O.R.; Mortari, M.R.; da Silva, J.R.; da Silva, S.W.; et al. Oral delivery of fish oil in oil-in-water nanoemulsion: Development, colloidal stability and modulatory effect on in vivo inflammatory induction in mice. Biomed. Pharmacother. 2021, 133, 110980. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, K.; Madhyastha, H.; Sandur, R.; Manikandanath, N.T.; Thiagarajan, N.; Thiagarajan, P. Anti-inflammatory and wound healing potential of a clove oil emulsion. Colloids Surf. B Biointerfaces 2020, 193, 111102. [Google Scholar] [CrossRef] [PubMed]
- Azmi, N.A.N.; Elgharbawy, A.A.M.; Salleh, H.M.; Moniruzzaman, M. Preparation, Characterization and Biological Activities of an Oil-in-Water Nanoemulsion from Fish Byproducts and Lemon Oil by Ultrasonication Method. Molecules 2022, 27, 6725. [Google Scholar] [CrossRef]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef]
- Shehzad, Q.; Rehman, A.; Jafari, S.M.; Zuo, M.; Khan, M.A.; Ali, A.; Khan, S.; Karim, A.; Usman, M.; Hussain, A.; et al. Improving the oxidative stability of fish oil nanoemulsions by co-encapsulation with curcumin and resveratrol. Colloids Surf. B Biointerfaces. 2021, 199, 111481. [Google Scholar] [CrossRef]
- Inapurapu, S.P.; Ibrahim, A.; Kona, S.R.; Pawar, S.C.; Bodiga, S.; Bodiga, V.L. Development and characterization of ω-3 fatty acid nanoemulsions with improved physicochemical stability and bioaccessibility. Colloids Surf. A Physicochem. Eng. Asp. 2020, 606, 125515. [Google Scholar] [CrossRef]
- Baba, E.; Acar, Ü.; Öntaş, C.; Kesbiç, O.S.; Yılmaz, S. Evaluation of Citrus limon peels essential oil on growth performance, immune response of Mozambique tilapia Oreochromis mossambicus challenged with Edwardsiella tarda. Aquaculture 2016, 465, 13–18. [Google Scholar] [CrossRef]
- Swathy, J.S.; Mishra, P.; Thomas, J.; Mukherjee, A.; Chandrasekaran, N. Antimicrobial potency of high-energy emulsified black pepper oil nanoemulsion against aquaculture pathogen. Aquaculture 2018, 491, 210–220. [Google Scholar] [CrossRef]
- Chahardehi, A.M.; Arsad, H.; Lim, V. Zebrafish as a Successful Animal Model for Screening Toxicity of Medicinal Plants. Plants 2020, 9, 1345. [Google Scholar] [CrossRef] [PubMed]
- Kovrižnych, J.A.; Sotníková, R.; Zeljenková, D.; Rollerová, E.; Szabová, E.; Wimmerová, S. Acute toxicity of 31 different nanoparticles to zebrafish (Danio rerio) tested in adulthood and in early life stages—Comparative study. Interdiscip. Toxicol. 2013, 6, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Caballero, M.V.; Candiracci, M. Zebrafish as Toxicological model for screening and recapitulate human diseases. J. Unexplored Med. Data. 2018, 3, 4. [Google Scholar] [CrossRef]
- Institutional Animal Care and Use Committee. IACUC Policy 23: Use of Zebrafish for Research and Teaching; Institutional Animal Care and Use Committee: Chicago, IL, USA, 2018; p. 2. [Google Scholar]
- Gilbert, M.J.; Adams, O.A.; Farrell, A.P. A sudden change of heart: Warm acclimation can produce a rapid adjustment of maximum heart rate and cardiac thermal sensitivity in rainbow trout. Curr. Res. Physiol. 2022, 5, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Andrews, H.; Páez-Hernández, G. Optimization of ultrasonication curcumin-hydroxylated lecithin nanoemulsions using response surface methodology. J. Food Sci. Technol. 2020, 57, 549–556. [Google Scholar] [CrossRef]
- OECD. Test No. 203: Fish, Acute Toxicity Test. No. 203; OECD Publishing: Paris, France, 2019; p. 24. [Google Scholar] [CrossRef]
- Zhu, B.; Zhu, S.; Li, J.; Hui, X.; Wang, G.-X. The developmental toxicity, bioaccumulation and distribution of oxidized single walled carbon nanotubes in: Artemia salina. Toxicol. Res. 2018, 7, 897–906. [Google Scholar] [CrossRef]
- The Organization for Economic Co-Operation and Development [OECD]. OECD Guideline for Testing of Chemicals (Draft Revised Version), 11th ed.; The Organization for Economic Co-operation and Development: Paris, France, 2018. [Google Scholar]
- Institutional Animal Care and Use Program. Zebrafish Care Standards. UCSF. 2022. Available online: https://iacuc.ucsf.edu/sites/g/files/tkssra751/f/wysiwyg/POLICY%20-%20Zebrafish%20Care%20Standards.pdf (accessed on 21 October 2024).
- OECD. Guidance Document on Aquatic Toxicity Testing of Difficult Substances and Mixtures. In Organisation for Economic Co-Operation and Development, 2nd ed.; Series on Testing and Assessment No. 23; OECD Publishing: Paris, France, 2019; Volume 23, pp. 1–81. Available online: https://www.oecd-ilibrary.org/environment/detailed-review-paper-drp-on-molluscs-life-cycle-toxicity-testing_9789264221468-en (accessed on 21 October 2024).
- Zulfahmi, I.; El Rahimi, S.A.; Suherman, S.D.; Almunawarah, A.; Sardi, A.; Helmi, K.; Nafis, B.; Perdana, A.W.; Adani, K.H.; Nasution, I.A.A.; et al. Acute toxicity of palm oil mill effluent on zebrafish (Danio rerio Hamilton-Buchanan, 1822): Growth performance, behavioral responses and histopathological lesions. Chemosphere 2023, 340, 139788. [Google Scholar] [CrossRef]
- Claro, R.O.; Rivero-Wendt, C.L.G.; Miranda-Vilela, A.L.; Grisolia, C.K.; Facco, G.G.; de Lima Moreira, D.; de Fátima Guilhermino, J.; Matias, R. Toxicological effects of aqueous extract of Genipa americana L. leaves on adult zebrafish (Danio rerio): Chemical profile, histopathological effects and lack of genotoxicity. Toxicon 2023, 235, 107305. [Google Scholar] [CrossRef]
- Luan, X.; Liu, X.; Fang, C.; Chu, W.; Xu, Z. Ecotoxicological effect of disinfected wastewater effluent: A short review of in vivo toxicity bioassays to aquatic organisms. Environ. Sci. 2020, 6, 2275–2286. [Google Scholar] [CrossRef]
- Ortiz-Román, M.I.; Casiano-Muñiz, I.M.; Román-Velázquez, F.R. Toxicity of UV Filter Benzophenone-3 in Brine Shrimp Nauplii (Artemia salina) and Zebrafish (Danio rerio) Embryos. J. Xenobiot. 2024, 14, 537–553. [Google Scholar] [CrossRef]
- Ford, A.T.; Ågerstrand, M.; Brooks, B.W.; Allen, J.; Bertram, M.G.; Brodin, T.; Dang, Z.; Duquesne, S.; Sahm, R.; Hoffmann, F.; et al. The Role of Behavioral Ecotoxicology in Environmental Protection. Environ. Sci. Technol. 2021, 55, 5620–5628. [Google Scholar] [CrossRef]
- Gu, J.; Guo, L.; Chen, C.; Ji, G.; Wang, L. Neurobehavioral toxic effects and mechanisms of 2-aminobenzothiazole exposure on zebrafish. Sci. Total Environ. 2024, 913, 169495. [Google Scholar] [CrossRef] [PubMed]
- Achenbach, J.C.; Leggiadro, C.; Sperker, S.A.; Woodland, C.; Ellis, L.D. Comparison of the Zebrafish Embryo Toxicity Assay and the General and Behavioral Embryo Toxicity Assay as New Approach Methods for Chemical Screening. Toxics 2020, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Lane, S.; More, L.A.; Asnani, A. Zebrafish models of cancer therapy-induced cardiovascular toxicity. J. Cardiovasc. Dev. Dis. 2021, 8, 1–12. [Google Scholar] [CrossRef]
- Zain, M.S.C.; Edirisinghe, S.L.; Kim, C.-H.; De Zoysa, M.; Shaari, K. Nanoemulsion of flavonoid-enriched oil palm (Elaeis guineensis Jacq.) leaf extract enhances wound healing in zebrafish. Phytomed. Plus 2021, 1, 100124. [Google Scholar] [CrossRef]
- Richardson, R.; Slanchev, K.; Kraus, C.; Knyphausen, P.; Eming, S.; Hammerschmidt, M. Adult zebrafish as a model system for cutaneous wound-healing research. J. Investig. Dermatol. 2013, 133, 1655–1665. [Google Scholar] [CrossRef]
Measurement | NE-FLO Nanoemulsion Value |
---|---|
Mean Particle Size (Z-averages) | 44.40 ± 0.11 nm |
Polydispersity Index (PDI) | 0.077 |
Zeta Potential | −5.02 ± 0.22 mV |
pH | 4.27 ± 0.01 |
Sample Conc. (mg·L−1) | Log Conc. (mg·L−1) | Replicate One | Replicate Two | Replicate Three | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Shrimps No. (Initial) | Shrimps No. (Final) | Total Mortality | Mortality % | Shrimps No. (Initial) | Shrimps No. (Final) | Total Mortality | Mortality % | Shrimps No. (Initial) | Shrimps No. (Final) | Total Mortality | Mortality % | |||
Positive Control * | 0.001 | −2.3 | 10 | 7 | 3 | 30.0% | 10 | 7 | 3 | 30.0% | 10 | 7 | 3 | 30.0% |
0.005 | −1.8 | 10 | 6 | 4 | 40.0% | 10 | 6 | 4 | 40.0% | 10 | 6 | 6 | 60.0% | |
0.01 | −1.5 | 10 | 5 | 5 | 50.0% | 10 | 5 | 5 | 50.0% | 10 | 5 | 5 | 50.0% | |
0.1 | −0.8 | 10 | 0 | 10 | 100.0% | 10 | 0 | 10 | 100.0% | 10 | 0 | 10 | 100.0% | |
1 | 0 | 10 | 0 | 10 | 100.0% | 10 | 0 | 10 | 100.0% | 10 | 0 | 10 | 100.0% | |
10 | 0.8 | 10 | 0 | 10 | 100.0% | 10 | 0 | 10 | 100.0% | 10 | 0 | 10 | 100.0% | |
Sample ** | 0.001 | −2.3 | 10 | 8 | 2 | 20.0% | 10 | 8 | 2 | 20.0% | 10 | 8 | 2 | 20.0% |
0.005 | −1.8 | 10 | 7 | 3 | 30.0% | 10 | 7 | 3 | 30.0% | 10 | 7 | 3 | 30.0% | |
0.01 | −1.5 | 10 | 7 | 3 | 30.0% | 10 | 6 | 4 | 40.0% | 10 | 7 | 3 | 30.0% | |
0.1 | −0.8 | 10 | 6 | 4 | 40.0% | 10 | 6 | 4 | 40.0% | 10 | 6 | 4 | 40.0% | |
1 | 0 | 10 | 5 | 5 | 50.0% | 10 | 4 | 6 | 60.0% | 10 | 6 | 4 | 40.0% | |
10 | 0.8 | 10 | 4 | 6 | 60.0% | 10 | 3 | 7 | 70.0% | 10 | 4 | 6 | 60.0% | |
Negative Control *** (Artificial Seawater) | Replicate 1 | 10 | 9 | 1 | 10 | |||||||||
Replicate 2 | 10 | 8 | 2 | 20 | ||||||||||
Replicate 3 | 10 | 9 | 1 | 10 | ||||||||||
Average total death | 1.33 |
Sample Conc. (mg.mL−1) | Log Conc. (mg.mL1) | Day One (24 h) | Day Two (48 h) | Day Three (72 h) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. of Fish (Initial) | No. of Fish (Final) | Total Deaths | Mortality % | No. of Fish (Initial) | No. of Fish (Final) | Total Deaths | Mortality % | No. of Fish (Initial) | No. of Fish (Final) | Total Deaths | Mortality % | |||
Sample * | 0.001 | −2.3 | 5 | 5 | 0 | 0 | 5 | 5 | 0 | 0 | 5 | 5 | 0 | 0 |
0.01 | −1.5 | 5 | 5 | 0 | 0 | 5 | 5 | 0 | 0 | 5 | 5 | 0 | 0 | |
0.1 | −0.8 | 5 | 5 | 0 | 0 | 5 | 5 | 0 | 0 | 5 | 5 | 0 | 0 | |
1 | 0.0 | 5 | 0 | 5 | 100 | |||||||||
Negative Control ** | Filtered tap water | 5 | 5 | 0 | ||||||||||
Average total deaths | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hendawy, A.A.; Elgharbawy, A.A.M.; Mohd Noor, N.; Al-Saari, N.; Azmi, N.A.N.; Mohd Salleh, H. Exploring the Safety of the Sustainable Toxicity Testing in Zebrafish and Brine Shrimp Using Nanoemulsions Formulated from Fish Byproducts and Lemon Oil. Colloids Interfaces 2024, 8, 59. https://doi.org/10.3390/colloids8060059
Hendawy AA, Elgharbawy AAM, Mohd Noor N, Al-Saari N, Azmi NAN, Mohd Salleh H. Exploring the Safety of the Sustainable Toxicity Testing in Zebrafish and Brine Shrimp Using Nanoemulsions Formulated from Fish Byproducts and Lemon Oil. Colloids and Interfaces. 2024; 8(6):59. https://doi.org/10.3390/colloids8060059
Chicago/Turabian StyleHendawy, Amira Ayman, Amal A. M. Elgharbawy, Najihah Mohd Noor, Nurhidayu Al-Saari, Nor Azrini Nadiha Azmi, and Hamzah Mohd Salleh. 2024. "Exploring the Safety of the Sustainable Toxicity Testing in Zebrafish and Brine Shrimp Using Nanoemulsions Formulated from Fish Byproducts and Lemon Oil" Colloids and Interfaces 8, no. 6: 59. https://doi.org/10.3390/colloids8060059
APA StyleHendawy, A. A., Elgharbawy, A. A. M., Mohd Noor, N., Al-Saari, N., Azmi, N. A. N., & Mohd Salleh, H. (2024). Exploring the Safety of the Sustainable Toxicity Testing in Zebrafish and Brine Shrimp Using Nanoemulsions Formulated from Fish Byproducts and Lemon Oil. Colloids and Interfaces, 8(6), 59. https://doi.org/10.3390/colloids8060059