Vegetation Composition in a Typical Mediterranean Setting (Gulf of Corinth, Greece) during Successive Quaternary Climatic Cycles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chronology
2.2. Palynology and Biome Reconstruction
3. Results
4. Discussion
4.1. Vegetation and Climatic Inferences
4.1.1. CVSZ-9
4.1.2. CVSZ-8
4.1.3. CVSZ-7
4.1.4. CVSZ-6
4.1.5. CVSZ-5
4.1.6. Zone CVSZ-4
4.1.7. CVSZ-3
4.1.8. CVSZ-2
4.1.9. CVSZ-1
4.2. Comparison with Regional Pollen Records
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tzedakis, P.C.; Andrieu, V.; De Beaulieu, J.L.; Crowhurst, S.; Follieri, M.; Hooghiemstra, H.; Magri, D.; Reille, M.; Sadori, L.; Shackleton, N.J.; et al. Comparison of terrestrial and marine records of changing climate of the last 500,000 years. Earth Planet. Sci. Lett. 1997, 150, 171–176. [Google Scholar] [CrossRef]
- Follieri, M.; Magri, D.; Sadori, L. Pollen stratigraphical synthesis from Valle di Castiglione (Roma). Quat. Int. 1989, 3–4, 81–84. [Google Scholar] [CrossRef]
- Sánchez Goñi, M.F.; Eynaud, F.; Turon, J.L.; Shackleton, N.J. High resolution palynological record off the Iberian margin: Direct land-sea correlation for the Last Interglacial complex. Earth Planet. Sci. Lett. 1999, 171, 123–137. [Google Scholar] [CrossRef]
- Reille, M.; De Beaulieu, J.-L.; Svobodova, H.; Andrieu-Ponel, V.; Goeury, C. Pollen analytical biostratigraphy of the last five climatic cycles from a long continental sequence from the Velay region (Massif Central, France). J. Quat. Sci. 2000, 15, 665–685. [Google Scholar] [CrossRef]
- Tzedakis, P.C. Hierarchical Biostratigraphical Classification of Long Pollen Sequences. J. Quat. Sci. 1994, 9, 257–259. [Google Scholar] [CrossRef]
- Pross, J.; Koutsodendris, A.; Christanis, K.; Fischer, T.; Fletcher, W.J.; Hardiman, M.; Kalaitzidis, S.; Knipping, M.; Kotthoff, U.; Milner, A.M.; et al. The 1.35-Ma-Long Terrestrial Climate Archive of Tenaghi Philippon, Northeastern Greece: Evolution, Exploration, and Perspectives for Future Research. Newsl. Stratigr. 2015, 48, 253–276. [Google Scholar] [CrossRef]
- Sadori, L.; Koutsodendris, A.; Panagiotopoulos, K.; Masi, A.; Bertini, A.; Combourieu-Nebout, N.; Francke, A.; Kouli, K.; Joannin, S.; Mercuri, A.M.; et al. Pollen-Based Paleoenvironmental and Paleoclimatic Change at Lake Ohrid (South-Eastern Europe) during the Past 500 Ka. Biogeosciences 2016, 13, 1423–1437. [Google Scholar] [CrossRef]
- Wijmstra, T.A. Palynology of the First 30 Metres of a 120 m Deep Section in Northern Greece. Acta Bot. Neerl. 1969, 18, 511–527. [Google Scholar] [CrossRef]
- Okuda, M.; Yasuda, Y.; Setoguchi, T. Middle to Late Pleistocene Vegetation History and Climatic Changes at Lake Kopais, Southeast Greece. Boreas 2001, 30, 73–82. [Google Scholar] [CrossRef]
- Donders, T.; Panagiotopoulos, K.; Koutsodendris, A.; Bertini, A.; Maria Mercuri, A.; Masi, A.; Combourieu-Nebout, N.; Joannin, S.; Kouli, K.; Kousis, I.; et al. 1.36 Million Years of Mediterranean Forest Refugium Dynamics in Response to Glacial-Interglacial Cycle Strength. Proc. Natl. Acad. Sci. USA 2021, 118, e2026111118. [Google Scholar] [CrossRef] [PubMed]
- Tzedakis, P.C.; Hooghiemstra, H.; Pälike, H. The Last 1.35 Million Years at Tenaghi Philippon: Revised Chronostratigraphy and Long-Term Vegetation Trends. Quat. Sci. Rev. 2006, 25, 3416–3430. [Google Scholar] [CrossRef]
- Tzedakis, P.C.; McManus, J.F.; Hooghiemstra, H.; Oppo, D.W.; Wijmstra, T.A. Comparison of changes in vegetation in northeast Greece with records of climate variability on orbital and suborbital frequencies over the last 450,000 years. Earth Planet. Sci. Lett. 2003, 212, 197–212. [Google Scholar] [CrossRef]
- Panagiotopoulos, K.; Holtvoeth, J.; Kouli, K.; Marinova, E.; Francke, A.; Cvetkoska, A.; Jovanovska, E.; Lacey, J.H.; Lyons, E.T.; Buckel, C.; et al. Insights into the evolution of the young Lake Ohrid ecosystem and vegetation succession from a southern European refugium during the Early Pleistocene. Quat. Sci. Rev. 2020, 227, 106044. [Google Scholar] [CrossRef]
- Petit, R.J.; Aguinagalde, I.; De Beaulieu, J.L.; Bittkau, C.; Brewer, S.; Cheddadi, R.; Ennos, R.; Fineschi, S.; Grivet, D.; Lascoux, M.; et al. Glacial refugia: Hotspots but not melting pots of genetic diversity. Science 2003, 300, 1563–1565. [Google Scholar] [CrossRef]
- Blonder, J.; Aronson, J.; Bodiou, J.Y.; Boeuf, G. The Mediterranean Region: Biological Diversity in Space and Time; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Tzedakis, P.C.; Lawson, I.T.; Frogley, M.R.; Hewitt, G.M.; Preece, R.C. Buffered Tree Population Changes in a Quaternary Refugium: Evolutionary Implications. Science 2002, 297, 2044–2047. [Google Scholar] [CrossRef] [PubMed]
- Tzedakis, P.C.; Frogley, M.R.; Lawson, I.T.; Preece, R.C.; Cacho, I.; de Abreu, L. Ecological Thresholds and Patterns of Millennial-Scale Climate Variability: The Response of Vegetation in Greece during the Last Glacial Period. Geology 2004, 32, 109–112. [Google Scholar] [CrossRef]
- Panagiotopoulos, K.; Böhm, A.; Leng, M.J.; Wagner, B.; Schäbitz, F. Climate Variability over the Last 92 Ka in SW Balkans from Analysis of Sediments from Lake Prespa. Clim. Past 2014, 10, 643–660. [Google Scholar] [CrossRef]
- Tzedakis, P.C. The Last Climatic Cycle at Kopais, Central Greece. J. Geol. Soc. Lond. 1999, 156, 425–434. [Google Scholar] [CrossRef]
- Leontaritis, A.D.; Kouli, K.; Pavlopoulos, K. The Glacial History of Greece: A Comprehensive Review. Mediterr. Geosci. Rev. 2020, 2, 65–90. [Google Scholar] [CrossRef]
- Sindosi, O.A.; Bartzokas, A.; Kotroni, V.; Lagouvardos, K. Influence of Orography on Precipitation Amount and Distribution in NW Greece; A Case Study. Atmos. Res. 2015, 152, 105–122. [Google Scholar] [CrossRef]
- Trigas, P.; Tsiftsis, S.; Tsiripidis, I.; Iatrou, G. Distribution Patterns and Conservation Perspectives of the Endemic Flora of Peloponnese (Greece). Folia Geobot. 2012, 47, 421–439. [Google Scholar] [CrossRef]
- McNeill, L.C.; Shillington, D.J.; Carter, G.D.O.; Everest, J.D.; Le Ber, E.; Collier, R.E.L.; Cvetkoska, A.; De Gelder, G.; Diz, P.; Doan, M.-L.; et al. Corinth Active Rift Development. In Proceedings of the International Ocean Discovery Program; International Ocean Discovery Program: College Station, TX, USA, 2019; Volume 381. [Google Scholar] [CrossRef]
- Shillington, D.J.; McNeill, L.C.; Carter, G.D.O.; the Expedition 381 Participants. Expedition 381 Preliminary Report: Corinth Active Rift Development; International Ocean Discovery Program Preliminary Report; International Ocean Discovery Program: College Station, TX, USA, 2019. [Google Scholar] [CrossRef]
- McNeill, L.C.; Shillington, D.J.; Carter, G.D.O.; Everest, J.D.; Gawthorpe, R.L.; Miller, C.; Phillips, M.P.; Collier, R.E.L.; Cvetkoska, A.; de Gelder, G.; et al. High-Resolution Record Reveals Climate-Driven Environmental and Sedimentary Changes in an Active Rift. Sci. Rep. 2019, 9, 3116. [Google Scholar] [CrossRef] [PubMed]
- Gawthorpe, R.L.; Fabregas, N.; Pechlivanidou, S.; Ford, M.; Collier, R.E.L.; Carter, G.D.O.; McNeill, L.C.; Shillington, D.J. Late Quaternary Mud-Dominated, Basin-Floor Sedimentation of the Gulf of Corinth, Greece: Implications for Deep-Water Depositional Processes and Controls on Syn-Rift Sedimentation. Basin Res. 2022, 34, 1567–1600. [Google Scholar] [CrossRef]
- Singer, B.S. A Quaternary Geomagnetic Instability Time Scale. Quat. Geochronol. 2014, 21, 29–52. [Google Scholar] [CrossRef]
- Agnini, C.; Monechi, S.; Raffi, I. Calcareous Nannofossil Biostratigraphy: Historical Background and Application in Cenozoic Chronostratigraphy. Lethaia 2017, 50, 447–463. [Google Scholar] [CrossRef]
- Maffione, M.; Herrero-Bervera, E. A Relative Paleointensity (RPI)-Calibrated Age Model for the Corinth Syn-Rift Sequence at IODP Hole M0079A (Gulf of Corinth, Greece). Front. Earth Sci. 2022, 10, 813958. [Google Scholar] [CrossRef]
- Smit, A. A Scanning Electron Microscopical Study of the Pollen Morphology in the Genus Quercus. Acta Bot. Neerl. 1973, 22, 655–665. [Google Scholar] [CrossRef]
- Beug, H.J. Leitfaden der Pollenbestimmung für Mitteleuropa und Angrenzende Gebiete (Guide to the Pollen Analysis for Central Europe and the Adjacent Areas); Verlag Dr. Friedrich Pfeil: Munchen, Germany, 2004. [Google Scholar]
- Chester, P.I.; Raine, J.I. Pollen and Spore Keys for Quaternary Deposits in the Northern Pindos Mountains, Greece. Grana 2001, 40, 299–387. [Google Scholar] [CrossRef]
- Reille, M. Long Pleistocene Pollen Records from the Praclaux Crater, South-Central France. Quat. Res. 1995, 44, 205–215. [Google Scholar] [CrossRef]
- Reille, M.; Andrieu, V.R.; De Beaulieu, J.-L.; Guenet, P.; Goeury, C. A Long Pollen Record from Lac Du Bouchet, Massif Central, France: For the Period ca. 325 to 100 Ka BP (OIS 9c to OIS 5e). Quat. Sci. Rev. 1998, 17, 1107–1123. [Google Scholar] [CrossRef]
- Reille, M. New Pollen-analytical Researches in Corsica: The Problem of Quercus Ilex L. and Erica Arborea L., the Origin of Pinus Halepensis Miller Forests. New Phytol. 1992, 122, 359–378. [Google Scholar] [CrossRef] [PubMed]
- Grimm, E.C. CONISS: A FORTRAN 77 Program for Stratigraphically Constrained Cluster Analysis by the Method of Incremental Sum of Squares. Comput. Geosci. 1987, 13, 13–35. [Google Scholar] [CrossRef]
- Prentice, I.C.; Cramer, W.; Harrison, S.P.; Leemans, R.; Monserud, R.A.; Solomon, A.M. Special Paper: A Global Biome Model Based on Plant Physiology and Dominance, Soil Properties and Climate. Source J. Biogeogr. 1992, 19, 117–134. [Google Scholar] [CrossRef]
- Prentice, I.C.; Guiot, J.; Huntley, B.; Jolly, D.; Cheddadi, R. Reconstructing Biomes from Palaeoecological Data: A General Method and Its Application to European Pollen Data at 0 and 6 Ka. Clim. Dyn. 1996, 12, 185–194. [Google Scholar] [CrossRef]
- Marinova, E.; Harrison, S.P.; Bragg, F.; Connor, S.; de Laet, V.; Leroy, S.A.G.; Mudie, P.; Atanassova, J.; Bozilova, E.; Caner, H.; et al. Pollen-Derived Biomes in the Eastern Mediterranean–Black Sea–Caspian-Corridor. J. Biogeogr. 2018, 45, 484–499. [Google Scholar] [CrossRef]
- Fatourou, E.; Kafetzidou, A.; Marret, F.; Panagiotopoulos, K.; Kouli, K. Late Quaternary Ponto-Caspian dinoflagellate cyst assemblages from the Gulf of Corinth, Central Greece (eastern Mediterranean Sea). Mar. Micropaleontol. 2023, 179, 102211. [Google Scholar] [CrossRef]
- Koutsodendris, A.; Kousis, I.; Peyron, O.; Wagner, B.; Pross, J. The Marine Isotope Stage 12 pollen record from Lake Ohrid (SE Europe): Investigating short-term climate change under extreme glacial conditions. Quat. Sci. Rev. 2019, 221, 105873. [Google Scholar] [CrossRef]
- Fletcher, W.J.; Sánchez Goñi, M.F.; Allen, J.R.M.; Cheddadi, R.; Combourieu-Nebout, N.; Huntley, B.; Lawson, I.; Londeix, L.; Magri, D.; Margari, V.; et al. Millennial-scale variability during the last glacial in vegetation records from Europe. Quat. Sci. Rev. 2010, 29, 2839–2864. [Google Scholar] [CrossRef]
- Leontaritis, A.D.; Pavlopoulos, K.; Marrero, S.M.; Ribolini, A.; Hughes, P.D.; Spagnolo, M. Glaciations on ophiolite terrain in the North Pindus Mountains, Greece: New geomorphological insights and preliminary 36Cl exposure dating. Geomorphology 2022, 413, 108335. [Google Scholar] [CrossRef]
- Allard, J.L.; Hughes, P.D.; Woodward, J.C.; Fink, D.; Simon, K.; Wilcken, K.M. Late Pleistocene glaciers in Greece: A new 36Cl chronology. Quat. Sci. Rev. 2020, 245, 106528. [Google Scholar] [CrossRef]
- Roucoux, K.H.; Tzedakis, P.C.; de Abreu, L.; Shackleton, N.J. 24. Fine-tuning the land-ocean correlation for the late middle pleistocene of Southern Europe. Dev. Quat. Sci. 2007, 7, 359–373. [Google Scholar] [CrossRef]
- Fletcher, W.J.; Müller, U.C.; Koutsodendris, A.; Christanis, K.; Pross, J. A centennial-scale record of vegetation and climate variability from 312 to 240ka (Marine Isotope Stages 9c-a, 8 and 7e) from Tenaghi Philippon, NE Greece. Quat. Sci. Rev. 2013, 78, 108–125. [Google Scholar] [CrossRef]
- Litt, T.; Pickarski, N.; Heumann, G.; Stockhecke, M.; Tzedakis, P.C. A 600,000 year long continental pollen record from Lake Van, eastern Anatolia (Turkey). Quat. Sci. Rev. 2014, 1–12. [Google Scholar] [CrossRef]
- Tzedakis, P.C.; Andrieu, V.; de Beaulieu, J.L.; Birks, H.J.B.; Crowhurst, S.; Follieri, M.; Hooghiemstra, H.; Magri, D.; Reille, M.; Sadori, L.; et al. Establishing a terrestrial chronological framework as a basis for biostratigraphical comparisons. Quat. Sci. Rev. 2001, 20, 1583–1592. [Google Scholar] [CrossRef]
- Roucoux, K.H.; Tzedakis, P.C.; Frogley, M.R.; Lawson, I.T.; Preece, R.C. Vegetation history of the marine isotope stage 7 interglacial complex at Ioannina, NW Greece. Quat. Sci. Rev. 2008, 27, 1378–1395. [Google Scholar] [CrossRef]
- Milner, A.M.; Roucoux, K.H.; Collier, R.E.L.; Müller, U.C.; Pross, J.; Tzedakis, P.C. Vegetation responses to abrupt climatic changes during the Last Interglacial Complex (Marine Isotope Stage 5) at Tenaghi Philippon, NE Greece. Quat. Sci. Rev. 2016, 154, 169–181. [Google Scholar] [CrossRef]
- Sinopoli, G.; Masi, A.; Regattieri, E.; Wagner, B.; Francke, A.; Peyron, O.; Sadori, L. Palynology of the Last Interglacial Complex at Lake Ohrid: Palaeoenvironmental and palaeoclimatic inferences. Quat. Sci. Rev. 2018, 180, 177–192. [Google Scholar] [CrossRef]
- Kyrikou, S.; Kouli, K.; Triantaphyllou, M.v.; Dimiza, M.D.; Gogou, A.; Panagiotopoulos, I.P.; Anagnostou, C.; Karageorgis, A.P. Late Glacial and Holocene Vegetation Patterns of Attica: A High-Resolution Record from Elefsis Bay, Southern Greece. Quat. Int. 2020, 545, 28–37. [Google Scholar] [CrossRef]
- Digerfeldt, G.; Olsson, S. Reconstruction of Lake-Level Changes in Lake Xinias, Central Greece, during the Last 40 000 Years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 158, 65–82. [Google Scholar] [CrossRef]
- Kouli, K.; Dermitzakis, M.D. Lake Orestiás (Kastoria, Northern Greece). Grana 2010, 49, 154–156. [Google Scholar] [CrossRef]
- Lawson, I.T.; Al-Omari, S.; Tzedakis, P.C.; Bryant, C.L.; Christanis, K. Lateglacial and Holocene Vegetation History at Nisi Fen and the Boras Mountains, Northern Greece. Holocene 2005, 15, 873–887. [Google Scholar] [CrossRef]
- Panagiotopoulos, K.; Aufgebauer, A.; Schäbitz, F.; Wagner, B. Vegetation and Climate History of the Lake Prespa Region since the Lateglacial. Quat. Int. 2013, 293, 157–169. [Google Scholar] [CrossRef]
- Weiberg, E.; Unkel, I.; Kouli, K.; Holmgren, K.; Avramidis, P.; Bonnier, A.; Dibble, F.; Finné, M.; Izdebski, A.; Katrantsiotis, C.; et al. The Socio-Environmental History of the Peloponnese during the Holocene: Towards an Integrated Understanding of the Past. Quat. Sci. Rev. 2016, 136, 40–65. [Google Scholar] [CrossRef]
- Emmanouilidis, A.; Panagiotopoulos, K.; Kouli, K.; Avramidis, P. Late-Holocene Paleoenvironmental and Land-Use Changes in Western Greece Based on a Sediment Record from Klisova Lagoon. Holocene 2022, 32, 485–500. [Google Scholar] [CrossRef]
- Tzedakis, P.C. Vegetation Change through Glacial-Interglacial Cycles: A Long Pollen Sequence Perspective. Philos. Trans. R. Soc. B Biol. Sci. 1994, 345, 403–432. [Google Scholar] [CrossRef]
- Tzedakis, P.C. Vegetation Variability in Greece during the Last Interglacial. Geol. Mijnb./Neth. J. Geosci. 2000, 79, 355–367. [Google Scholar] [CrossRef]
- Bennett, K.D.; Tzedakis, P.C.; Willis, K.J. Quaternary Refugia of North European Trees. Source J. Biogeogr. 1991, 18, 103–115. [Google Scholar] [CrossRef]
- Magri, D.; Palombo, M.R. Early to Middle Pleistocene dynamics of plant and mammal communities in South West Europe. Quat. Int. 2013, 288, 63–72. [Google Scholar] [CrossRef]
- Magri, D. Quaternary history of Cedrus in southern Europe. Ann. di Bot. 2012, 2, 57–66. [Google Scholar] [CrossRef]
- Magri, D.; Di Rita, F.; Aranbarri, J.; Fletcher, W.; González-Sampériz, P. Quaternary disappearance of tree taxa from Southern Europe: Timing and trends. Quat. Sci. Rev. 2017, 163, 23–55. [Google Scholar] [CrossRef]
- Bertini, A. Pliocene to Pleistocene palynoflora and vegetation in Italy: State of the art. Quat. Int. 2010, 225, 5–24. [Google Scholar] [CrossRef]
- Bhagwat, S.A.; Willis, K.J. Species persistence in northerly glacial refugia of Europe: A matter of chance or biogeographical traits? J. Biogeogr. 2008, 35, 464–482. [Google Scholar] [CrossRef]
- Svenning, J.C. Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecol. Lett. 2003, 6, 646–653. [Google Scholar] [CrossRef]
- Joannin, S.; Quillévéré, F.; Suc, J.P.; Lécuyer, C.; Martineau, F. Early Pleistocene Climate Changes in the Central Mediterranean Region as Inferred from Integrated Pollen and Planktonic Foraminiferal Stable Isotope Analyses. Quat. Res. 2007, 67, 264–274. [Google Scholar] [CrossRef]
CVSZ | Reconstructed Biomes | Pollen Assemblages | Inferred Vegetation |
---|---|---|---|
CVSZ-1 Depth: 20, 19–0 Sample no: 12 Mean PS: 195 | Dominant: DBWD (5) CMIX (5). Other: GRAM (2) | AP: 52.5% (max: 73%; min: 33%); AP conc. 279 grains g1 (max: 1024 grains g1); Mediterranean: 14.12% (max: 38%); Quercus ilex-type: 10.8%; mesophilous: 27.27%; Quercus robur-type: 24%; montane:8.6% (max: 47%); Cichorieae: 14% (max: 21%); Chenopodiaceae max: 10% | Mesophilous tree dominant with prominent peaks of Mediterranean. Oak forests comprise Quercus robur-type (up to 47 %) and Quercus ilex-type (up to 36%). Montane (mostly Abies) forests in higher elevations. Cichorieae dominant among herbs. |
CVSZ-2 Depth: 65–20, 19 Sample no: 18 Mean PS: 310 | Dominant: XSHB (10) Other: GRAM (6) CMIX (2) | AP: 52% (min: 32%); AP conc. 445 grains g−1 (min: 118 grains g−1); pollen conc. 866 grains g1; Mediterranean (max: 26%; min: 3%); Q. ilex-type: 12%; mesophilous max: 49%; Q. robur-type: 21.3%; steppic max: 37%; Artemisia max: 24%; Ephedra spp. max: 6%; Cichorieae max: 27%; Chenopodiaceae (max: 19%); Salix (max: 3%) | Small expansion of steppe vegetation. Persistence of mesophilous tree taxa, mainly Q. robur-type. Mediterranean vegetation decreases. Montane elements (e.g., Abies) expand. Artemisia is the most abundant taxon among herbs, accompanied by Chenopodiaceae and Poaceae. |
CVSZ-3 Depth: 116–65 Sample no: 23 Mean PS: 487 | Dominant: CMIX (11) Other: GRAM (8) XSHB (3) | AP: 62% (max: 85%); AP conc.(max: 26,835 grains g1); pollen conc. 4346 grains g1 (max: 32.295 g g1); Mediterranean (min: 9.6; max: 48%); Q. ilex-type: 27,4% (max: 48%); mesophilous: 21.1% (max: 55%); Q. robur-type: 12.2%; Q. cerris-type max: 29%; montane max: 29%; steppic max: 28%; Artemisia max: 24%; Chenopodiaceae max: 15%; Asteraceae max: 15%; Poaceae max: 36% | Alternations of expansion of Mediterranean sclerophyllous vegetation in lowlands and mixed oak forests in mid-altitudes with short intervals of steppe vegetation increase. Artemisia, Chenopodiaceae and Asteraceae characterize the steppe communities upcore. Poaceae dominate the lacustrine vegetation zone. |
CVSZ-4 Depth: 185–116 Sample no: 37 Mean PS: 393 | Dominant: GRAMM (24) Other: CMIX (9) DBWD (1) WTSHB (1) | AP: 49% (min: 20%; max: 92%); AP conc. 472 grains g1; pollen conc. 1200 grains g1; Mediterranean max: 39%, min:6%; Q. ilex-type: 19%; mesophilous: 14.8% (min: 4%; max: 29%); Q. robur-type: 8%; Cedrus max: 10%; Artemisia max: 10%; Chenopodiaceae max: 14%; Asteraceae max: 33%; Cichorieae max: 27%; Poaceae max: 36%; Cyperaceae max: 13%; riparian max: 14% | Open vegetation with Mediterranean populations; mesophilous are present in lower values. Trees persist, presenting minor decline. Montane taxa forests occurred in higher elevations. |
CVSZ-5 Depth: 215–185 Sample no: 17 Mean PS: 255 | Dominant: GRAMM (10) Other: DBWD (3) CMIX (3) XSHB (1) | AP: 46% (max: 69%; min: 9%); AP conc. 765 grains g−1 (max: 2018 grains g−1); Mediterranean: 19.9% (max: 40%, min: 6%); Q. Ilex-type: 18.5%; mesophilous: 14.6% (max:35%; min: 6%); Q. robur-type: 8.4%; montane (max: 17%; min: 2%); Cedrus: 2% max: 7%; Artemisia max: 14%; Chenopodiaceae max: 16%; Cichorieae max: 19%; Asteraceae max: 15%; Poaceae: 13% (max: 52%) | Mediterranean tree taxa dominant with prominent peaks of mesophilous taxa. Alternations of grassland vegetation with mixed oak forests comprising Q.ilex-type (7.5–37.5%) and Q. robur-type (3–17.6%). Among herbs, Poaceae prevail in the coastal zone. Abies and Cedrus are present in the montane zone. |
CVSZ-6 Depth: 233–215 Sample no: 5 Mean PS: 158 | Dominant: GRAMM (3) Other: CMIX (1) XSHB (1) | AP: 35% (min: 28%); AP conc. 211 grains g1; pollen conc. 664 grains g1; Mediterranean: 7.2%; Q. ilex-type min: 4%; mesophilous: 16.2%; Q. robur-type: 10% (max: 28%); montane max: 10%; steppic max: 33%; Artemisia max: 10%; Chenopodiaceae max: 18%; Cichorieae max: 14%; Poaceae max: 28% | Open herbaceous vegetation with increased abundances of steppe taxa. Declined Mediterranean populations; persisting mesophilous taxa dominated by Q. robur-type. |
CVSZ-7 Depth: 259–233 Sample no: 4 Mean PS: 282 | DBWD (1) CMIX (1) WTSHB (1) GRAM (1) | AP: 56% (max: 70%); AP conc. 3440 grains g−1; pollen conc. 5113 grains g1; Mediterranean: 22.3% (max: 36%); Q. ilex-type: 17%; mesophilous: 17.3% (max: 30%); Q. robur-type: 14%; montane: 14%; Abies max: 19%; Pinus max: 74%; steppic max: 8%; Artemisia max: 6%; Cichorieae: 8% (max: 13%) | Mediterranean tree taxa prevail. Forests characterized by Q. ilex-type (7.2–26%) and Q. robur-type. Pinus and Abies present high abundances. Cichorieae are dominant among herbs. |
CVSZ-8 Depth: 369–259 Sample no: 15 Mean PS: 200 | Dominant: GRAM (6) Other: CMIX (3) DBWD (3) XSHB (2) | AP: 46% (max: 69%; min: 23%); AP conc (max: 33,852 grains g1; min: 83 grains g1); pollen conc. 5881 grains g1 (max: 51,373 grains g1); Mediterranean: 16% (max: 30%); Q. ilex-type max: 30%; mesophilous: 26% (max: 39%); Q. robur-type max: 40%; montane: 7%; Abies max: 18%; Artemisia max: 8%; Chenopodiaceae max: 26%; Cichorieae max: 18%, Asteraceae max: 14%; Poaceae max: 19% | Alternations of periods characterized by mesophilous, accompanied by montane and Mediterranean trees, and open vegetation. Forests mainly characterized by expansion of Q. robur-type along with Q. ilex-type. |
CVSZ-9 Depth: 580–369 Sample no: 10 Mean PS: 146.9 | Dominant: XSHB (3) CMIX (3) Other: GRAM (2) DBWD (1) TEDE (1) | AP: 40% (min: 17%); pollen conc. 324 grains g1; Mediterranean max: 12%, min: 2%; Q. ilex-type: 5%; mesophilous max: 40%; Q. robur-type: 9.3%; montane: 8%; Cedrus: 5.6% (max: 51%); Pinus (max: 70%, min: 7%); Chicorieae max: 38%; Poaceae max: 16% | Poor preservation and/or low counts of pollen grains in several horizons. Extensive open herbaceous vegetation with increased abundances of steppic taxa. Mesophilous tree populations persist; Mediterranean contract over time. Montane taxa (mostly Cedrus) dominate in higher elevations. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kafetzidou, A.; Fatourou, E.; Panagiotopoulos, K.; Marret, F.; Kouli, K. Vegetation Composition in a Typical Mediterranean Setting (Gulf of Corinth, Greece) during Successive Quaternary Climatic Cycles. Quaternary 2023, 6, 30. https://doi.org/10.3390/quat6020030
Kafetzidou A, Fatourou E, Panagiotopoulos K, Marret F, Kouli K. Vegetation Composition in a Typical Mediterranean Setting (Gulf of Corinth, Greece) during Successive Quaternary Climatic Cycles. Quaternary. 2023; 6(2):30. https://doi.org/10.3390/quat6020030
Chicago/Turabian StyleKafetzidou, Aikaterini, Eugenia Fatourou, Konstantinos Panagiotopoulos, Fabienne Marret, and Katerina Kouli. 2023. "Vegetation Composition in a Typical Mediterranean Setting (Gulf of Corinth, Greece) during Successive Quaternary Climatic Cycles" Quaternary 6, no. 2: 30. https://doi.org/10.3390/quat6020030
APA StyleKafetzidou, A., Fatourou, E., Panagiotopoulos, K., Marret, F., & Kouli, K. (2023). Vegetation Composition in a Typical Mediterranean Setting (Gulf of Corinth, Greece) during Successive Quaternary Climatic Cycles. Quaternary, 6(2), 30. https://doi.org/10.3390/quat6020030