The Entropy of Mixing in Self-Assembly and the Role of Surface Tension in Modeling the Critical Micelle Concentration
Abstract
:1. Introduction
2. Theory
2.1. Free Energy of the Micellar Solution and the Entropy of Mixing
2.1.1. Definition of Free Energy and a Model for the Entropy of Mixing
2.1.2. The Micellar Size Distribution
2.1.3. Reference States and Standard States
2.2. Mass Action Model and Molecular Thermodynamic Modeling
2.2.1. Mass Action Model and Definition of the Critical Micelle Concentration
2.2.2. Thermodynamic Cycle Approach and Molecular Thermodynamic Modeling
2.2.3. Surface-Based Description of the Transfer Term
2.3. Alkane Partitioning and Transfer Free Energy
2.3.1. Alkane Solubility in Water and the Transfer Free Energy as PCP Difference
2.3.2. Linking Alkane Solubility Mass Ratios to Volume and Mole Fractions
3. Results
3.1. Surface-Based Analysis of Alkane Solubility
3.2. Application to Alkyl Maltosides
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Statistical Mechanics of the Entropy of Mixing
Appendix B. Lattice Model for the Entropy of Mixing
Appendix C. The Pseudo-Chemical Potential
Appendix D. The Pseudo-Chemical Potential with Internal Degrees of Freedom
References
- Wycisk, V.; Wagner, M.C.; Urner, L.H. Trends in the Diversification of the Detergentome. ChemPlusChem 2024, 89, e202300386. [Google Scholar] [CrossRef] [PubMed]
- Alpes, H.; Allmann, K.; Plattner, H.; Reichert, J.; Riek, R.; Schulz, S. Formation of Large Unilamellar Vesicles Using Alkyl Maltoside Detergents. Biochim. Biophys. Acta Biomembr. 1986, 862, 294–302. [Google Scholar] [CrossRef]
- Otzen, D. Protein-surfactant interactions: A tale of many states. Biochim. Biophys. Acta Proteins Proteom. 2011, 1814, 562–591. [Google Scholar] [CrossRef] [PubMed]
- Angerer, N.; Piller, P.; Semeraro, E.F.; Keller, S.; Pabst, G. Interaction of detergent with complex mimics of bacterial membranes. Biophys. Chem. 2023, 296, 107002. [Google Scholar] [CrossRef] [PubMed]
- Dwars, T.; Paetzold, E.; Oehme, G. Reactions in micellar systems. Angew. Chem. Int. Ed. 2005, 44, 7174–7199. [Google Scholar] [CrossRef]
- Privé, G.G. Detergents for the stabilization and crystallization of membrane proteins. Methods 2007, 41, 388–397. [Google Scholar] [CrossRef]
- Thonghin, N.; Kargas, V.; Clews, J.; Ford, R.C. Cryo-electron microscopy of membrane proteins. Methods 2018, 147, 176–186. [Google Scholar] [CrossRef]
- Golub, M.; Kölsch, A.; Feoktystov, A.; Zouni, A.; Pieper, J. Insights into Solution Structures of Photosynthetic Protein Complexes from Small-Angle Scattering Methods. Crystals 2021, 11, 203. [Google Scholar] [CrossRef]
- Golub, M.; Gatcke, J.; Subramanian, S.; Kölsch, A.; Darwish, T.; Howard, J.K.; Feoktystov, A.; Matsarskaia, O.; Martel, A.; Porcar, L.; et al. “Invisible” Detergents Enable a Reliable Determination of Solution Structures of Native Photosystems by Small-Angle Neutron Scattering. J. Phys. Chem. B 2022, 126, 2824–2833. [Google Scholar] [CrossRef]
- Israelachvili, J.N.; Mitchell, D.J.; Ninham, B.W. Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers. J. Chem. Soc. Faraday Trans. 2 1976, 72, 1525–1568. [Google Scholar] [CrossRef]
- Parsegian, V.A. Long-Range Physical Forces in the Biological Milieu. Annu. Rev. Biophys. Bioeng. 1973, 2, 221–255. [Google Scholar] [CrossRef] [PubMed]
- Hill, T.L. An Introduction to Statistical Thermodynamics; Dover: Mineola, NY, USA, 1986. [Google Scholar]
- Müh, F.; Zouni, A. Micelle formation in the presence of photosystem I. Biochim. Biophys. Acta Biomembr. 2008, 1778, 2298–2307. [Google Scholar] [CrossRef] [PubMed]
- Müh, F.; DiFiore, D.; Zouni, A. The influence of poly(ethylene glycol) on the micelle formation of alkyl maltosides used in membrane protein crystallization. Phys. Chem. Chem. Phys. 2015, 17, 11678–11691. [Google Scholar] [CrossRef] [PubMed]
- Bothe, A.; Zouni, A.; Müh, F. Refined definition of the critical micelle concentration and application to alkyl maltosides used in membrane protein research. RSC Adv. 2023, 13, 9387–9401. [Google Scholar] [CrossRef] [PubMed]
- Müh, F.; Bothe, A.; Zouni, A. Towards understanding the crystallization of photosystem II: Influence of poly(ethylene glycol) of various molecular sizes on the micelle formation of alkyl maltosides. Photosynth. Res. 2024. [Google Scholar] [CrossRef]
- Kermani, A.A. A guide to membrane protein X-ray crystallography. FEBS J. 2021, 288, 5788–5804. [Google Scholar] [CrossRef]
- Golub, M.; Hussein, R.; Ibrahim, M.; Hecht, M.; Wieland, D.C.F.; Martel, A.; Machado, B.; Zouni, A.; Pieper, J. Solution Structure of the Detergent-Photosystem II Core Complex Investigated by Small-Angle Scattering Techniques. J. Phys. Chem. B 2020, 124, 8583–8592. [Google Scholar] [CrossRef]
- Birch, J.; Axford, D.; Foadi, J.; Meyer, A.; Eckhardt, A.; Thielmann, Y.; Moraes, I. The fine art of integral membrane protein crystallisation. Methods 2018, 147, 150–162. [Google Scholar] [CrossRef]
- Ostermeier, C.; Michel, H. Crystallization of membrane proteins. Curr. Opin. Struct. Biol. 1997, 7, 697–701. [Google Scholar] [CrossRef]
- Menger, F.M. On the Structure of Micelles. Acc. Chem. Res. 1979, 12, 111–117. [Google Scholar] [CrossRef]
- Nagarajan, R.; Ruckenstein, E. Theory of Surfactant Self-Assembly—A Predictive Molecular Thermodynamic Approach. Langmuir 1991, 7, 2934–2969. [Google Scholar] [CrossRef]
- Nagarajan, R. Micellization, Mixed Micellization and Solubilization—The Role of Interfacial Interactions. Adv. Colloid Interface Sci. 1986, 26, 205–264. [Google Scholar] [CrossRef]
- Nagarajan, R. Modeling Solution Entropy in the Theory of Micellization. Colloids Surf. A 1993, 71, 39–64. [Google Scholar] [CrossRef]
- Puvvada, S.; Blankschtein, D. Molecular-Thermodynamic Approach to Predict Micellization, Phase-Behavior and Phase-Separation of Micellar Solutions. I. Application to Nonionic Surfactants. J. Chem. Phys. 1990, 92, 3710–3724. [Google Scholar] [CrossRef]
- Iyer, J.; Blankschtein, D. Are Ellipsoids Feasible Micelle Shapes? An Answer Based on a Molecular-Thermodynamic Model of Nonionic Surfactant Micelles. J. Phys. Chem. B 2012, 116, 6443–6454. [Google Scholar] [CrossRef]
- Carale, T.R.; Pham, Q.T.; Blankschtein, D. Salt Effects on Intramicellar Interactions and Micellization of Nonionic Surfactants in Aqueous Solutions. Langmuir 1994, 10, 109–121. [Google Scholar] [CrossRef]
- Stephenson, B.C.; Goldsipe, A.; Beers, K.J.; Blankschtein, D. Quantifying the hydrophobic effect. 1. A computer simulation-molecular-thermodynamic model for the self-assembly of hydrophobic and amphiphilic solutes in aqueous solution. J. Phys. Chem. B 2007, 111, 1025–1044. [Google Scholar] [CrossRef]
- Stephenson, B.C.; Goldsipe, A.; Beers, K.J.; Blankschtein, D. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution. J. Phys. Chem. B 2007, 111, 1045–1062. [Google Scholar] [CrossRef]
- Stephenson, B.C.; Beers, K.J.; Blankschtein, D. Quantifying the hydrophobic effect. 3. A computer simulation-molecular-thermodynamic model for the micellization of ionic and zwitterionic surfactants in aqueous solution. J. Phys. Chem. B 2007, 111, 1063–1075. [Google Scholar] [CrossRef]
- Aveyard, R.; Saleem, S.M. Interfacial Tensions at Alkane-Aqueous Electrolyte Interfaces. J. Chem. Soc. Faraday Trans. 1 1976, 72, 1609–1617. [Google Scholar] [CrossRef]
- Hermann, R.B. Use of Solvent Cavity Area and Number of Packed Solvent Molecules around a Solute in Regard to Hydrocarbon Solubilities and Hydrophobic Interactions. Proc. Natl. Acad. Sci. USA 1977, 74, 4144–4145. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.A.; Gilbert, D.B.; Tanford, C. Empirical Correlation between Hydrophobic Free Energy and Aqueous Cavity Surface-Area. Proc. Natl. Acad. Sci. USA 1974, 71, 2925–2927. [Google Scholar] [CrossRef] [PubMed]
- Sharp, K.A.; Nicholls, A.; Fine, R.F.; Honig, B. Reconciling the Magnitude of the Microscopic and Macroscopic Hydrophobic Effects. Science 1991, 252, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Flory, P.J. Thermodynamics of high polymer solutions. J. Chem. Phys. 1941, 9, 660–661. [Google Scholar] [CrossRef]
- Huggins, M.L. Solutions of long chain compounds. J. Chem. Phys. 1941, 9, 440. [Google Scholar] [CrossRef]
- Flory, P.J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, USA, 1953. [Google Scholar]
- Hildebrand, J.H. The Entropy of Solution of Molecules of Different Size. J. Chem. Phys. 1947, 15, 225–228. [Google Scholar] [CrossRef]
- Chan, H.S.; Dill, K.A. Solvation: How to obtain microscopic energies from partitioning and solvation experiments. Annu. Rev. Biophys. Biomol. Struct. 1997, 26, 425–459. [Google Scholar] [CrossRef]
- Ben-Naim, A. Standard Thermodynamics of Transfer. Uses and Misuses. J. Phys. Chem. 1978, 82, 792–803. [Google Scholar] [CrossRef]
- Ben-Naim, A. Molecular Theory of Solutions; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Ott, J.B.; Boerio-Goates, J. Chemical Thermodynamics—Principles and Applications; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- Moore, W.J. Physical Chemistry; Longmans: London, UK, 1962. [Google Scholar]
- Melnyk, R.; Trokhymchuk, A.; Baumketner, A. Excluded volume of the system of hard-core spheres revisited: New insights from computer simulations. J. Mol. Liq. 2022, 368, 120672. [Google Scholar] [CrossRef]
- Özcan, M. Why Equilibrium Constants Are Unitless. J. Phys. Chem. Lett. 2022, 13, 3507–3509. [Google Scholar] [CrossRef]
- Phillips, J.N. The Energetics of Micelle Formation. Trans. Faraday Soc. 1955, 51, 561–569. [Google Scholar] [CrossRef]
- Semenov, A.N. Contribution to the Theory of Microphase Layering in Block-Copolymer Melts. Sov. Phys. J. Exp. Theor. Phys. 1985, 61, 733–742. [Google Scholar]
- Dill, K.A.; Flory, P.J. Molecular-Organization in Micelles and Vesicles. Proc. Natl. Acad. Sci. USA 1981, 78, 676–680. [Google Scholar] [CrossRef]
- Sanner, M.F.; Olson, A.J.; Spehner, J.C. Reduced surface: An efficient way to compute molecular surfaces. Biopolymers 1996, 38, 305–320. [Google Scholar] [CrossRef]
- Lee, B.; Richards, F.M. Interpretation of Protein Structures: Estimation of Static Accessibility. J. Mol. Biol. 1971, 55, 379–400. [Google Scholar] [CrossRef]
- Richards, F.M. Areas, Volumes, Packing, and Protein-Structure. Annu. Rev. Biophys. Bioeng. 1977, 6, 151–176. [Google Scholar] [CrossRef]
- Greer, J.; Bush, B.L. Macromolecular Shape and Surface Maps by Solvent Exclusion. Proc. Natl. Acad. Sci. USA 1978, 75, 303–307. [Google Scholar] [CrossRef]
- Connolly, M.L. Analytical Molecular Surface Calculation. J. Appl. Cryst. 1983, 16, 548–558. [Google Scholar] [CrossRef]
- McAuliffe, C. Solubility in Water of Paraffin, Cycloparaffin, Olefin, Acetylene, Cycloolefin, and Aromatic Hydrocarbons. J. Phys. Chem. 1966, 70, 1267–1275. [Google Scholar] [CrossRef]
- Aucejo, A.; Burguet, M.C.; Munoz, R.; Marques, J.L. Densities, Viscosities, and Refractive Indices of Some n-Alkane Binary Liquid Systems at 298.15 K. J. Chem. Eng. Data 1995, 40, 141–147. [Google Scholar] [CrossRef]
- De Young, L.R.; Dill, K.A. Partitioning of Nonpolar Solutes into Bilayers and Amorphous n-Alkanes. J. Phys. Chem. 1990, 94, 801–809. [Google Scholar] [CrossRef]
- Tunón, I.; Silla, E.; Pascual-Ahuir, J.L. Molecular Surface Area and Hydrophobic Effect. Prot. Eng. 1992, 5, 715–716. [Google Scholar] [CrossRef] [PubMed]
- De Grip, W.J.; Bovee-Geurts, P.H.M. Synthesis and Properties of Alkylglucosides with Mild Detergent Action: Improved Synthesis and Purification of β-1-Octyl-, -Nonyl-, and -Decyl-Glucose. Synthesis of β-1-Undecylglucose and β-1-Dodecylmaltose. Chem. Phys. Lipids 1979, 23, 321–335. [Google Scholar] [CrossRef]
- Barrat, J.-L.; Hansen, J.-P. Basic Concepts for Simple and Complex Liquids; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Lum, K.; Chandler, D.; Weeks, J.D. Hydrophobicity at small and large length scales. J. Phys. Chem. B 1999, 103, 4570–4577. [Google Scholar] [CrossRef]
- Ashbaugh, H.S.; Paulaitis, M.E. Effect of solute size and solute-water attractive interactions on hydration water structure around hydrophobic solutes. J. Am. Chem. Soc. 2001, 123, 10721–10728. [Google Scholar] [CrossRef]
- Ashbaugh, H.S.; Pratt, L.R. Colloquium: Scaled particle theory and the length scales of hydrophobicity. Rev. Mod. Phys. 2006, 78, 159–178. [Google Scholar] [CrossRef]
- Hitscherich, C.; Kaplan, J.; Allaman, M.; Wiencek, J.; Loll, P.J. Static light scattering studies of OmpF porin: Implications for integral membrane protein crystallization. Protein Sci. 2000, 9, 1559–1566. [Google Scholar] [CrossRef]
- Dill, K.A. Dominant Forces in Protein Folding. Biochemistry 1990, 29, 7133–7155. [Google Scholar] [CrossRef]
- Ben-Naim, A. Molecular Theory of Water and Aqueous Solutions—Part II: The Role of Water in Protein Folding, Self-Assembly and Molecular Recognition; World Scientific Publishing: Singapore, 2011. [Google Scholar]
- Sobakinskaya, E.; Krobath, H.; Renger, T.; Müh, F. Structural determinants of a permeation barrier of the SecYEG translocon in the active state. Phys. Chem. Chem. Phys. 2021, 23, 25830–25840. [Google Scholar] [CrossRef]
- Sobakinskaya, E.; Müh, F. Physical mechanisms of the Sec machinery operation. Phys. Chem. Chem. Phys. 2024, 26, 27176–27188. [Google Scholar] [CrossRef]
- Tsamaloukas, A.D.; Beck, A.; Heerklotz, H. Modeling the Micellization Behavior of Mixed and Pure n-Alkyl-Maltosides. Langmuir 2009, 25, 4393–4401. [Google Scholar] [CrossRef] [PubMed]
- Aoudia, M.; Zana, R. Aggregation behavior of sugar surfactants in aqueous solutions: Effects of temperature and the addition of nonionic polymers. Colloid Interface Sci. 1998, 206, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Liljekvist, P.; Kronberg, B. Comparing Decyl-β-maltoside and Octaethyleneglycol Mono n-Decyl Ether in Mixed Micelles with Dodecyl Benzenesulfonate: 1. Formation of Mixed Micelles. Colloid Interface Sci. 2000, 222, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Somasundaran, P.; Maltesh, C. Electrolyte Effects on the Surface Tension and Micellization of n-Dodecyl β-d-Maltoside Solutions. Langmuir 1996, 12, 2371–2373. [Google Scholar] [CrossRef]
- Drummond, C.J.; Warr, G.G.; Grieser, F.; Ninham, B.W.; Evans, D.F. Surface properties and micellar interfacial microenvironment of n-dodecyl.beta.-D-maltoside. Phys. Chem. 1985, 89, 2103–2109. [Google Scholar] [CrossRef]
- Aveyard, R.; Binks, B.P.; Chen, J.; Esquena, J.; Fletcher, P.D.I.; Buscall, R.; Davies, S. Surface and colloid chemistry of systems containing pure sugar surfactant. Langmuir 1998, 14, 4699–4709. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Cheminformatics 2012, 4, 17. [Google Scholar] [CrossRef]
- Wang, J.M.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Klauda, J.B.; Brooks, B.R.; MacKerell, A.D.; Venable, R.M.; Pastor, R.W. An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. Phys. Chem. B 2005, 109, 5300–5311. [Google Scholar] [CrossRef]
- Klauda, J.B.; Pastor, R.W.; Brooks, B.R. Adjacent gauche stabilization in linear alkanes: Implications for polymer models and conformational analysis. Phys. Chem. B 2005, 109, 15684–15686. [Google Scholar] [CrossRef]
- Klauda, J.B.; Venable, R.M.; Freites, J.A.; O’Connor, J.W.; Tobias, D.J.; Mondragon-Ramirez, C.; Vorobyov, I.; MacKerell, A.D.; Pastor, R.W. Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. Phys. Chem. B 2010, 114, 7830–7843. [Google Scholar] [CrossRef]
- Lipfert, J.; Columbus, L.; Chu, V.B.; Lesley, S.A.; Doniach, S. Size and shape of detergent micelles determined by small-angle X-ray scattering. Phys. Chem. B 2007, 111, 12427–12438. [Google Scholar] [CrossRef]
- CSID:388329. Available online: https://www.chemspider.com/Chemical-Structure.388329.html (accessed on 29 August 2024).
SASA | SESA | |
---|---|---|
2 | 197.708 | 80.386 |
3 | 230.336 | 100.662 |
4 | 262.777 | 120.903 |
5 | 295.248 | 141.159 |
6 | 327.515 | 161.338 |
7 | 359.942 | 181.592 |
8 | 397.300 | 204.457 |
9 | 425.002 | 222.204 |
10 | 457.362 | 242.415 |
11 | 492.184 | 263.975 |
12 | 522.711 | 283.188 |
in g/cm3 a | in g/mole b | in cm3/mole c | d | e | f | |||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 0.62124 | 72.151 | 116.140 | 6.429 | 4.005 | 38.5 ± 2.0 | 61.802 | 9.613 | 61.798 | 9.613 |
6 | 0.65507 | 86.178 | 131.555 | 7.283 | 7.283 | 9.5 ± 1.3 | 14.462 | 1.304 | 14.462 | 1.304 |
7 | 0.67965 | 100.205 | 147.436 | 8.162 | 8.162 | 2.93 ± 0.20 | 4.300 | 0.359 | 4.300 | 0.359 |
8 | 0.69842 | 144.232 | 163.558 | 9.054 | 9.054 | 0.66 ± 0.942 | 0.942 | 0.073 | 0.942 | 0.073 |
SASA | SESA | |
---|---|---|
19.8 ± 1.6 | 31.9 ± 2.4 | |
17.1 ± 1.2 | 27.4 ± 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müh, F. The Entropy of Mixing in Self-Assembly and the Role of Surface Tension in Modeling the Critical Micelle Concentration. Colloids Interfaces 2024, 8, 60. https://doi.org/10.3390/colloids8060060
Müh F. The Entropy of Mixing in Self-Assembly and the Role of Surface Tension in Modeling the Critical Micelle Concentration. Colloids and Interfaces. 2024; 8(6):60. https://doi.org/10.3390/colloids8060060
Chicago/Turabian StyleMüh, Frank. 2024. "The Entropy of Mixing in Self-Assembly and the Role of Surface Tension in Modeling the Critical Micelle Concentration" Colloids and Interfaces 8, no. 6: 60. https://doi.org/10.3390/colloids8060060
APA StyleMüh, F. (2024). The Entropy of Mixing in Self-Assembly and the Role of Surface Tension in Modeling the Critical Micelle Concentration. Colloids and Interfaces, 8(6), 60. https://doi.org/10.3390/colloids8060060