Comparative Study of NGS Platform Ion Torrent Personal Genome Machine and Therascreen Rotor-Gene Q for the Detection of Somatic Variants in Cancer
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Loeb, K.R.; Loeb, L.A. Significance of multiple mutations in cancer. Carcinogenesis 2000, 21, 379–385. [Google Scholar] [CrossRef]
- Beckman, R.A.; Loeb, L.A. Evolutionary dynamics and significance of multiple subclonal mutations in cancer. DNA Repair 2017, 56, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Punt, C.J.; Koopman, M.; Vermeulen, L. From tumor heterogeneity to advances in precision treatment of colorectal cancer. Nat. Rev. Clin. Oncol. 2017, 14, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Nappi, A.; Berretta, M.; Romano, C.; Tafuto, S.; Cassata, A.; Casaretti, R.; Silvestro, L.; Divitiis, C.; Alessandrini, L.; Fiorica, F.; et al. Metastatic Colorectal Cancer: Role of Target Therapies and Future Perspectives. Curr. Cancer Drug Targets 2018, 18, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Zito Marino, F.; Bianco, R.; Accardo, M.; Ronchi, A.; Cozzolino, I.; Morgillo, F.; Rossi, G.; Franco, R. Molecular heterogeneity in lung cancer: From mechanisms of origin to clinical implications. Int. J. Med. Sci. 2019, 16, 981–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Deiry, W.S.; Goldberg, R.M.; Lenz, H.J.; Shields, A.F.; Gibney, G.T.; Tan, A.R.; Brown, J.; Eisenberg, B.; Heath, E.I.; Phuphanich, S.; et al. The current state of molecular testing in the treatment of patients with solid tumors, 2019. Cancer J. Clin. 2019, 69, 305–343. [Google Scholar] [CrossRef] [PubMed]
- Kamps, R.; Brandão, R.D.; Bosch, B.J.; Paulussen, A.D.; Xanthoulea, S.; Blok, M.J.; Romano, A. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. Int. J. Mol. Sci. 2017, 31, 18. [Google Scholar] [CrossRef]
- Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res. 2016, 5, 288–300. [Google Scholar] [CrossRef] [Green Version]
- Sher, T.; Dy, G.K.; Adjei, A.A. Small cell lung cancer. Mayo Clin. Proc. 2008, 83, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Balzer, B.W.R.; Loo, C.; Lewis, C.R.; Trahair, T.N.; Anazodo, A.C. Adenocarcinoma of the Lung in Childhood and Adolescence: A Systematic Review. J. Thorac. Oncol. 2018, 13, 1832–1841. [Google Scholar] [CrossRef] [Green Version]
- Riely, G.J.; Marks, J.; Pao, W. KRAS mutations in non-small cell lung cancer. Proc. Am. Thorac. Soc. 2009, 6, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Carper, M.B.; Claudio, P.P. Clinical potential of gene mutations in lung cancer. Clin. Transl. Med. 2015, 4, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews Wright, N.M.; Goss, G.D. Third-generation epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small cell lung cancer. Transl. Lung Cancer Res. 2019, 8 (Suppl. 3), S247–S264. [Google Scholar] [CrossRef] [PubMed]
- Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 1990, 1, 759–767. [Google Scholar] [CrossRef]
- Rustgi, A.K. Hereditary gastrointestinal polyposis and nonpolyposis syndromes. N. Engl. J. Med. 1994, 331, 1694–1702. [Google Scholar] [CrossRef]
- Boland, C.R.; Sinicrope, F.A.; Brenner, D.E.; Carethers, J.M. Colorectal cancer prevention and treatment. Gastroenterology 2000, 118 (Suppl. 1), S115–S128. [Google Scholar] [CrossRef]
- Nosho, K.; Irahara, N.; Shim, K.; Kure, S.; Kirkner, G.J.; Schernhammer, E.S.; Hazra, A.; Hunter, D.J.; Quackenbush, J.; Spiegelman, D.; et al. Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS ONE 2008, 3, e3698. [Google Scholar] [CrossRef]
- Chapman, P.B.; Hauschild, A.; Robert, C.; Haanen, J.B.; Ascierto, P.; Larkin, J.; Dummer, R.; Garbe, C.; Testori, A.; Maio, M.; et al. Improved survival with Vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 2011, 364, 2507–2516. [Google Scholar] [CrossRef] [Green Version]
- Flaherty, K.T.; Robert, C.; Hersey, P.; Nathan, P.; Garbe, C.; Milhem, M.; Milhem, M.; Demidov, L.V.; Hassel, J.C.; Rutkowski, P.; et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl. J. Med. 2012, 367, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Robert, C.; Long, G.V.; Schachter, J.; Arance, A.; Grob, J.J.; Mortier, L. Long-term outcomes in patients (pts) with ipilimumab (ipi)-naive advanced melanoma in the phase 3 KEYNOTE-006 study who completed pembrolizumab (pembro) treatment. J. Clin. Oncol. 2017, 35, 9504. [Google Scholar] [CrossRef]
- Yohe, S.; Thyagarajan, B. Review of Clinical Next-Generation Sequencing. Arch. Pathol. Lab Med. 2017, 141, 1544–1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Gallo, M.; Lozy, F.; Bell, D.W. Next-Generation Sequencing. Adv. Exp. Med. Biol. 2017, 943, 119–148. [Google Scholar] [PubMed]
- Newton, C.R.; Graham, A.; Heptinstall, L.E.; Powell, S.J.; Summers, C.; Kalsheker, N.; Markham, A.F. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989, 17, 2503. [Google Scholar] [CrossRef] [PubMed]
- Whitcombe, D.; Theaker, J.; Guy, S.P.; Brown, T.; Little, S. Detection of PCR products using self-probing amplicons and fluorescence. Nat. Biotech. 1999, 17, 804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thelwell, N.; Millington, S.; Solinas, A.; Booth, J.; Brown, T. Mode of Action and Application of Scorpion Primers to Mutation Detection. Nucleic Acids Res. 2000, 28, 3752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://ionreporter.lifetechnologies.com/ (accessed on 30 October 2016).
- Adams, J.A.; Post, K.M.; Bilbo, S.A.; Wang, X.; Sen, J.D.; Cornwell, A.J.; Malek, A.J.; Cheng, L. Performance evaluation comparison of 3 commercially available PCR-based KRAS mutation testing platforms. Appl. Immunohistochem. Mol. Morphol. 2014, 22, 231–259. [Google Scholar] [CrossRef]
- Butler, K.S.; Young, M.Y.; Li, Z.; Elespuru, R.K.; Wood, S.C. Performance characteristics of the AmpliSeq Cancer Hotspot panel v2 in combination with the Ion Torrent Next Generation Sequencing Personal Genome Machine. Regul. Toxicol. Pharmacol. 2016, 74, 178–186. [Google Scholar] [CrossRef] [Green Version]
- AACR Project GENIE Consortium. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov. 2017, 7, 818–831. [Google Scholar] [CrossRef] [Green Version]
- Clarke, C.N.; Kopetz, E.S. BRAF mutant colorectal cancer as a distinct subset of colorectal cancer: Clinical characteristics, clinical behavior, and response to targeted therapies. J. Gastrointest Oncol. 2015, 6, 660–667. [Google Scholar]
- Hsu, H.C.; Thiam, T.K.; Lu, Y.J.; Yeh, C.Y.; Tsai, W.S.; You, J.F.; Hung, H.Y.; Tsai, C.N.; Hsu, A.; Chen, H.C.; et al. Mutations of KRAS/NRAS/BRAF predict cetuximab resistance in metastatic colorectal cancer patients. Oncotarget 2016, 7, 22257–22270. [Google Scholar] [CrossRef] [Green Version]
- Gelatti, A.C.Z.; Drilon, A.; Santini, F.C. Optimizing the sequencing of tyrosine kinase inhibitors (TKIs) in epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC). Lung Cancer 2019, 137, 113–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, W.; Wu, Q.; Zhang, J.; Zhou, Y. Prognostic value of EGFR 19-del and 21-L858R mutations in patients with non-small cell lung cancer. Oncol. Lett. 2019, 18, 3887–3895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Number of Patients (%) |
---|---|
Age (years) | |
Mean | 64.95 |
Median | 66 |
Gender | |
Male | 85 (58.3%) |
Female | 60 (41.7%) |
Tumor localization | |
left colon | 48 (33.3%) |
left colon | 15 (10.4%) |
right colon | 41 (28.5%) |
sigmoid | 10 (6.9%) |
rectal | 29 (20.1%) |
right and left colon | 2 (0.8%) |
Tumor grading | |
G1 | 10 (7.2%) |
G2 | 86 (59.3%) |
G2 mucinous | 8 (5.3%) |
G3 | 41 (28.2%) |
Characteristics | Number of Patients (%) |
---|---|
Age (years) | |
Mean | 58.78 |
Median | 59.39 |
Gender | |
Male | 21 (63%) |
Female | 12 (37%) |
Primary tumor site | |
head and neck | 4 (12.2%) |
trunk | 18 (54.5%) |
extremities (E) | 11 (33.3%) |
Tumor depth (Breslow thickness) | |
Average depth | |
<1.0 mm | 1 (3.0%) |
1.01–2.0 mm | 1 (3.0%) |
2.01–4.0 mm | 4 (12.1%) |
>4.01 mm | 27 (81.9%) |
SLN (sentinel lymph node) | |
YES | 17 (51.5%) |
NO | 16 (48.5%) |
TNM | |
pT2 | 1 (3.0%) |
pT3a | 4 (12.1%) |
pT3b | 2 (6.0%) |
pT4a | 5 (15.1%) |
pT4b sec.AJCC VIII ed. | 21 (63.8%) |
STAGE | |
IIIA | 1 (3.0%) |
IIIB | 0 (0%) |
IIIC | 6 (18.2%) |
IV | 26 (78.8%) |
Sample Type | FFPE Samples |
---|---|
APPLICATION | Somatic mutation detection |
GENES | KRAS, EGFR, BRAF, PIK3CA, AKT1,ERBB2, PTEN, NRAS, STK11, MAP2K1, ALK, DDR2, CTNNB1, MET, TP53, SMAD4, FBX7, FGFR3, NOTCH1, ERBB4, FGFR1, FGFR2 |
PRIMER PAIRS, AMPLICON LENGHT | 92 pairs of primers in a single pool 92 amplicons with an average length of 162 bp |
IMPUT DNA REQUIRED | 10 ng |
OBSERVED PERFORMACE | Percent of amplicons with the target base coverage at 500x: >95% Average panel uniformity: 95% Average percent reads on target: 98% |
Sample Type | FFPE Samples |
---|---|
APPLICATION | Somatic mutation detection |
GENES | ABL1, AKY1, ALK, APC, ATM, BRAF, CDH1,CDKN2A, CSF1R, CTNNB1,EGFR, ERBB2, ERBB4, EZH2,FBWX7, FGFR1, FGFR2, FGFR3, FLT3, GNA11, GNAS, GNAQ, HNF1A, HRAS, IDH1, JAK2, JAK3, IDH2, KDR, KIT, KRAS, MET, MLH1, MPL, NOTCH1, NPM1, NRAS, PDGFRA, PIK3CA, PTEN, PTPN11, RB1, RET, SMAD4, SMARCB1, SMO, SRC, STK11, TP53, VHL |
PRIMER PAIRS, AMPLICON LENGHT | 207 pairs of primers in a single pool 111–187 bp, average length of 162 bp |
IMPUT DNA REQUIRED | 10 ng |
OBSERVED PERFORMACE | Percent of amplicons with the target base coverage at 1400x: >95% Average panel uniformity: 95% Average percent reads on target: 98% |
KRAS | PGM KRAS | Thera KRAS |
---|---|---|
WT | 109 (75.7%) | 109 (75.7%) |
Mut RAS | ||
Gly12Ala | 3 (2.1%) | 3 (2.1%) |
Gly12Asp | 13 (8.9%) | 13 (8.9%) |
Gly12Arg | 0 | 0 |
Gly12Cys | 2 (1.4%) | 2 (1.4%) |
Gly12Ser | 1(0.7%) | 1(0.7%) |
Gly12Val | 6 (4.1%) | 6 (4.1%) |
Gly13Asp | 11 (7.6%) | 11 (7.6%) |
BRAF Status | PGM BRAF | Thera BRAF |
---|---|---|
WT BRAF | 135 (93.1%) | 133 (75.7%) |
Mut BRAF | ||
V600E | 10 (6.9%) | 11 (7.6%) |
V600D | 0 | 0 |
V600K | 0 | 0 |
V600R | 0 | 1 (0.7%) |
BRAF Status | PGM BRAF | Thera BRAF |
---|---|---|
WT BRAF | 16 (48.5%) | 16 (48.5%) |
Mut BRAF | ||
V600E | 12 (36.4%) | 12 (36.4%) |
V600D | 0 | 0 |
V600K | 5 (15.1%) | 5 (15.1%) |
V600R | 0 | 0 |
EGFR Status | PGM EGFR | Thera EGFR |
---|---|---|
WT EGFR | 29 (85.2%) | 27 (79.4%) |
Mut EGFR | ||
T790M | 1 (2.9%) | 1 (2.9%) |
Del | 4 (11.7%) | 5 (14.7%) |
L858R | 0 | 1 (2.9%) |
L861Q | 0 | 0 |
G719X | 0 | 0 |
S768I | 0 | 0 |
Ins | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lombardi, A.; Russo, M.; Luce, A.; Morgillo, F.; Tirino, V.; Misso, G.; Martinelli, E.; Troiani, T.; Desiderio, V.; Papaccio, G.; et al. Comparative Study of NGS Platform Ion Torrent Personal Genome Machine and Therascreen Rotor-Gene Q for the Detection of Somatic Variants in Cancer. High-Throughput 2020, 9, 4. https://doi.org/10.3390/ht9010004
Lombardi A, Russo M, Luce A, Morgillo F, Tirino V, Misso G, Martinelli E, Troiani T, Desiderio V, Papaccio G, et al. Comparative Study of NGS Platform Ion Torrent Personal Genome Machine and Therascreen Rotor-Gene Q for the Detection of Somatic Variants in Cancer. High-Throughput. 2020; 9(1):4. https://doi.org/10.3390/ht9010004
Chicago/Turabian StyleLombardi, Angela, Margherita Russo, Amalia Luce, Floriana Morgillo, Virginia Tirino, Gabriella Misso, Erika Martinelli, Teresa Troiani, Vincenzo Desiderio, Gianpaolo Papaccio, and et al. 2020. "Comparative Study of NGS Platform Ion Torrent Personal Genome Machine and Therascreen Rotor-Gene Q for the Detection of Somatic Variants in Cancer" High-Throughput 9, no. 1: 4. https://doi.org/10.3390/ht9010004
APA StyleLombardi, A., Russo, M., Luce, A., Morgillo, F., Tirino, V., Misso, G., Martinelli, E., Troiani, T., Desiderio, V., Papaccio, G., Iovino, F., Argenziano, G., Moscarella, E., Sperlongano, P., Galizia, G., Addeo, R., Necas, A., Necasova, A., Ciardiello, F., ... Grimaldi, A. (2020). Comparative Study of NGS Platform Ion Torrent Personal Genome Machine and Therascreen Rotor-Gene Q for the Detection of Somatic Variants in Cancer. High-Throughput, 9(1), 4. https://doi.org/10.3390/ht9010004