Past and Present Drivers of Karst Formation of Ciénega de El Mangle, Panama
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Context of Study Area
2.2. Geomorphological Mapping
2.3. Karst Characterization and Analysis
3. Results and Discussion
3.1. Landforms and Processes within the Ciénega de El Mangle
3.2. Karst Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brunović, D.; Miko, S.; Ilijanić, N.; Peh, Z.; Hasan, O.; Kolar, T.; Razum, I. Holocene foraminiferal and geochemical records in the coastal karst dolines of Cres Island, Croatia. Geol. Croat. 2019, 72, 19–42. [Google Scholar] [CrossRef]
- Benac, Č.; Juračić, M.; Matičec, D.; Ružić, I.; Pikelj, K. Fluviokarst and classical karst: Examples from the Dinarics (Krk Island, northern Adriatic, Croatia). Geomorphology 2013, 184, 64–73. [Google Scholar] [CrossRef]
- Veress, M. Karst types and their karstification. J. Earth Sci. 2020, 31, 621–634. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P. Karst Hydrogeology and Geomorphology; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Goldscheider, N.; Chen, Z.; Auler, A.S.; Bakalowicz, M.; Broda, S.; Drew, D.; Hartmann, J.; Jiang, G.; Moosdorf, N.; Stevanovic, Z.; et al. Global distribution of carbonate rocks and karst water resources. Hydrogeol. J. 2020, 28, 1661–1677. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Torres-Bernhard, L.; Ruiz-Álvarez, M.A.; Rodríguez-Maradiaga, M.; Velázquez-Espinoza, G.; Espinosa-Vega, C.; Toral, J.; Rodríguez-Bolaños, H. Geodiversity, Geoconservation, and Geotourism in Central America. Land 2022, 11, 48. [Google Scholar] [CrossRef]
- Bauer-Gottwein, P.; Gondwe, B.R.; Charvet, G.; Marín, L.E.; Rebolledo-Vieyra, M.; Merediz-Alonso, G. The Yucatán Peninsula karst aquifer, Mexico. Hydrogeol. J. 2011, 3, 507–524. [Google Scholar] [CrossRef]
- Aguilar, Y.; Bautista, F.; Mendoza, M.E.; Frausto, O.; Ihl, T. Density Of karst depressions in Yucatán state, Mexico. J. Cave Karst Stud. 2016, 78, 51–60. [Google Scholar] [CrossRef]
- Marshall, J.S. The geomorphology and physiographic provinces of Central America. In Central America: Geology, Resources and Hazards; Taylor-Francis Group: Abingdon, UK, 2007; pp. 75–121. [Google Scholar]
- Day, M. Karst landscapes. In Central America: Geology, Resources and Hazards; Bundschuc, J., Alvarado, G.E., Eds.; Taylor & Francis Group: Abingdon, UK, 2007; p. 1436. [Google Scholar]
- Parise, M.; Gunn, J. Natural and anthropogenic hazards in karst areas: An introduction. Geol. Soc. Lond. Spec. Publ. 2007, 279, 1–3. [Google Scholar] [CrossRef]
- De Waele, J.; Gutiérrez, F.; Parise, M.; Plan, L. Geomorphology and natural hazards in karst areas: A review. Geomorphology 2011, 134, 1–8. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Parise, M.; De Waele, J.; Jourde, H. A review on natural and human-induced geohazards and impacts in karst. Earth Sci. Rev. 2014, 138, 61–88. [Google Scholar] [CrossRef]
- Xiong, K.; Yin, C.; Ji, H. Soil erosion and chemical weathering in a region with typical karst topography. Environ. Earth Sci. 2018, 77, 500. [Google Scholar] [CrossRef]
- Domazetović, F.; Šiljeg, A.; Lončar, N.; Marić, I. Development of automated multicriteria GIS analysis of gully erosion susceptibility. Appl. Geogr. 2019, 112, 102083. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, X.; Wang, Z.; Zhang, X.; Chen, C.; Liu, H. The challenge of soil loss control and vegetation restoration in the karst area of southwestern China. Int. Soil Water Conserv. Res. 2020, 8, 26–34. [Google Scholar] [CrossRef]
- Marín, A.I.; Francisco, M.R.J.; Barberá, J.A.; Fernández-Ortega, J.; Matías, M.; Damián, S.; Bartolomé, A. Groundwater vulnerability to pollution in karst aquifers, considering key challenges and considerations: Application to the Ubrique springs in southern Spain. Hydrogeol. J. 2021, 29, 379–396. [Google Scholar] [CrossRef]
- Benito, G.; Sancho, C.; Peña, J.L.; Machado, M.J.; Rhodes, E.J. Large-scale karst subsidence and accelerated fluvial aggradation during MIS6 in NE Spain: Climatic and paleohydrological implications. Quat. Sci. Rev. 2010, 29, 2694–2704. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Benito-Calvo, A.; Carbonel, D.; Desir, G.; Sevil, J.; Guerrero, J.; Fabregat, I. Review on sinkhole monitoring and performance of remediation measures by high-precision leveling and terrestrial laser scanner in the salt karst of the Ebro Valley, Spain. Eng. Geol. 2019, 248, 283–308. [Google Scholar] [CrossRef]
- Gijón-Yescas, G.; Aguilar-Duarte, Y.; Frausto-Martínez, O.; Bautista-Zuñiga, F. Anatomy of a cenote with use of dron. Trop. Subtrop. Agroecosyst. 2021, 24, 30. [Google Scholar] [CrossRef]
- Fragoso-Servón, P.; Pereira Corona, A.; Bautista Zúñiga, F.; Prezas Hernández, B.; Reyes, N.A. Soils in extreme conditions: The case of the catenas karst-marsh-coastline in the Mexican Caribbean. Boletín Soc. Geológica Mex. 2020, 72, A040619. [Google Scholar] [CrossRef]
- Rodríguez-Castillo, J.F.; Frausto-Martínez, O.; Uhu-Yam, W.D.; Colín-Olivares, O. Caracterización morfométrica de depresiones kársticas: Zona costera nororiente de la Península de Yucatán, México. Ecosistemas Recur. Agropecu. 2022, 9. [Google Scholar] [CrossRef]
- Day, M. Challenges to sustainability in the Caribbean karst. Geol. Croat. 2010, 63, 149–154. [Google Scholar] [CrossRef]
- Day, M. Protection of karst landscapes in the developing world: Lessons from Central America, the Caribbean, and Southeast Asia. In Karst Management; Springer: Berlin/Heidelberg, Germany, 2011; pp. 439–458. [Google Scholar]
- Lace, M.J. Advances in the Exploration and Management of Coastal Karst in the Caribbean. In Environmental Management and Governance: Advances in Coastal and Marine Resources; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 143–172. [Google Scholar]
- Klaas, D.K.; Imteaz, M.A.; Sudiayem, I.; Klaas, E.M.; Klaas, E.C. Assessing climate changes impacts on tropical karst catchment: Implications on groundwater resource sustainability and management strategies. J. Hydrol. 2020, 582, 124426. [Google Scholar] [CrossRef]
- Rockwell, T.K.; Bennett, R.A.; Gath, E.; Franceschi, P. Unhinging an indenter: A new tectonic model for the internal deformation of Panama. Tectonics 2010, 29. [Google Scholar] [CrossRef]
- Alvarado, G.E.; Benito, B.; Staller, A.; Climent, Á.; Camacho, E.; Rojas, W.; Lindholm, C. The new Central American seismic hazard zonation: Mutual consensus based on up to day seismotectonic framework. Tectonophysics 2017, 721, 462–476. [Google Scholar] [CrossRef]
- Harmon, R. The Chagres River, Panama: A Multidisciplinary Profile of a Tropical Watershed; Kluwer Academic Publishers: Boston, MA, USA; Dordrecht, The Netherlands; London, UK, 2005. [Google Scholar]
- Montes, C.; Hoyos, N. Isthmian bedrock geology: Tilted, bent, and broken. In The Geology of Colombia, Paleogene–Neogene. Servicio Geológico Colombiano; Gómez, J., Mateus-Zabala, D., Eds.; Publicaciones Geológicas Especiales: Bogotá, Colombia, 2020; Volume 3, pp. 451–467. [Google Scholar]
- Bacon, C.; Molnar, P.; Antonelli, A.; Crawford, A.; Montes, C.; Vallejo-Pareja, M. Quaternary glaciation and the Great American Biotic Interchange. Geology 2016, 44, 375–378. [Google Scholar] [CrossRef]
- Palka, E. A geographical view of Panama. In The Río Chagres, Panama; Harmon, R.S., Ed.; Library of Water Science and Technology; Springer: Dordrecht, The Netherlands, 2005; Volume 52. [Google Scholar]
- Quesada-Román, A.; Ballesteros-Cánovas, J.A.; Guillet, S.; Madrigal-González, J.; Stoffel, M. Neotropical Hypericum irazuense shrubs reveal recent ENSO variability in Costa Rican páramo. Dendrochronologia 2020, 61, 125704. [Google Scholar] [CrossRef]
- Madrigal-González, J.; Calatayud, J.; Ballesteros-Cánovas, J.A.; Escudero, A.; Cayuela, L.; Rueda, M.; Ruiz-Benito, P.; Herrero, A.; Aponte, C.; Sagardia, R.; et al. Climate reverses directionality in the richness–abundance relationship across the World’s main forest biomes. Nat. Commun. 2020, 11, 5635. [Google Scholar] [CrossRef] [PubMed]
- Grossman, E.; Robbins, J.; Rachello-Dolmen, P.; Tao, K.; Saxena, D.; O’Dea, A. Freshwater input, upwelling, and the evolution of Caribbean coastal ecosystems during formation of the Isthmus of Panama. Geology 2019, 47, 857–861. [Google Scholar] [CrossRef]
- National Geographic Institute “Tommy Guardia”. National Atlas of the Republic of Panama Colombia, 5th ed.; Impresiones Carpal: Panama, Colombia, 2016. [Google Scholar]
- Peel, M.C.; Finlayson, B.; McMahon, T. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Holdridge, L. Life Zone Ecology. Inter-American Institute for Cooperation on Agriculture, 4th ed.; Tropical Science Center: San José, Costa Rica, 1996. [Google Scholar]
- Quesada-Hernandez, L.E.; Calvo-Solano, O.D.; Hidalgo, H.G.; Perez-Briceno, P.M.; Alfaro, E.J. Dynamical delimitation of the Central American Dry Corridor (CADC) using drought indices and aridity values. Prog. Phys. Geogr. Earth Environ. 2019, 43, 627–642. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Mata-Cambronero, E. The geomorphic landscape of the Barva volcano, Costa Rica. Phys. Geogr. 2021, 42, 265–282. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Castro-Chacón, J.P.; Boraschi, S.F. Geomorphology, land use, and environmental impacts in a densely populated urban catchment of Costa Rica. J. S. Am. Earth Sci. 2021, 112, 103560. [Google Scholar] [CrossRef]
- Quesada-Román, A. Geomorphology of the Guacimal River catchment, Costa Rica. J. Geogr. Cartogr. 2022, 5, 58–67. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Quirós-Arias, L.; Zamora-Pereira, J.C. Interactions between Geomorphology and Production Chain of High-Quality Coffee in Costa Rica. Sustainability 2022, 14, 5265. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Peralta-Reyes, M. Geomorphological Mapping Global Trends and Applications. Geographies 2023, 3, 610–621. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Umaña-Ortíz, J.; Zumbado-Solano, M.; Islam, A.; Abioui, M.; Tefogoum, G.Z.; Kariminejad, N.; Mutaqin, B.W.; Pupim, F. Geomorphological regional mapping for environmental planning in developing countries. Environ. Dev. 2023, 48, 100935. [Google Scholar] [CrossRef]
- Tricart, J. Cartographie géomorphologique. Ann. Géograph. 1972, 81, 751–753. [Google Scholar]
- Van Zuidam, R. Aerial Photo-Interpretation in Terrain Analysis and Geomorphologic Mapping; Smits Publishers: Cherry Hill, NJ, USA, 1986; p. 25102. [Google Scholar]
- Tamiozzo, F.; Marques, R.; De Oliveira, S. Introdução à Geomorfologia; Cengage Learning: Boston, MA, USA, 2013. [Google Scholar]
- Espinosa-Pérez, I.D.; García-Romero, A.; Cruz-Fuentes, L.F. Proposal of Differentiating Components for the Multiscale Classification of the Landscape. Investig. Geográficas 2022, 107, e60539. [Google Scholar]
- Rivera-Solís, J.A. Depósitos eólicos del trópico húmedo: Caso de la franja marino-costera del este de la Península de Azuero, Panamá. Rev. Geográfica América Cent. 2021, 66, 79–105. [Google Scholar] [CrossRef]
- Wef, A.A. Standard Methods for the Examination of Water and Wastewater; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- Bird, E.C. Physical Setting and Geomorphology of Coastal Lagoons; Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 1994; Volume 60, pp. 9–39. [Google Scholar]
- Medina-Gómez, I.; Kjerfve, B.; Mariño, I.; Herrera-Silveira, J. Sources of salinity variation in a coastal lagoon in a karst landscape. Estuaries Coasts 2014, 37, 1329–1342. [Google Scholar] [CrossRef]
- Acuña-Piedra, J.F.; Quesada-Román, A. Multidecadal biogeomorphic dynamics of a deltaic mangrove forest in Costa Rica. Ocean. Coast. Manag. 2021, 211, 105770. [Google Scholar] [CrossRef]
- Veas-Ayala, N.; Alfaro-Córdoba, M.; Quesada-Román, A. Costa Rican wetlands vulnerability index. Prog. Phys. Geogr. Earth Environ. 2023, 47, 521–540. [Google Scholar] [CrossRef]
- Zinck, J.A. Geopedology, Elements of Geomorphology for Soil and Geohazard Studies; ITC Special Lecture Notes Series; ITC Faculty of Geo-Information Science and Earth Observation: Enschede, The Netherlands, 2013. [Google Scholar]
- Goudie, A. (Ed.) Encyclopedia of Geomorphology; Psychology Press: London, UK, 2004; Volume 2. [Google Scholar]
- Mees, F.; Tursina, T.V. Salt minerals in saline soils and salt crusts. In Interpretation of Micromorphological Features of Soils and Regoliths; Elsevier: Amsterdam, The Netherlands, 2018; pp. 289–321. [Google Scholar]
- Buol, S.W.; Southard, R.J.; Graham, R.C.; McDaniel, P.A. Soil Genesis and Classification; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Durand, N.; Monger, H.C.; Canti, M.G.; Verrecchia, E.P. Calcium carbonate features. In Interpretation of Micromorphological Features of Soils and Regoliths; Elsevier: Amsterdam, The Netherlands, 2018; pp. 205–258. [Google Scholar]
- Veress, M. Factors influencing solution in karren and on covered karst. Hung. Geogr. Bull. 2010, 59, 289–306. [Google Scholar]
- Waltham, A.C.; Fookes, P.G. Engineering classification of karst ground conditions. Q. J. Eng. Geol. Hydrogeol. 2003, 36, 101–118. [Google Scholar] [CrossRef]
- Jourde, H.; Wang, X. Advances, challenges and perspective in modelling the functioning of karst systems: A review. Environ. Earth Sci. 2023, 82, 396. [Google Scholar] [CrossRef]
- Monroe, W.H. A Glossary of Karst Terminology; U.S. Government Printing Office: Washington, DC, USA, 1970.
- Jennings, J.N. Cave and karst terminology. Aust. Karst Index 1985, 1–13. [Google Scholar]
- Perica, D.; Marjanac, T.; Aničić, B.; Mrak, I.; Juračić, M. Small karst features (karren) of Dugi Otok island and Kornati archipelago coastal karst (Croatia). Acta Carsologica 2004, 33. [Google Scholar] [CrossRef]
- Taboroši, D.; Jenson, J.W.; Mylroie, J.E. Karren features in island karst: Guam, Mariana Islands. Z. Geomorphol. 2004, 48, 369–389. [Google Scholar] [CrossRef]
- Ginés, A.; Knez, M.; Slabe, T.; Dreybrodt, W. (Eds.) Karst Rock Features. Karren Sculpturing: Karren Sculpturing; Založba ZRC: Ljubljana, Slovenia, 2009; Volume 9. [Google Scholar]
- Knez, M.; Rubinić, J.; Slabe, T.; Šegina, E. Karren of the Kamenjak Hum (Dalmatian Karst, Croatia); from the initial dissection of flat surfaces by rain to rocky points. Acta Carsologica 2015, 44. [Google Scholar] [CrossRef]
- Goff, J.A.; Gulick, S.P.; Cruz, L.P.; Stewart, H.A.; Davis, M.; Duncan, D.; Fucugauchi, J.U. Solution pans and linear sand bedforms on the bare-rock limestone shelf of the Campeche Bank, Yucatán Peninsula, Mexico. Cont. Shelf Res. 2016, 117, 57–66. [Google Scholar] [CrossRef]
- Jennings, J.N. The disregarded karst of the arid and semiarid domain/Le karst méconnu du domaine aride et semi-aride. Karstologia 1983, 1, 61–73. [Google Scholar] [CrossRef]
- Soja, C.M. Island-arc carbonates: Characterization and recognition in the ancient geologic record. Earth Sci. Rev. 1996, 41, 31–65. [Google Scholar] [CrossRef]
- Castanier, S.; Le Métayer-Levrel, G.; Perthuisot, J.P. Ca-carbonates precipitation and limestone genesis–The microbiogeologist point of view. Sediment. Geol. 1999, 126, 9–23. [Google Scholar] [CrossRef]
- Rivera, J.A. Análisis geomorfológico de la región costera del este “E”, de la provincia de Los Santos. Rev. Geográfica América Cent. 2011, 2, 1–14. [Google Scholar]
- Rivera, J.A. Propuesta de zonificación ambiental del paisaje marino costero: Cuenca del Río Purio. Visión Antataura 2017, 1, 93–94. [Google Scholar]
- Quesada-Román, A.; Pérez-Briceño, P.M. Geomorphology of the Caribbean coast of Costa Rica. J. Maps 2019, 15, 363–371. [Google Scholar] [CrossRef]
- Rivera-Solís, J.A. Estudio Geomorfológico para la Ordenación del Espacio Litoral: Caso del Estuario del Río Purio, República de Panamá. Investig. Geográficas 2016, 52, 83–98. [Google Scholar] [CrossRef]
- Rivera-Solis, J.A.; Cortez, A.T.C. Classificação das paisagens da faixa marinha costeira da bacia hidrográfica do Rio Purio, República do Panamá. Estud. Geogr. Rev. Eletron. Geogr. 2015, 13, 77–93. [Google Scholar]
- Rivera-Solís, J.A. Teoría y Métodos para la Práctica de la Geografía Física: Estudios de Casos–Panamá; Editora Novo Art S.A.: Panamá, Colombia, 2016; p. 176. [Google Scholar]
- Charó, M.; Fucks, E.; Gordillo, S. Moluscos marinos bentónicos del Cuaternario de Bahía Anegada (sur de Buenos Aires, Argentina): Variaciones faunísticas en el Pleistoceno tardío y Holoceno. Rev. Mex. Cienc. Geol. 2013, 30, 404–416. [Google Scholar]
- Willgoose, G. Principles of Soilscape and Landscape Evolution; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Selby, M.J. Landforms of the Subtropics and Tropics, Earth’s Changing Surface; Oxford University Press: Oxford, UK, 1985. [Google Scholar]
Site 1. Diameter 7 m. | |||||
---|---|---|---|---|---|
Totals | Diameter (cm) | Depth (cm) | Microdolines | Brackish-Water Karst Sinkhole | Exposed Domal Form: Average Height (cm) |
ID | |||||
1 | 40 | 21 | + | ||
2 | 23 | 6 | + | ||
3 | 38 | 13 | + | + | |
4 | 19 | 6 | + | + | |
5 | 22 | 6 | + | ||
6 | 34 | 13 | + | ||
7 | 20 | 13 | + | + | |
8 | 40 | 15 | + | ||
9 | 49 | 20 | + | ||
10 | 32 | 6 | + | ||
Site 2. Diameter 10 m | |||||
1 | 75 | 14 | + | ||
2 | 38 | 12 | + | 14 | |
3 | 107 | 5 | + | ||
4 | 49 | 18 | + | ||
5 | 48 | 8 | + | ||
6 | 24 | 18 | + | 14 | |
Site 3. Diameter 16 m | |||||
1 | 42 | 11 | + | + | |
2 | 33 | 14 | + | + | |
3 | 105 | 15 | + | + | |
4 | 21 | 21 | + | + | |
Site 4. Diameter 10 m | |||||
1 | 75 | 52 | + | 16 | |
2 | 54 | 63 | + | 16 | |
3 | 51 | 51 | + | 16 | |
4 | 87 | 33 | + | 16 |
Horizon | Sand (%) | Silt (%) | Clay (%) | pH units | Ca (mg/L) | Fe (mg/L) | SOM (%) |
---|---|---|---|---|---|---|---|
1 | 68 | 16 | 16 | 8.5 | 85.4 | 0 | 79 |
2 | 32 | 18 | 50 | 8.1 | 149 | 29.1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera-Solís, J.; Quesada-Román, A.; Domazetović, F. Past and Present Drivers of Karst Formation of Ciénega de El Mangle, Panama. Quaternary 2023, 6, 58. https://doi.org/10.3390/quat6040058
Rivera-Solís J, Quesada-Román A, Domazetović F. Past and Present Drivers of Karst Formation of Ciénega de El Mangle, Panama. Quaternary. 2023; 6(4):58. https://doi.org/10.3390/quat6040058
Chicago/Turabian StyleRivera-Solís, Jaime, Adolfo Quesada-Román, and Fran Domazetović. 2023. "Past and Present Drivers of Karst Formation of Ciénega de El Mangle, Panama" Quaternary 6, no. 4: 58. https://doi.org/10.3390/quat6040058
APA StyleRivera-Solís, J., Quesada-Román, A., & Domazetović, F. (2023). Past and Present Drivers of Karst Formation of Ciénega de El Mangle, Panama. Quaternary, 6(4), 58. https://doi.org/10.3390/quat6040058