State of the Art in Paleoenvironment Mapping for Modeling Applications in Archeology—Summary, Conclusions, and Future Directions from the PaleoMaps Workshop
Abstract
:1. Introduction
2. Workshop Summary
2.1. Day 1—Monday, 23 September
2.1.1. Introduction to the Paleomaps Workshop by Christian Willmes
2.1.2. GIS, Archeology and Paleoenvironment by Kamil Niedziółka
2.1.3. EPHA–European Prehistoric and Historic Atlas by Benjamin Serbe
2.1.4. Biome Modeling and Climate Reconstruction Using Proxy Data by Andrea Miebach
2.1.5. Integration of Information Derived by Terrain Analysis, Geo-Physical Applications and Field Work to Reconstruct Paleo-Environmental Landscape Features: Examples from Italy and Africa by Michael Märker
2.1.6. Geomorphometry in Paleo-GIS Applications by Felix Henselowsky
2.1.7. Oscillayers: A Dataset for the Study of Climatic Oscillations over Plio-Pleistocene Time-Scales at High Spatial-Temporal Resolution by Alexander Gamisch
2.1.8. Modeling Macro Scale Paleo Climates during Heinrich Events by Masoud Rostami
2.2. Day 2—Tuesday, 24 September
2.2.1. Carrying Capacity (CC) and Species Diversity in the Pleistocene by Jesús Rodríguez
2.2.2. Spatial Clustering of Archeological Data by Heiko Limberg
2.2.3. Using Core Areas and Extended Areas as Informed Scales in Modeling Human-Environment Interaction by Isabell Schmidt and Martin MüLler
2.2.4. Simulating Early Hominin Expansions: Integration of Hominin Behavior and Paleoenvironment Reconstructions with Agent-Based Modeling by Ericson HöLzchen
2.2.5. Distribution Modeling of Paleofauna in the Western Mediterranean between the Heinrich Events (HEs) H5 and H4 by Michael Holthausen
2.2.6. Modeling Human Existence Potential (HEP) and Dispersal by Konstantin Klein
2.2.7. Auto-Amplification and Climatic Resonance as Major Drivers of the Abrupt Wild-Domestic-Transition (WDT) at 10.2 Ka Calbp in the Emed and Its Equivalent in the Wmed by Bernhard Weninger
2.2.8. Modeling Late Pleistocene Human Behaviour in the Western Mediterranean: Past and Future Perspectives by Trine Kellberg Nielsen
3. Discussion, Conclusions, Future Directions
Funding
Acknowledgments
Conflicts of Interest
References
- Bösken, J.; Obreht, I.; Zeeden, C.; Klasen, N.; Hambach, U.; Sümegi, P.; Lehmkuhl, F. High-resolution paleoclimatic proxy data from the MIS3/2 transition recorded in northeastern Hungarian loess. Quat. Int. 2019, 502, 95–107. [Google Scholar] [CrossRef]
- Foerster, V.; Junginger, A.; Langkamp, O.; Gebru, T.; Asrat, A.; Umer, M.; Lamb, H.F.; Wennrich, V.; Rethemeyer, J.; Nowaczyk, N.; et al. Climatic change recorded in the sediments of the Chew Bahir basin, southern Ethiopia, during the last 45,000 years. Quat. Int. 2012, 274, 25–37. [Google Scholar] [CrossRef]
- Obreht, I.; Zeeden, C.; Hambach, U.; Veres, D.; Marković, S.B.; Bösken, J.; Svirčev, Z.; Bačević, N.; Gavrilov, M.B.; Lehmkuhl, F. Tracing the influence of Mediterranean climate on Southeastern Europe during the past 350,000 years. Sci. Rep. 2016, 6, 36334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, S.P.; Bartlein, P.J.; Izumi, K.; Li, G.; Annan, J.; Hargreaves, J.; Braconnot, P.; Kageyama, M. Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat. Clim. Chang. 2015, 5, 735–743. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Willmes, C.; Becker, D.; Verheul, J.; Yener, Y.; Zickel, M.; Bolten, A.; Bubenzer, O.; Bareth, G. PaleoMaps: SDI for open paleoenvironmental GIS data. Int. J. Spat. Data Infrastruct. Res. 2017, 12, 39–61. [Google Scholar] [CrossRef]
- Willmes, C.; Kürner, D.; Bareth, G. Building Research Data Management Infrastructure using Open Source Software. Trans. GIS 2014, 18, 496–509. [Google Scholar] [CrossRef]
- Willmes, C. CRC806-Database: A Semantic e-Science Infrastructure for an Interdisciplinary Research Centre. Ph.D. Thesis, University of Cologne, Cologne, Germany, 24 May 2016. [Google Scholar]
- Willmes, C.; Viehberg, F.; Esteban Lopez, S.; Bareth, G. CRC806-KB: A Semantic MediaWiki Based Collaborative Knowledge Base for an Interdisciplinary Research Project. Data 2018, 3, 44. [Google Scholar] [CrossRef] [Green Version]
- Richter, J.; Melles, M.; Schäbitz, F. Temporal and spatial corridors of Homo sapiens sapiens population dynamics during the Late Pleistocene and early Holocene. Quat. Int. 2012, 274, 1–4. [Google Scholar] [CrossRef]
- Davies, B.; Romanowska, I.; Harris, K.; Crabtree, S.A. Combining Geographic Information Systems and Agent-Based Models in Archaeology: Part 2 of 3. Adv. Archaeol. Pract. 2019, 7, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Hölzchen, E.; Hertler, C.; Timm, I.; Lorig, F. Evaluation of Out of Africa hypotheses by means of agent-based modeling. Quat. Int. 2016, 413, 78–90. [Google Scholar] [CrossRef]
- Crooks, A.; Malleson, N.; Manley, E.; Heppenstall, A. Agent-Based Modelling and Geographical Information Systems: A Practical Primer; Spatial Analytics and GIS; SAGE Publications: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Hao, T.; Elith, J.; Guillera-Arroita, G.; Lahoz-Monfort, J.J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 2019, 25, 839–852. [Google Scholar] [CrossRef]
- Becker, D.; Willmes, C.; Bareth, G.; Weniger, G.C. A plugin to interface openmodeller from qgis for species’ potential distribution modelling. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, III-7, 251–256. [Google Scholar] [CrossRef]
- Schmidt, I.; Zimmermann, A. Population dynamics and socio-spatial organization of the Aurignacian: Scalable quantitative demographic data for western and central Europe. PLoS ONE 2019, 14, e0211562. [Google Scholar] [CrossRef]
- Weniger, G.C.; de Andrés-Herrero, M.; Bolin, V.; Kehl, M.; Otto, T.; Potì, A.; Tafelmaier, Y. Late Glacial rapid climate change and human response in the Westernmost Mediterranean (Iberia and Morocco). PLoS ONE 2019, 14, e0225049. [Google Scholar] [CrossRef] [Green Version]
- Becker, D.; Verheul, J.; Zickel, M.; Willmes, C. LGM Paleoenvironment of Europe-Map; CRC806-Database: Köln, Germany, 2015. [Google Scholar] [CrossRef]
- Wheatley, D.; Gillings, M. Spatial Technology and Archaeology: The Archaeological Applications in GIS; CRC Press: London, UK; New York, NY, USA, 2005. [Google Scholar]
- Coles, B. Doggerland: A Speculative Survey. Proc. Prehist. Soc. 1998, 64, 45–81. [Google Scholar] [CrossRef]
- Björck, S. A review of the history of the Baltic Sea, 13.0–8.0 ka BP. Quat. Int. 1995, 27, 19–40. [Google Scholar] [CrossRef]
- Grimm, S.B. Maps of Late Glacial NW-Europe. 2007. Available online: http://web.rgzm.de/572.0.html (accessed on 19 September 2007).
- Grimm, S.B. Maps of Lateglacial NW-Europe. An Update. 2011. Available online: http://monrepos-rgzm.de/tl_files/monrepos/content/projektarchiv/ (accessed on 26 September 2014).
- Miebach, A.; Stolzenberger, S.; Wacker, L.; Hense, A.; Litt, T. A new Dead Sea pollen record reveals the last glacial paleoenvironment of the southern Levant. Quat. Sci. Rev. 2019, 214, 98–116. [Google Scholar] [CrossRef]
- Litt, T.; Ohlwein, C.; Neumann, F.H.; Hense, A.; Stein, M. Holocene climate variability in the Levant from the Dead Sea pollen record. Quat. Sci. Rev. 2012, 49, 95–105. [Google Scholar] [CrossRef]
- Stolzenberger, S. On the Probabilistic Evaluation of Decadal and Paleoclimate Model Predictions. Ph.D. Thesis, University of Bonn, Bonn, Germany, 12 July 2017. [Google Scholar]
- Thoma, B.M. Palaeoclimate Reconstruction in the Levant and on the Balkans. Ph.D. Thesis, University of Bonn, Bonn, Germany, 30 May 2017. [Google Scholar]
- Simonis, D.; Hense, A.; Litt, T. Reconstruction of late Glacial and Early Holocene near surface temperature anomalies in Europe and their statistical interpretation. Quat. Int. 2012, 274, 233–250. [Google Scholar] [CrossRef]
- Weitzel, N.; Hense, A.; Ohlwein, C. Combining a pollen and macrofossil synthesis with climate simulations for spatial reconstructions of European climate using Bayesian filtering. Clim. Past 2019, 15, 1275–1301. [Google Scholar] [CrossRef] [Green Version]
- Märker, M.; Kropáček, J.; Mussi, M.; Melis, R.; Schillaci, C.; Kropáček, J. Morphometric Terrain Analysis to explore present day Geohazards and Paleolandscape forms and features in the surroundings of the Melka Kunture prehistoric site, Upper Awash Valley, Central Ethiopia. AUC Geogr. 2018, 53, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Vogel, S.; Märker, M.; Rellini, I.; Hoelzmann, P.; Wulf, S.; Robinson, M.; Steinhübel, L.; Maio, G.D.; Imperatore, C.; Kastenmeier, P.; et al. From a stratigraphic sequence to a landscape evolution model: Late Pleistocene and Holocene volcanism, soil formation and land use in the shade of Mount Vesuvius (Italy). Quat. Int. 2016, 394, 155–179. [Google Scholar] [CrossRef]
- Bachofer, F.; Quénéhervé, G.; Zwiener, T.; Maerker, M.; Hochschild, V. Comparative analysis of Edge Detection techniques for SAR images. Eur. J. Remote Sens. 2016, 49, 205–224. [Google Scholar] [CrossRef] [Green Version]
- Bachofer, F.; Quénéhervé, G.; Hochschild, V.; Maerker, M. Multisensoral Topsoil Mapping in the Semiarid Lake Manyara Region, Northern Tanzania. Remote Sens. 2015, 7, 9563–9586. [Google Scholar] [CrossRef] [Green Version]
- Bachofer, F.; Quénéhervé, G.; Märker, M.; Hochschild, V. Comparison of SVM and Boosted Regression Trees for the Delineation of Lacustrine Sediments using Multispectral ASTER Data and Topographic Indices in the Lake Manyara Basin. Photogramm. Fernerkund. Geoinf. 2015, 2015, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Kropacek, J.; Schillaci, C.; Salvini, R.; Märker, M. Assessment of gully erosion in the Upper Awash, Central Ethiopian Highlands based on comparison of archived aerial photographs and very high resolution satellite images. Geogr. Fis. Din. Quat. 2016, 39, 161–170. [Google Scholar] [CrossRef]
- Maerker, M.; Quénéhervé, G.; Bachofer, F.; Mori, S. A simple DEM assessment procedure for gully system analysis in the Lake Manyara area, northern Tanzania. Nat. Hazards 2015, 79, 235–253. [Google Scholar] [CrossRef]
- Quénéhervé, G.; Bachofer, F.; Maerker, M. Experimental Assessment of Runoff Generation Processes on Hillslope Scale in a Semiarid Region in Northern Tanzania. Geogr. Fis. Din. Quat. 2015, 38, 55–66. [Google Scholar]
- Vogel, S.; Märker, M. Modeling the spatial distribution of AD 79 pumice fallout and pyroclastic density current and derived deposits of Somma-Vesuvius (Campania, Italy) integrating primary deposition and secondary redistribution. Bull. Volcanol. 2013, 75, 778. [Google Scholar] [CrossRef]
- Flores-Prieto, E.; Quénéhervé, G.; Bachofer, F.; Shahzad, F.; Maerker, M. Morphotectonic interpretation of the Makuyuni catchment in Northern Tanzania using DEM and SAR data. Geomorphology 2015, 248, 427–439. [Google Scholar] [CrossRef]
- Vogel, S.; Märker, M.; Esposito, D.; Seiler, F. The Ancient Rural Settlement Structure in the Hinterland of Pompeii Inferred from Spatial Analysis and Predictive Modeling of Villae Rusticae. Geoarchaeology 2016, 31, 121–139. [Google Scholar] [CrossRef]
- Maerker, M.; Schillaci, C.; Melis, R.T.; Kropáček, J.; Bosino, A.; Vilímek, V.; Hochschild, V.; Sommer, C.; Altamura, F.; Mussi, M. Geomorphological processes, forms and features in the surroundings of the Melka Kunture Palaeolithic site, Ethiopia. J. Maps 2019, 15, 797–806. [Google Scholar] [CrossRef] [Green Version]
- Henselowsky, F. Early Late Pleistocene Environments in Northeast Africa and Their Relevance for Anatomically Modern Human Dispersal. Ph.D. Thesis, Universität zu Köln, Köln, Germany, 12 July 2019. [Google Scholar]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef] [Green Version]
- Lima-Ribeiro, M.; Varela, S.; González-Hernández, J.; Oliveira, G.; Diniz-Filho, J.; Terribile, L. ecoClimate: A database of climate data from multiple models for past, present, and future for Macroecologists and Biogeographers. Biodivers. Inform. 2015, 10, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Fordham, D.A.; Saltré, F.; Haythorne, S.; Wigley, T.M.L.; Otto-Bliesner, B.L.; Chan, K.C.; Brook, B.W. PaleoView: A tool for generating continuous climate projections spanning the last 21,000 years at regional and global scales. Ecography 2017, 40, 1348–1358. [Google Scholar] [CrossRef]
- Brown, J.L.; Hill, D.J.; Dolan, A.M.; Carnaval, A.C.; Haywood, A.M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 2018, 5, 180254. [Google Scholar] [CrossRef] [Green Version]
- Gamisch, A. Oscillayers: A dataset for the study of climatic oscillations over Plio-Pleistocene time-scales at high spatial-temporal resolution. Glob. Ecol. Biogeogr. 2019, 28, 1552–1560. [Google Scholar] [CrossRef] [Green Version]
- Lawing, A.M.; Polly, P.D. Pleistocene Climate, Phylogeny, and Climate Envelope Models: An Integrative Approach to Better Understand Species’ Response to Climate Change. PLoS ONE 2011, 6, e0028554. [Google Scholar] [CrossRef]
- Rodríguez, J.; Mateos, A. Carrying capacity, carnivoran richness and hominin survival in Europe. J. Hum. Evol. 2018, 118, 72–88. [Google Scholar] [CrossRef] [PubMed]
- Gamisch, A. Data from: Oscillayers: A Dataset for the Study of Climatic Oscillations over Plio-Pleistocene Time Scales at High Spatial-Temporal Resolution; Dataset; Dryad Digital Repository: Albuquerque, NM, USA, 2019. [Google Scholar] [CrossRef]
- MacAyeal, D.R. Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic’s Heinrich events. Paleoceanography 1993, 8, 775–784. [Google Scholar] [CrossRef]
- Rodríguez, J. Stability in Pleistocene Mediterranean mammalian communities. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 207, 1–22. [Google Scholar] [CrossRef]
- Rodríguez, J. Structural continuity and multiple alternative stable States in Middle Pleistocene European mammalian communities. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 239, 355–373. [Google Scholar] [CrossRef]
- Kahlke, R.D.; García, N.; Kostopoulos, D.S.; Lacombat, F.; Lister, A.M.; Mazza, P.P.; Spassov, N.; Titov, V.V. Western Palaearctic palaeoenvironmental conditions during the Early and early Middle Pleistocene inferred from large mammal communities, and implications for hominin dispersal in Europe. Quat. Sci. Rev. 2011, 30, 1368–1395. [Google Scholar] [CrossRef]
- Raia, P.; Meloro, C.; Barbera, C. Inconstancy in predator/prey ratios in Quaternary large mammal communities of Italy, with an appraisal of mechanisms. Quat. Res. 2007, 67, 255–263. [Google Scholar] [CrossRef]
- Rodríguez, J.; Rodríguez-Gómez, G.; Martín-González, J.A.; Goikoetxea, I.; Mateos, A. Predator–prey relationships and the role of Homo in Early Pleistocene food webs in Southern Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 365–366, 99–114. [Google Scholar] [CrossRef]
- Binford, L.R. Bones: Ancient Men and Modern Myths; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Binford, L.R. Human ancestors: Changing views of their behavior. J. Anthropol. Archaeol. 1985, 4, 292–327. [Google Scholar] [CrossRef]
- Marean, C.W. Sabertooth cats and their relevance for early hominid diet and evolution. J. Hum. Evol. 1989, 18, 559–582. [Google Scholar] [CrossRef]
- Speth, J.D. The Paleoanthropology and Archaeology of Big-Game Hunting; Springer: New York, NY, USA, 2010. [Google Scholar]
- McNaughton, S.J.; Oesterheld, M.; Frank, D.A.; Williams, K.J. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 1989, 341, 142–144. [Google Scholar] [CrossRef]
- Oesterheld, M.; Sala, O.E.; McNaughton, S.J. Effect of animal husbandry on herbivore-carrying capacity at a regional scale. Nature 1992, 356, 234–236. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, J.; Blain, H.A.; Mateos, A.; Martín-González, J.; Cuenca-Bescós, G.; Rodríguez-Gómez, G. Ungulate carrying capacity in Pleistocene Mediterranean ecosystems: Evidence from the Atapuerca sites. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 393, 122–134. [Google Scholar] [CrossRef]
- Ankerst, M.; Breunig, M.M.; peter Kriegel, H.; Sander, J. OPTICS: Ordering Points To Identify the Clustering Structure; ACM Press: New York, NY, USA, 1999; pp. 49–60. [Google Scholar]
- Zimmermann, A.; Wendt, K.; Frank, T.; Hilpert, J. Landscape Archaeology in Central Europe. Proc. Prehist. Soc. 2009, 75, 1–53. [Google Scholar] [CrossRef]
- Schmidt, I.; Hilpert, J.; Kretschmer, I.; Peters, R.; Broich, M.; Schiesberg, S.; Vogels, O.; Wendt, K.; Zimmermann, A.; Maier, A. Approaching Prehistoric Demography: Proxies, Scales and Scopes of the Cologne Protocol in European contexts. Proc. R. Soc. B 2020. under review. [Google Scholar]
- Kretschmer, I. Demographische Untersuchungen zu Bevölkerungsdichten, Mobilität und Landnutzungsmustern im Späten Jungpaläolithikum. In Kölner Studien zur Prähistorischen Archäologie 6; Verlag Marie Leidorf: Rhaden, Germany, 2015; ISBN 978-3-86757-366-5. (In German) [Google Scholar]
- Kretschmer, I. Demographic studies of hunters and gatherers in the European Late Upper Palaeolithic. In The Final Palaeolithic of Northern Eurasia. Proceedings of the Amersfoort, Schleswig and Burgos UISPP Commission Meetings; Eriksen, B.V., Rensink, E., Harris, S., Eds.; Ludwig Verlag: Kiel, Germany, 2019; pp. 231–245. ISBN 978-3-86935-363-0. [Google Scholar]
- Maier, A.; Lehmkuhl, F.; Ludwig, P.; Melles, M.; Schmidt, I.; Shao, Y.; Zeeden, C.; Zimmermann, A. Demographic estimates of hunter–gatherers during the Last Glacial Maximum in Europe against the background of palaeoenvironmental data. Quat. Int. 2016, 425, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Maier, A.; Zimmermann, A. Populations headed south? The Gravettian from a palaeodemographic point of view. Antiquity 2017, 91, 573–588. [Google Scholar] [CrossRef]
- Klein, K.; Wegener, C.; Schmidt, I.; Rostami, M.; Ludwig, P.; Ulbrich, S.; Weniger, G.C.; Shao, Y. Human Existence Potential in Europe during the Last Glacial Maximum. Quat. Int. 2020. under review. [Google Scholar]
- Banks, W.E. The application of ecological niche modeling methods to archaeological data in order to examine culture-environment relationships and cultural trajectories. Quaternaire 2017, 28, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Müller, M. Coastlines and Large River Systems in Europe—Corridors of Communication during the Palaeolithic and Neolithic? Master’s Thesis, University of Cologne, Cologne, Germany, 8 October 2019. [Google Scholar]
- Holthausen, M. Distribution Modeling of Paleofauna in the Western Mediterranean between the Heinrich Events H5 and H4. Master’s Thesis, University of Cologne, Cologne, Germany, 24 Septemper 2018. [Google Scholar]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. Maxent Software for Modeling Species Niches and Distributions (Version 3.4.1). 2019. Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 11 December 2019).
- Weninger, B. Niche construction and theory of agricultural origins. Case studies in punctuated equilibrium. Doc. Praehist. 2017, 44, 6–17. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Z.; Stuut, J.; Zhao, Y.; Schirone, A.; de Lange, G. North-African paleodrainage discharges to the central Mediterranean during the last 18,000 years: A multiproxy characterization. Quat. Sci. Rev. 2017, 163, 95–113. [Google Scholar] [CrossRef]
- Ludwig, P.; Shao, Y.; Kehl, M.; Weniger, G.C. The Last Glacial Maximum and Heinrich event I on the Iberian Peninsula: A regional climate modelling study for understanding human settlement patterns. Glob. Planet. Chang. 2018, 170, 34–47. [Google Scholar] [CrossRef]
- Bradtmöller, M.; Pastoors, A.; Weninger, B.; Weniger, G.C. The Repeated Replacement Model—Rapid Climate Change and Population Dynamics in Upper Pleistocene Europe. Quat. Int. 2012, 247, 38–49. [Google Scholar] [CrossRef]
- Wren, C.D.; Burke, A. Habitat suitability and the genetic structure of human populations during the Last Glacial Maximum (LGM) in Western Europe. PLoS ONE 2019, 14, e0217996. [Google Scholar] [CrossRef] [Green Version]
- Benito, B.M.; Svenning, J.C.; Kellberg-Nielsen, T.; Riede, F.; Gil-Romera, G.; Mailund, T.; Kjaergaard, P.C.; Sandel, B.S. The ecological niche and distribution of Neanderthals during the Last Interglacial. J. Biogeogr. 2017, 44, 51–61. [Google Scholar] [CrossRef]
- Zilhão, J. The Ebro frontier: A model for the late extinction of Iberian Neanderthals. In Neandertals on the Edge: 150th Anniversary Conference of the Forbes’ Quarry discovery, Gibraltar; Stringer, C., Barton, R., Finlayson, C., Eds.; Oxbow Books: Oxford, UK, 2000; pp. 111–121. [Google Scholar]
- Cortés-Sánchez, M.; Jiménez-Espejo, F.J.; Simón-Vallejo, M.D.; Stringer, C.; Lozano Francisco, M.C.; García-Alix, A.; Vera Peláez, J.L.; Odriozola, C.P.; Riquelme-Cantal, J.A.; Parrilla Giráldez, R.; et al. An early Aurignacian arrival in southwestern Europe. Nat. Ecol. Evol. 2019, 3, 207–212. [Google Scholar] [CrossRef]
- de la Peña, P. Dating on its own cannot resolve hominin occupation patterns. Nat. Ecol. Evol. 2019, 3, 712. [Google Scholar] [CrossRef]
- Anderson, L.; Reynolds, N.; Teyssandier, N. No reliable evidence for a very early Aurignacian in Southern Iberia. Nat. Ecol. Evol. 2019, 3, 713. [Google Scholar] [CrossRef]
- Staubwasser, M.; Drăgusin, V.; Onac, B.P.; Assonov, S.; Ersek, V.; Hoffmann, D.L.; Veres, D. Impact of climate change on the transition of Neanderthals to modern humans in Europe. Proc. Natl. Acad. Sci. USA 2018, 115, 9116–9121. [Google Scholar] [CrossRef] [Green Version]
- Higham, T.; Douka, K.; Wood, R.; Ramsey, C.B.; Brock, F.; Basell, L.; Camps, M.; Arrizabalaga, A.; Baena, J.; Barroso-Ruíz, C.; et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 2014, 512, 306–309. [Google Scholar] [CrossRef]
- de Andrés Herrero, M.; Becker, D.; Weniger, G.C. Reconstruction of LGM faunal patterns using Species Distribution Modelling. The archaeological record of the Solutrean in Iberia. Quat. Int. 2018, 485, 199–208. [Google Scholar] [CrossRef]
- de Andrés Herrero, M. Site Catchment Analysis in the Upper Palaeolithic in the Iberian Peninsula. Ph.D. Thesis, University of Cologne, Cologne, Germany, 29 May 2019. [Google Scholar]
- Wobst, H.M. Boundary Conditions for Paleolithic Social Systems. A Simulation Approach. Am. Antiq. 1974, 39, 147–178. [Google Scholar] [CrossRef]
- Kageyama, M.; Braconnot, P.; Harrison, S.P.; Haywood, A.M.; Jungclaus, J.H.; Otto-Bliesner, B.L.; Peterschmitt, J.Y.; Abe-Ouchi, A.; Albani, S.; Bartlein, P.J.; et al. The PMIP4 contribution to CMIP6–Part 1: Overview and over-arching analysis plan. Geosci. Model Dev. 2018, 11, 1033–1057. [Google Scholar] [CrossRef]
- Ehlers, J.; Gibbard, P.; Hughes, P. Quaternary Glaciations—Extent and Chronology. In Developments in Quaternary Science; Elsevier: Amsterdam, The Netherlands, 2011; Volume 15. [Google Scholar]
- Lehmkuhl, F.; Bösken, J.; Hošek, J.; Sprafke, T.; Marković, S.B.; Obreht, I.; Hambach, U.; Sümegi, P.; Thiemann, A.; Steffens, S.; et al. Loess distribution and related Quaternary sediments in the Carpathian Basin. J. Maps 2018, 14, 661–670. [Google Scholar] [CrossRef] [Green Version]
- Peng, R.D. Reproducible Research in Computational Science. Science 2011, 334, 1226–1227. [Google Scholar] [CrossRef] [Green Version]
- Grimm, V.; Berger, U.; DeAngelis, D.L.; Polhill, J.G.; Giske, J.; Railsback, S.F. The ODD protocol: A review and first update. Ecol. Model. 2010, 221, 2760–2768. [Google Scholar] [CrossRef] [Green Version]
- Hamer, W.; Knitter, D. FuzzyLandscapes—Fuzzy Analyses with a Focus on Raster Data; Zenodo: Genève, Switzerland, 2018. [Google Scholar] [CrossRef]
- Marwick, B. How To Do Archaeological Science Using R. 2017. Available online: https://benmarwick.github.io/How-To-Do-Archaeological-Science-Using-R/ (accessed on 27 April 2020).
- Nakoinz, O.; Knitter, D. Modelling Human Behaviour in Landscapes. Basic Concepts and Modelling Elements; Quantitative Archaeology and Archaeological Modelling; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Brinckman, A.; Chard, K.; Gaffney, N.; Hategan, M.; Jones, M.B.; Kowalik, K.; Kulasekaran, S.; Ludäscher, B.; Mecum, B.D.; Nabrzyski, J.; et al. Computing environments for reproducibility: Capturing the “Whole Tale”. Future Gener. Comput. Syst. 2019, 94, 854–867. [Google Scholar] [CrossRef]
- Groves, T.; Godlee, F. Open science and reproducible research. BMJ 2012, 344, e4383. [Google Scholar] [CrossRef] [Green Version]
- Molloy, J.C. The Open Knowledge Foundation: Open Data Means Better Science. PLoS Biol. 2011, 9, e1001195. [Google Scholar] [CrossRef]
- Vrandecic, D. Describing Datasets in Wikidata. 2019. AKTS Workshop at eScience Conference 2019. Available online: https://ai.google/research/pubs/pub48587 (accessed on 24 April 2020).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Willmes, C.; Niedziółka, K.; Serbe, B.; Grimm, S.B.; Groß, D.; Miebach, A.; Märker, M.; Henselowsky, F.; Gamisch, A.; Rostami, M.; et al. State of the Art in Paleoenvironment Mapping for Modeling Applications in Archeology—Summary, Conclusions, and Future Directions from the PaleoMaps Workshop. Quaternary 2020, 3, 13. https://doi.org/10.3390/quat3020013
Willmes C, Niedziółka K, Serbe B, Grimm SB, Groß D, Miebach A, Märker M, Henselowsky F, Gamisch A, Rostami M, et al. State of the Art in Paleoenvironment Mapping for Modeling Applications in Archeology—Summary, Conclusions, and Future Directions from the PaleoMaps Workshop. Quaternary. 2020; 3(2):13. https://doi.org/10.3390/quat3020013
Chicago/Turabian StyleWillmes, Christian, Kamil Niedziółka, Benjamin Serbe, Sonja B. Grimm, Daniel Groß, Andrea Miebach, Michael Märker, Felix Henselowsky, Alexander Gamisch, Masoud Rostami, and et al. 2020. "State of the Art in Paleoenvironment Mapping for Modeling Applications in Archeology—Summary, Conclusions, and Future Directions from the PaleoMaps Workshop" Quaternary 3, no. 2: 13. https://doi.org/10.3390/quat3020013
APA StyleWillmes, C., Niedziółka, K., Serbe, B., Grimm, S. B., Groß, D., Miebach, A., Märker, M., Henselowsky, F., Gamisch, A., Rostami, M., Mateos, A., Rodríguez, J., Limberg, H., Schmidt, I., Müller, M., Hölzchen, E., Holthausen, M., Klein, K., Wegener, C., ... Bareth, G. (2020). State of the Art in Paleoenvironment Mapping for Modeling Applications in Archeology—Summary, Conclusions, and Future Directions from the PaleoMaps Workshop. Quaternary, 3(2), 13. https://doi.org/10.3390/quat3020013