Handling Complexity in Animal and Plant Science Research—From Single to Functional Traits: Are We There Yet?
Abstract
:1. Introduction
2. Omics, Metabolomics and Systems Biology
3. From Reductionist to Omics Approach
4. Limitations
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Fitzgerald, M.A.; McCouch, S.R.; Hall, R.D. Not just a grain of rice: The quest for quality. Trends Plant Sci. 2009, 14, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Kuchel, H.; Williams, K.; Langridge, P.; Eagles, H.; Jefferies, S. Genetic dissection of grain yield in bread wheat. II. QTL-by-environment interaction. Theor. Appl. Genet. 2007, 115, 1015–1027. [Google Scholar] [CrossRef] [PubMed]
- Tester, M.; Langridge, P. Breeding technologies to increase crop production in a changing world. Science 2010, 327, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Swartz, M.D.; Peterson, C.B.; Lupo, P.J.; Wu, X.; Forman, M.R.; Spitz, M.R.; Hernandez, L.M.; Vannucci, M.; Shete, S. Investigating multiple candidate genes and nutrients in the folate metabolism pathway to detect genetic and nutritional risk factors for lung cancer. PLoS ONE 2013, 8, e53475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, C.L.; Goldsmith, C.-A.W.; Eppig, J.T. The Mammalian Phenotype Ontology as a tool for annotating, analyzing and comparing phenotypic information. Genome Biol. 2005, 6, R7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Gay, C.; Zuerner, R.; Bannantine, J.; Lillehoj, H.; Zhu, J.; Green, R.; Pastoret, P. Genomics and vaccine development. Rev. Sci. Tech. Off. Int. Epizoot. 2007, 26, 49. [Google Scholar] [CrossRef]
- Piersma, T.; Drent, J. Phenotypic flexibility and the evolution of organismal design. Trends Ecol. Evol. 2003, 18, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Stearns, S.C. The evolution of life history traits: A critique of the theory and a review of the data. Annu. Rev. Ecol. System. 1977, 8, 145–171. [Google Scholar] [CrossRef]
- Crain, J.; Reynolds, M.; Poland, J. Utilizing high-throughput phenotypic data for improved phenotypic selection of stress-adaptive traits in wheat. Crop Sci. 2017, 57, 648–659. [Google Scholar] [CrossRef]
- Macpherson, A.J.; de Agüero, M.G.; Ganal-Vonarburg, S.C. How nutrition and the maternal microbiota shape the neonatal immune system. Nat. Rev. Immunol. 2017, 17, 508. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.R.; Kangas, J.D.; Dovzhenko, A.; Trojok, R.; Voigt, K.; Majarian, T.D.; Palme, K.; Murphy, R.F. A method for characterizing phenotypic changes in highly variable cell populations and its application to high content screening of Arabidopsis thaliana protoplasts. Cytom. Part A 2017, 91, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Sahu, P.P.; Muthamilarasan, M.; Dhaka, A.; Prasad, M. Genomics-assisted breeding for improving stress tolerance of graminaceous crops to biotic and abiotic stresses: Progress and prospects. In Plant Tolerance to Individual and Concurrent Stresses; Springer: Berlin, Germany, 2017; pp. 59–81. [Google Scholar]
- John, K.M.; Khan, F.; Luthria, D.L.; Garrett, W.; Natarajan, S. Proteomic analysis of anti-nutritional factors (ANF’s) in soybean seeds as affected by environmental and genetic factors. Food Chem. 2017, 218, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Hagel, J.M.; Facchini, P.J. Plant metabolomics: Analytical platforms and integration with functional genomics. Phytochem. Rev. 2008, 7, 479–497. [Google Scholar] [CrossRef]
- Schwab, W. Metabolome diversity: Too few genes, too many metabolites? Phytochemistry 2003, 62, 837–849. [Google Scholar] [CrossRef]
- Michalak, M.; Corbett, E.F.; Mesaeli, N.; Nakamura, K.; Michal, O. Calreticulin: One protein, one gene, many functions. Biochem. J. 1999, 344, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Marti, G.; Erb, M.; Boccard, J.; Glauser, G.; Doyen, G.R.; Villard, N.; Robert, C.A.M.; Turlings, T.C.; Rudaz, S.; Wolfender, J.L. Metabolomics reveals herbivore-induced metabolites of resistance and susceptibility in maize leaves and roots. Plant Cell Environ. 2013, 36, 621–639. [Google Scholar] [CrossRef] [PubMed]
- Periat, A.; Boccard, J.; Veuthey, J.-L.; Rudaz, S.; Guillarme, D. Systematic comparison of sensitivity between hydrophilic interaction liquid chromatography and reversed phase liquid chromatography coupled with mass spectrometry. J. Chromatogr. A 2013, 1312, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Gangadoo, S.; Dinev, I.; Chapman, J.; Hughes, R.J.; Van, T.T.H.; Moore, R.J.; Stanley, D. Selenium nanoparticles in poultry feed modify gut microbiota and increase abundance of Faecalibacterium prausnitzii. Appl. Microbiol. Biotechnol. 2018, 102, 1455–1466. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Chapman, J.; Power, A.; Roberts, J.; Cozzolino, D. The application of state-of-the-art analytic tools (biosensors and spectroscopy) in beverage and food fermentation process monitoring. Fermentation 2017, 3, 50. [Google Scholar] [CrossRef]
- Chandra, S.; Chapman, J.; Power, A.; Roberts, J.; Cozzolino, D. Origin and regionality of wines—The role of molecular spectroscopy. Food Anal. Methods 2017, 10, 3947–3955. [Google Scholar] [CrossRef]
- Gangadoo, S.; Stanley, D.; Hughes, R.J.; Moore, R.J.; Chapman, J. Nanoparticles in feed: Progress and prospects in poultry research. Trends Food Sci. Technol. 2016, 58, 115–126. [Google Scholar] [CrossRef]
- Shendure, J.; Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 2008, 26, 1135. [Google Scholar] [CrossRef] [PubMed]
- McFall-Ngai, M.; Hadfield, M.G.; Bosch, T.C.; Carey, H.V.; Domazet-Lošo, T.; Douglas, A.E.; Dubilier, N.; Eberl, G.; Fukami, T.; Gilbert, S.F. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 2013, 110, 3229–3236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, I.F.; Legido-Quigley, C.; Parker, D.A.; Swann, J.R.; Spraul, M.; Braumann, U.; Gil, A.M.; Holmes, E.; Nicholson, J.K.; Murphy, G.M. Identification of metabolites in human hepatic bile using 800 MHz 1H NMR spectroscopy, HPLC-NMR/MS and UPLC-MS. Mol. BioSyst. 2009, 5, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Anesi, A.; Stocchero, M.; Santo, S.D.; Commisso, M.; Zenoni, S.; Ceoldo, S.; Tornielli, G.B.; Siebert, T.E.; Herderich, M.; Pezzotti, M. Towards a scientific interpretation of the terroir concept: Plasticity of the grape berry metabolome. BMC Plant Biol. 2015, 15, 191. [Google Scholar] [CrossRef] [PubMed]
- Fotakis, C.; Kokkotou, K.; Zoumpoulakis, P.; Zervou, M. NMR metabolite fingerprinting in grape derived products: An overview. Food Res. Int. 2013, 54, 1184–1194. [Google Scholar] [CrossRef]
- Ryan, D.; Robards, K. Metabolomics: The greatest omics of them all? Anal. Chem. 2006, 78, 7954–7958. [Google Scholar] [CrossRef] [PubMed]
- Mohanta, T.K.; Bashir, T.; Hashem, A.; Abd_Allah, E.F. Systems biology approach in plant abiotic stresses. Plant Physiol. Biochem. 2017, 121, 58–73. [Google Scholar] [CrossRef] [PubMed]
- Mohantaa, T.K. Plant Metabolomics: Missing link in next generation functional genomics era. J. Appl. Biol. Biotechnol. 2013, 1, 001–010. [Google Scholar]
- Fernie, A.R.; Geigenberger, P.; Stitt, M. Flux an important, but neglected, component of functional genomics. Curr. Opin. Plant Biol. 2005, 8, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.D. Plant metabolomics: From holistic hope, to hype, to hot topic. New Phytol. 2006, 169, 453–468. [Google Scholar] [CrossRef] [PubMed]
- Libourel, I.G.; Shachar-Hill, Y. Metabolic flux analysis in plants: From intelligent design to rational engineering. Annu. Rev. Plant Biol. 2008, 59, 625–650. [Google Scholar] [CrossRef] [PubMed]
- Rossel, S.; Solem, C.; Jensen, P.R.; Heijnen, J.J. Towards a quantitative prediction of fluxome from the proteome. Metab. Eng. 2011, 13, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Song, J.; Xu, Z.; Sun, J.; Zhang, Y.; Li, Y.; Ma, Y. Development of optimum searching (TOS) to improve the prediction accuracy of flux balance analysis. Biotechnol. Bioeng. 2012, 110, 914–923. [Google Scholar] [CrossRef] [PubMed]
- Sweetlove, L.J.; Fell, D.; Fernie, A.R. Getting to grips with the plant metabolic network. Biochem. J. 2008, 409, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Cantarello, C.; Volpe, V.; Azzolin, C.; Bertea, C.M. Modulation of enzyme activities and expression of genes related to primary and secondary metabolism in response to UV-B stress in cucumber (Cucumis sativus L.). J. Plant Interact. 2005, 1, 151–161. [Google Scholar] [CrossRef]
- Fardet, A.; Rock, E. Toward a new philosophy of preventive nutrition: From a reductionist to a holistic paradigm to improve nutritional recommendations. Adv. Nutr. 2014, 5, 430–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbons, M.; Limoges, C.; Nowotny, H.; Schwartzman, S.; Scott, P.; Trow, M. The New Production of Knowledge: The Dynamics of Science and Research in Contemporary Societies; Sage: Newcastle upon Tyne, UK, 1994. [Google Scholar]
- García-Flores, M.; Juárez-Colunga, S.; García-Casarrubias, A.N.; Trachsel, S.; Winkler, R.; Tiessen, A. Metabolic profiling of plant extracts using direct-injection electrospray ionization mass spectrometry allows for high-throughput phenotypic characterization according to genetic and environmental effects. J. Agric. Food Chem. 2015, 63, 1042–1052. [Google Scholar] [CrossRef] [PubMed]
- Sumner, L.W.; Mendes, P.; Dixon, R.A. Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry 2003, 62, 817–836. [Google Scholar] [CrossRef]
- Cui, Q.; Lewis, I.A.; Hegeman, A.D.; Anderson, M.E.; Li, J.; Schulte, C.F.; Westler, W.M.; Eghbalnia, H.R.; Sussman, M.R.; Markley, J.L. Metabolite identification via the madison metabolomics consortium database. Nat. Biotechnol. 2008, 26, 162. [Google Scholar] [CrossRef] [PubMed]
- Moco, S.; Vervoort, J.; Bino, R.J.; de Vos, R.C.; Bino, R. Metabolomics technologies and metabolite identification. TrAC Trends Anal. Chem. 2007, 26, 855–866. [Google Scholar] [CrossRef]
- Lavine, B.K. Chemometrics. Anal. Chem. 1998, 70, 209–228. [Google Scholar] [CrossRef]
- Langridge, P.; Fleury, D. Making the most of ‘omics’ for crop breeding. Trends Biotechnol. 2011, 29, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Cockbum, A. Commercial plant breeding: What is in the biotech pipeline? J. Commer. Biotechnol. 2004, 10, 209–223. [Google Scholar] [CrossRef]
- Kell, D.B. Metabolomics and systems biology: Making sense of the soup. Curr. Opin. Microbiol. 2004, 7, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Mo, M.L.; Jamshidi, N.; Palsson, B.Ø. A genome-scale, constraint-based approach to systems biology of human metabolism. Mol. Biosyst. 2007, 3, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G.F. The computational complexity of probabilistic inference using Bayesian belief networks. Artif. Intell. 1990, 42, 393–405. [Google Scholar] [CrossRef]
- Costanza, R.; Wainger, L.; Folke, C.; Mäler, K.-G. Modeling Complex Ecological Economic Systems: Toward an Evolutionary, Dynamic Understanding of People and Nature, Ecosystem Management; Springer: Berlin, Germany, 1993; pp. 148–163. [Google Scholar]
- Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z.N.; Barabási, A.-L. The large-scale organization of metabolic networks. Nature 2000, 407, 651. [Google Scholar] [PubMed]
- Cozzolino, D.; Murray, I. Identification of animal meat muscles by visible and near infrared reflectance spectroscopy. LWT-Food Sci. Technol. 2004, 37, 447–452. [Google Scholar] [CrossRef]
- Cozzolino, D.; Smyth, H.E.; Gishen, M. Feasibility study on the use of visible and near-infrared spectroscopy together with chemometrics to discriminate between commercial white wines of different varietal origins. J. Agric. Food Chem. 2003, 51, 7703–7708. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Murray, I.; Chree, A.; Scaife, J. Multivariate determination of free fatty acids and moisture in fish oils by partial least-squares regression and near-infrared spectroscopy. LWT-Food Sci. Technol. 2005, 38, 821–828. [Google Scholar] [CrossRef]
Main Topic | Issues to be Addressed |
---|---|
Field trials | Robust field trials |
Sampling protocol | Define a correct protocol, replicates, consistency |
Validation | Define a validation protocol transfer models, information, internal and external validation |
Pre-processing | Consistency, interpretation and validation |
Appropriate method bioinformatics/chemometrics | Consistency, interpretation and validation |
Analytical method | Error, repeatability and validation |
Education | Graduates and users |
Multidisciplinary approach | Integration of different disciplines |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roberts, J.; Power, A.; Chandra, S.; Chapman, J.; Cozzolino, D. Handling Complexity in Animal and Plant Science Research—From Single to Functional Traits: Are We There Yet? High-Throughput 2018, 7, 16. https://doi.org/10.3390/ht7020016
Roberts J, Power A, Chandra S, Chapman J, Cozzolino D. Handling Complexity in Animal and Plant Science Research—From Single to Functional Traits: Are We There Yet? High-Throughput. 2018; 7(2):16. https://doi.org/10.3390/ht7020016
Chicago/Turabian StyleRoberts, Jessica, Aoife Power, Shaneel Chandra, James Chapman, and Daniel Cozzolino. 2018. "Handling Complexity in Animal and Plant Science Research—From Single to Functional Traits: Are We There Yet?" High-Throughput 7, no. 2: 16. https://doi.org/10.3390/ht7020016
APA StyleRoberts, J., Power, A., Chandra, S., Chapman, J., & Cozzolino, D. (2018). Handling Complexity in Animal and Plant Science Research—From Single to Functional Traits: Are We There Yet? High-Throughput, 7(2), 16. https://doi.org/10.3390/ht7020016