Precision Medicine in Non-Communicable Diseases
Abstract
:1. Introduction
2. Shortfalls of Modern Medicine
3. Genomic Biomarkers in NCDs
- Poor quality of test samples;
- Analyzing somatic instead of germline DNA;
- Analyses of non-relevant GBs;
- Poor quality of the employed analytics;
- Lack of appropriate phenotype identification;
- Inadequate study design, including lack of appropriate patient selection/stratification;
- Lack of statistical analysis planning and execution in relation to the frequency of GB in the population.
4. Conclusions and Future Challenges
Author Contributions
Funding
Conflicts of Interest
References
- Bilkey, G.A.; Burns, B.L.; Coles, E.P.; Mahede, T.; Baynam, G.; Nowak, K.J. Optimizing Precision Medicine for Public Health. Front. Public Health 2019, 7, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotze, M.J.; Lückhoff, H.K.; Peeters, A.V.; Baatjes, K.; Schoeman, M.; van der Merwe, L.; Grant, K.A.; Fisher, L.R.; van der Merwe, N.; Pretorius, J.; et al. Genomic medicine and risk prediction across the disease spectrum. Crit. Rev. Clin. Lab. Sci. 2015, 52, 120–137. [Google Scholar] [CrossRef] [PubMed]
- Dzau, V.J.; Balatbat, C.A. Future of Hypertension. Hypertension 2019, 74, 450–457. [Google Scholar] [CrossRef]
- World Health Organization, (WHO). Suicide. Available online: http://www.who.int/mediacentre/factsheets/fs398/en/ (accessed on 2 September 2019).
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Noncommunicable Diseases: The Slow Motion Disaster. Available online: https://www.who.int/publications/10-year-review/ncd/en/ (accessed on 2 September 2019).
- Koopman, J.J.; van Bodegom, D.; Ziem, J.B.; Westendorp, R.G. An Emerging Epidemic of Noncommunicable Diseases in Developing Populations Due to a Triple Evolutionary Mismatch. Am. J. Trop. Med. Hyg. 2016, 94, 1189–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, L. Are we facing a noncommunicable disease pandemic? J. Epidemiol. Glob. Health 2017, 7, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Bertram, M.; Banatvala, N.; Kulikov, A.; Belausteguigoitia, I.; Sandoval, R.; Hennis, A.; Webb, D.; Tarlton, D. Using economic evidence to support policy decisions to fund interventions for non-communicable diseases. BMJ 2019, 365, 1648. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.R.; Tipney, H.; Painter, J.L.; Shen, J.; Nicoletti, P.; Shen, Y.; Floratos, A.; Sham, P.C.; Li, M.J.; Wang, J.; et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 2015, 47, 856–860. [Google Scholar] [CrossRef]
- Gronde, T.V.; Uyl-de Groot, C.A.; Pieters, T. Addressing the challenge of high-priced prescription drugs in the era of precision medicine: A systematic review of drug life cycles, therapeutic drug markets and regulatory frameworks. PLoS ONE 2017, 12, e0182613. [Google Scholar] [CrossRef]
- Evans, W.E.; McLeod, H.L. Pharmacogenomics-drug disposition, drug targets, and side effects. N. Engl. J. Med. 2003, 348, 538–549. [Google Scholar] [CrossRef] [Green Version]
- Calvo, E.; Walko, C.; Dees, E.C.; Valenzuela, B. Pharmacogenomics, Pharmacokinetics, and Pharmacodynamics in the Era of Targeted Therapies. Am. Soc. Clin. Oncol. Educ. Book 2016, 35, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, N.; Jankovic, S.M.; Milovanovic, J.R. Pharmacokinetics and Pharmacogenetics of Carbamazepine in Children. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 729–744. [Google Scholar] [CrossRef] [PubMed]
- Borgiani, P. Genomic Personalized Medicine: A dream or a reality? Biomed. Prev. 2016, 29. [Google Scholar] [CrossRef]
- Roden, D.M.; Wilke, R.A.; Kroemer, H.K.; Stein, C.M. Pharmacogenomics: The genetics of variable drug responses. Circulation 2011, 123, 1661–1670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novelli, G.; Borgiani, P.; Ciccacci, C.; Di Daniele, N.; Sirugo, G.; Papaluca Amati, M. Pharmacogenomics: Role in medicines approval and clinical use. Public Health Genom. 2010, 13, 284–291. [Google Scholar] [CrossRef] [PubMed]
- European Medicine Agency, (EMA). Guideline on the Use of Pharmacogenetic Methodologies in the Pharmacokinetic Evaluation of Medicinal Products. Available online: https://www.ema.europa.eu/en/use-pharmacogenetic-methodologies-pharmacokinetic-evaluation-medicinal-products (accessed on 2 September 2019).
- Roden, D.M.; Altman, R.B.; Benowitz, N.L.; Flockhart, D.A.; Giacomini, K.M.; Johnson, J.A.; Krauss, R.M.; McLeod, H.L.; Ratain, M.J.; Relling, M.V.; et al. Pharmacogenetics Research Network. Pharmacogenomics: Challenges and opportunities. Ann. Intern. Med. 2006, 145, 749–757. [Google Scholar] [CrossRef] [Green Version]
- Manikandan, P.; Nagini, S. Cytochrome P450 Structure, Function and Clinical Significance: A Review. Curr. Drug Targets 2018, 19, 38–54. [Google Scholar] [CrossRef]
- Roden, D.M.; McLeod, H.L.; Relling, M.V.; Williams, M.S.; Mensah, G.A.; Peterson, J.F.; Van Driest, S.L. Pharmacogenomics. Lancet 2019, 394, 521–532. [Google Scholar] [CrossRef]
- Niemeijer, M.N.; van den Berg, M.E.; Eijgelsheim, M.; Rijnbeek, P.R.; Stricker, B.H. Pharmacogenetics of Drug-Induced QT Interval Prolongation: An Update. Drug Saf. 2015, 38, 855–867. [Google Scholar] [CrossRef] [Green Version]
- European Commission Enterprise and Industry Directorate-General A Guideline on Summary of Product Characteristics. Available online: https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-2/c/smpc_guideline_rev2_en.pdf (accessed on 2 September 2019).
- European Medicine Agency, (EMA). Guideline on Key Aspects for the USE of Pharmacogenomics in the Pharmacovigilance of Medicinal Products. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-key-aspects-use-pharmacogenomics-pharmacovigilance-medicinal-products_en.pdf (accessed on 2 September 2019).
- Ehmann, F.; Caneva, L.; Prasad, K.; Paulmichl, M.; Maliepaard, M.; Llerena, A.; Ingelman-Sundberg, M.; Papaluca-Amati, M. Pharmacogenomic information in drug labels: European Medicines Agency perspective. Pharmacogenom. J. 2015, 15, 201–210. [Google Scholar] [CrossRef]
- European Medicine Agency, (EMA). Guideline on Good Pharmacogenomic Practice. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-good-pharmacogenomic-practice-first-version_en.pdf (accessed on 2 September 2019).
- Tangamornsuksan, W.; Chaiyakunapruk, N.; Somkrua, R.; Lohitnavy, M.; Tassaneeyakul, W. Relationship between the HLA-B*1502 allele and carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis: A systematic review and meta-analysis. JAMA Dermatol. 2013, 149, 1025–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.; Zhang, H.; Ma, H.Z.; Li, J. Homozygous mutation in NUDT15 in childhood acute lymphoblastic leukemia with increased susceptibility to mercaptopurine toxicity: A case report. Exp. Ther. Med. 2019, 17, 4285–4288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novelli, G.; Ciccacci, C.; Borgiani, P.; Papaluca Amati, M.; Abadie, E. Genetic tests and genomic biomarkers: Regulation, qualification and validation. Clin. Cases Miner. Bone Metab. 2008, 5, 149–154. [Google Scholar] [PubMed]
- Buniello, A.; MacArthur, J.A.L.; Cerezo, M.; Harris, L.W.; Hayhurst, J.; Malangone, C.; McMahon, A.; Morales, J.; Mountjoy, E.; Sollis, E.; et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies; targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019, 47, D1005–D1012. [Google Scholar] [CrossRef] [Green Version]
- Zeggini, E.; Gloyn, A.L.; Barton, A.C.; Wain, L.V. Translational genomics and precision medicine: Moving from the lab to the clinic. Science 2019, 365, 1409–1413. [Google Scholar] [CrossRef] [Green Version]
- Adams, S.A.; Petersen, C. Precision medicine: Opportunities, possibilities, and challenges for patients and providers. J. Am. Med. Inform. Assoc. 2016, 23, 787–790. [Google Scholar] [CrossRef]
- Vicini, P.; Fields, O.; Lai, E.; Litwack, E.D.; Martin, A.M.; Morgan, T.M.; Pacanowski, M.A.; Papaluca, M.; Perez, O.D.; Ringel, M.S.; et al. Precision Medicine in the Age of Big Data: The Present and Future Role of Large Scale Unbiased Sequencing in Drug Discovery and Development. Clin. Pharmacol. Ther. 2016, 99, 198–207. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, X.; Li, F.; Xiao, D.; Hou, Y.; Zhu, S.; Liu, D.; Ye, X.; Ye, M.; Yang, J.; et al. Frequent alterations in cytoskeleton remodelling genes in primary and metastatic lung adenocarcinomas. Nat. Commun. 2015, 6, 10131. [Google Scholar] [CrossRef]
- Secrier, M.; Li, X.; de Silva, N.; Eldridge, M.D.; Contino, G.; Bornschein, J.; MacRae, S.; Grehan, N.; O’Donovan, M.; Miremadi, A.; et al. Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) Consortium. Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance. Nat. Genet. 2016, 48, 1131–1141. [Google Scholar] [CrossRef] [Green Version]
- Cascella, R.; Strafella, C.; Longo, G.; Maccarone, M.; Borgiani, P.; Sangiuolo, F.; Novelli, G.; Giardina, E. Pharmacogenomics of multifactorial diseases: A focus on psoriatic arthritis. Pharmacogenomics 2016, 17, 943–951. [Google Scholar] [CrossRef]
- Dand, N.; Duckworth, M.; Baudry, D.; Russell, A.; Curtis, C.J.; Lee, S.H.; Evans, I.; Mason, K.J.; Alsharqi, A.; Becher, G.; et al. PSORT Consortium. HLA-C*06:02 genotype is a predictive biomarker of biologic treatment response in psoriasis. J. Allergy Clin. Immunol. 2019, 143, 2120–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musunuru, K.; Ingelsson, E.; Fornage, M.; Liu, P.; Murphy, A.M.; Newby, L.K.; Newton-Cheh, C.; Perez, M.V.; Voora, D.; Woo, D. The Expressed Genome in Cardiovascular Diseases and Stroke: Refinement, Diagnosis, and Prediction: A Scientific Statement From the American Heart Association. Circ. Cardiovasc. Genet. 2017, 10, e000037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franks, P.W.; Poveda, A. Lifestyle and precision diabetes medicine: Will genomics help optimise the prediction, prevention and treatment of type 2 diabetes through lifestyle therapy? Diabetologia 2017, 60, 784–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Politi, C.; Ciccacci, C.; Novelli, G.; Borgiani, P. Genetics and Treatment Response in Parkinson’s Disease: An Update on Pharmacogenetic Studies. Neuromol. Med. 2018, 20, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Cascella, R.; Strafella, C.; Caputo, V.; Errichiello, V.; Zampatti, S.; Milano, F.; Potenza, S.; Mauriello, S.; Novelli, G.; Ricci, F.; et al. Towards the application of precision medicine in Age-Related Macular Degeneration. Prog. Retin. Eye Res. 2018, 63, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Rufini, S.; Ciccacci, C.; Novelli, G.; Borgiani, P. Pharmacogenetics of inflammatory bowel disease: A focus on Crohn’s disease. Pharmacogenomics 2017, 18, 1095–1114. [Google Scholar] [CrossRef]
- Brown, J.T.; Eum, S.; Cook, E.H.; Bishop, J.R. Pharmacogenomics of autism spectrum disorder. Pharmacogenomics 2017, 18, 403–414. [Google Scholar] [CrossRef]
- Zai, C.C.; Tiwari, A.K.; Zai, G.C.; Maes, M.S.; Kennedy, J.L. New findings in pharmacogenetics of schizophrenia. Curr. Opin. Psychiatry 2018, 31, 200–212. [Google Scholar] [CrossRef]
- 1000 Genomes Project Consortium; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar]
- Dwivedi, O.P.; Lehtovirta, M.; Hastoy, B.; Chandra, V.; Krentz, N.A.J.; Kleiner, S.; Jain, D.; Richard, A.M.; Abaitua, F.; Beer, N.L.; et al. Loss of ZnT8 function protects against diabetes by enhanced insulin secretion. Nat. Genet. 2019, 51, 1596–1606. [Google Scholar] [CrossRef]
- Scotton, C.; Passarelli, C.; Neri, M.; Ferlini, A. Biomarkers in rare neuromuscular diseases. Exp. Cell Res. 2014, 325, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Mallal, S.; Phillips, E.; Carosi, G.; Molina, J.M.; Workman, C.; Tomazic, J.; Jägel-Guedes, E.; Rugina, S.; Kozyrev, O.; Cid, J.F.; et al. HLA-B*5701 screening for hypersensitivity to abacavir. N. Engl. J. Med. 2008, 358, 568–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattes, W.; Goodsaid, F. Regulatory landscapes for biomarkers and diagnostic tests: Qualification, approval, and role in clinical practice. Exp. Biol. Med. 2018, 243, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Goodsaid, F.; Papaluca, M. Evolution of biomarker qualification at the health authorities. Nat. Biotechnol. 2010, 28, 441–443. [Google Scholar] [CrossRef]
Diseases | Drugs | Genes |
---|---|---|
Psoriatic Arthritis | Methotrexate | DHFR, MTHFR |
Sulfasalazine | NAT2 | |
Etanercept | TNF-α, FCGR2A | |
Infliximab | TNFRSF1A | |
Adalimumab | HLA | |
Parkinson’s Disease | Levodopa | COMT, DDC, DRD2, DRD3 SLC6A3, SLC22A1, APOE, ACE, CCK, BDNF, HCRT, OPRM1, HOMER1, SV2C, GRIN2A, ADORA2A |
Tolcapone/entacapone | UGT1A6, COMT | |
Ropinirole/pramipexole | CDRD2, DRD3 | |
Rasagiline | DRD2 | |
Age-Related Macular Degeneration | Ranibizumab | VEGFA, CFH, ARMS, VGFR2, APOE, CD36 |
Bevacizumab | VEGFA, CFH, ARMS | |
Aflibercept | CFH, ARMS | |
Verteporfin | CRP | |
Crohn’s disease | Aminosalicylates | HLA |
Immunosuppressors | TPMT, ITPA, NUDT15, ABCC4, GST, HLA, ABBC4, ABCB1, RAC1, MTHFR | |
Glucocorticoids | NR3C1, FKBP5, ABCB1, TNF, NLRP1 | |
Infliximab | ADAM17, IL1β, TNF-α, TNFRSF1A, TNFRSF1B, FASL, CASP9, FCGR3A, ATG16L1 | |
Adalimumab | ATG16L1, HFE | |
Autism Spectrum Disorder | Risperidone | CYP2D6, ABCB1, DRD2, DRD3, HTR2A, HTR2C, FTO, MC4R, LEP, CNR1, FAAH |
Fluvoxamine | SLC6A4 | |
Escitalopram | SLC6A4, CYP2C19 | |
Methylphenidate | DRD1–DRD5, ADRA2A, SLC6A3, SLC6A4, MAOA, MAOB, COMT | |
Schizophrenia | Clozapine | HTR2A, HTR3A, DRD2, DRD4, COMT, CYP2C19, SLC6A9, ITIH3 |
Risperidone | ABCB1, GRID2, GRM7, GRM5 | |
Amisulpride | SNAP25, ANKS1B | |
Paliperidone | ADCK1 | |
Pomaglumetad methionil | HTR2A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novelli, G.; Biancolella, M.; Latini, A.; Spallone, A.; Borgiani, P.; Papaluca, M. Precision Medicine in Non-Communicable Diseases. High-Throughput 2020, 9, 3. https://doi.org/10.3390/ht9010003
Novelli G, Biancolella M, Latini A, Spallone A, Borgiani P, Papaluca M. Precision Medicine in Non-Communicable Diseases. High-Throughput. 2020; 9(1):3. https://doi.org/10.3390/ht9010003
Chicago/Turabian StyleNovelli, Giuseppe, Michela Biancolella, Andrea Latini, Aldo Spallone, Paola Borgiani, and Marisa Papaluca. 2020. "Precision Medicine in Non-Communicable Diseases" High-Throughput 9, no. 1: 3. https://doi.org/10.3390/ht9010003
APA StyleNovelli, G., Biancolella, M., Latini, A., Spallone, A., Borgiani, P., & Papaluca, M. (2020). Precision Medicine in Non-Communicable Diseases. High-Throughput, 9(1), 3. https://doi.org/10.3390/ht9010003