Characterization of Heavy Minerals and Their Possible Sources in Quaternary Alluvial and Beach Sediments by an Integration of Microanalytical Data and Spectroscopy (FTIR, Raman and UV-Vis)
Abstract
:1. Introduction
2. Study Areas and Sampling
3. Materials and Methods
4. Microscopic Investigation
4.1. Beach Black Sand
4.2. Wadi Alluvium
5. Chemical Analysis
6. Discussion
6.1. Significance of Whole-Fraction Chemistry
6.2. Mineral Chemistry as an Indicator of Source Rocks
6.3. Spectroscopic Characterization
7. Conclusions
- (a)
- In addition to Fe-Ti oxides, promising concentrates of strategic minerals in northwestern Saudi Arabia are a potential source of radionuclide minerals such as zircon/uranothorite (up to 7.2 wt% UO2 and 17.5 wt% ThO2). Additional resources of rare-earth elements are hosted in radioactive monazite with up to ΣREE oxides= 67.9 wt%.
- (b)
- Whole-fraction contents of V2O5 (up to 0.36 wt%) and ZrO2 (0.6 wt%) in black sand are correlated with magnetite and zircon from mafic and felsic provenances.
- (c)
- FTIR spectra indicate lattice vibrational modes of non-opaque heavy minerals such as Fe-Ca-Mg amphibole. O-H vibrational stretching in the magnetic fraction is attributed to magnetite and Fe-oxyhydroxides such as goethite.
- (d)
- Raman spectra indicates a Verwey transition in magnetite. The Raman shift at 223 cm−1 in the Ti-magnetite represents symmetric vibration of the octahedral O-Ti-O, whereas the at 460 cm−1 shift indicates asymmetric stretching vibration of the Fe-O bond in FeO6 octahedra.
- (e)
- Owing to the dominance of, Fe3+, some wavenumbers (e.g., 226 and 280 nm) in the Uv-Vis-NIR spectra are distinct due to the intrinsic gap between magnetite and its oxidation products.
- (f)
- Finally, the Si4+ transition at 192 nm is attributed to frequent non-opaque minerals in the heavy concentrates such as hornblende and ferrohornblende. Future X-ray photoelectron spectroscopy (XPS) analyses are recommended for the accurate evaluation of Si4+ and Fe cations.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyle, D.K.; Atkinson, V.G.; Sayib, K.A. An Evaluation of Gold Placer Deposits in the Murayjib Region. Open-File-Report by Riofinex, RF-OF-04-28; Ministry of Petroleum and Mineral Resources: Jeddah, Kingdom of Saudi Arabia, 1984. [Google Scholar]
- Surour, A.A.; El-Kammar, A.A.; Arafa, E.H.; Korany, H.M. Dahab stream sediments, southeastern Sinai, Egypt: A potential source of gold, zircon and magnetite. J. Geochem. Explor. 2003, 77, 25–43. [Google Scholar] [CrossRef]
- Surour, A.A.; El-Kammar, A.A.; Arafa, E.H.; Korany, H.M. Mineralogy and geochemistry of fine-grained Dahab stream sediments, Southeastern Sinai, Egypt: Emphasis on the intergrowths of Fe-Ti oxides. Acta Geochim. 2021, 40, 871–894. [Google Scholar] [CrossRef]
- Nasir, S.; Al Sayigh, A.; Al-Safarjalani, A. Sedimentology of the lower Hofuf Formation, Eastern Province of Saudi Arabia, and the chances for gold prospection. Neues Jahrb. Fur Geol. Und Palaontol.-Abh. 2007, 243, 325–342. [Google Scholar] [CrossRef]
- Qadhi, T.M.; Surour, A.A.; Maddah, S.S.; Basyoni, M.H. Mineralogy and economic evaluation of gold-bearing stream sediments from Wadi Al Hamd area, northwestern Saudi Arabia. Ann. Geol. Surv. Egypt. 2007, 29, 209–236. [Google Scholar]
- Obeid, M.; Ali, M.; Mohamed, N. Geochemical exploration on the stream sediments of Gabal El Mueilha area, Central Eastern Desert, Egypt: An overview on the rare metals. Resour. Geol. 2008, 51, 217–227. [Google Scholar] [CrossRef]
- Darwish, M.A.G.; Poellmann, H. Geochemical exploration for gold in the Nile Valley Block (A) area, Wadi Allaqi, South Egypt. Geochemistry 2010, 70, 353–362. [Google Scholar] [CrossRef]
- El-Makky, A.M.; Sediek, K.N. Stream sediments geochemical exploration in the Northwestern part of Wadi Allaqi Area, south Eastern Desert, Egypt. Nat. Resour. Res. 2012, 21, 95–115. [Google Scholar] [CrossRef]
- Moufti, A.M.B. Opaque mineralogy and resource potential of placer gold in the stream sediments between Duba and Al Wajh, Red Sea coast, northwestern Saudi Arabia. J. Afr. Earth Sci. 2014, 99, 188–201. [Google Scholar] [CrossRef]
- Abdel-Karim, A.M.; Zaid, S.M.; Moustafa, M.I.; Barakat, M.G. Mineralogy, chemistry and radioactivity of the heavy minerals in the black sands, along the northern coast of Egypt. J. Afr. Earth Sci. 2016, 123, 10–20. [Google Scholar] [CrossRef]
- Abdel-Karim, A.M.; Moustafa, M.I.; El-Afandy, A.H.; Barakat, M.G. Mineralogy, chemical chcaracteristics and upgrading of beach ilmenite of the top meter of black sand deposits of the Kafr Al-Sheikh Governorate, Northern Egypt. Acta Geol. Sin.-Engl. Ed. 2017, 91, 1326–1338. [Google Scholar] [CrossRef]
- Darwish, M.A.G. Geochemical Stream Sediment Survey in the Wadi Umm Rilan Area, South Eastern Desert, Egypt: A new occurrence for gold mineralisation. Acta Geol. Sin.-Engl. Ed. 2017, 91, 1041–1062. [Google Scholar] [CrossRef]
- El-Kammar, A.; El-Wakil, M.; Abd El-Rahman, Y.; Fathy, M.; Abdel-Azeem, M. Stream sediment geochemical survey of rare elements in an arid region of the Hamadat area, central Eastern Desert, Egypt. Ore. Geol. Rev. 2020, 117, 103287. [Google Scholar] [CrossRef]
- Dawood, Y.H.; Abd El-Naby, H.H. Mineral chemistry of monazite from the black sand deposits, northern Sinai, Egypt: A provenance perspective. Miner. Mag. 2007, 71, 389–406. [Google Scholar] [CrossRef]
- Abdel-Karim, A.M.; El-Shafey, A. Mineralogy and chemical distribution study of placer cassiterite and some associated new recorded minerals, east Rosetta, Egypt. Arab. J. Geosci. 2012, 5, 807–816. [Google Scholar] [CrossRef]
- Young, S.M.; Pitawala, A.; Ishig, H. Geochemical characteristics of stream sediments, sediment fractions, soils, and basement rocks from the Mahaweli River and its catchment, Sri Lanka. Chem. Erde. 2013, 73, 357–371. [Google Scholar] [CrossRef]
- Kirkwood, C.; Everett, P.; Ferreira, A.; Lister, B. Stream sediment geochemistry as a tool for enhancing geological understanding: An overview of new data from south west England. J. Geochem. Explor. 2016, 163, 28–40. [Google Scholar] [CrossRef]
- El Aref, M.; Abd El-Rahman, Y.; Zoheir, B.; Surour, A.; Helmy, H.; Abdelnasser, A.; Ahmed, A.; Ibrahim, M. Mineral Resources in Egypt (I): Metallic Ores. In The Geology of Egypt; Hamimi, Z., El-Barkooky, A., Martínez Frías, J., Fritz, H., Abd El-Rahman, Y., Eds.; Springer: Cham, Switzerland, 2020; pp. 521–587. [Google Scholar]
- Almalki, K.A.; Al Mosallam, M.S.; Aldaajani, T.; Al-Namazi, A.A. Landforms characterization of Saudi Arabia: Towards a geomorphological map. Intern. J. Appl. Earth Observ. Geoinform. 2022, 112, 102945. [Google Scholar] [CrossRef]
- Alqahtani, F.A.; Khalil, M.K. Geochemical analysis and tectonic evaluation of the Miocene-Pliocene sequence at Al Rehaili area, Northern Jeddah, Saudi Arabia. Arab. J. Geosci. 2019, 12, 323. [Google Scholar] [CrossRef]
- Alqahtani, F.; Khalil, M. Geochemical analysis for evaluating the paleoweathering, paleoclimate, and depositional environments of the siliciclastic Miocene-Pliocene sequence at Al-Rehaili area, Northern Jeddah, Saudi Arabia. Arab. J. Geosci. 2021, 14, 239. [Google Scholar] [CrossRef]
- Pearse, R.W.B.; Gaydon, A.G. The Identification of Molecular Spectra; Chapman and Hall: London, UK; New York, NY, USA, 1976. [Google Scholar]
- Hawthorne, F.C. Spectroscopic methods in mineralogy and geology. Rev. Min. 1988, 18, 698. [Google Scholar]
- Rinaudo, C.; Cairo, S.; Gastaldi, D.; Gianfagna, A.; Mazziotti Tagliani, S.; Tosi, G.; Conti, C. Characterization of fluoro-edenite by μ-Raman and μ-FTIR spectroscopy. Min. Mag. 2006, 70, 291–298. [Google Scholar] [CrossRef]
- Iezzi, G.; Della Ventura, G.; Bellatreccia, F.; Lomastro, S.; Bandli, B.R.; Gunter, M.E. Site occupancy in richterite-winchite from Libby, Montana USA, by FTIR spectroscopy. Min. Mag. 2007, 71, 93–104. [Google Scholar] [CrossRef]
- Henderson, G.S.; Neuville, D.R.; Downs, R.T. Spectroscopic methods. Rev. Min. Geochem. 2014, 78, 800. [Google Scholar]
- Andò, S.; Grazanti, E. Raman spectroscopy in heavy-mineral studies. In Sediment Provenance Studies in Hydrocarbon Exploration and Production; Scott, R.A., Smyth, H.R., Morton, A.C., Richardson, N., Eds.; Geological Society, Special Publications: London, UK, 2014; Volume 386, pp. 395–412. [Google Scholar]
- Aceto, M.; Cala, E.; Gulino, F.; Gullo, F.; Labate, M.; Agostino, A.; Picollo, M. The use of UV-Visible diffuse reflectance spectrophotometry for a fast, preliminary authentication of gemstones. Molecules 2022, 27, 4716. [Google Scholar] [CrossRef]
- Nehlig, P.; Genna, A.; Asfirane, A.; Guerrot, C.; Eberlé, J.M.; Kluyver, H.M.; Lasserre, J.L.; Le Goff, E.; Nicol, N.; Salpeteur, N.; et al. A review of the Pan-African evolution of the Arabian Shield. GeoArabia 2002, 27, 103–124. [Google Scholar] [CrossRef]
- Johnson, P.R. Explanatory notes to the map of Proterozoic geology of Western Saudi Arabia. Technical Report SGS-TR-2006-4. 2006, 62p. Available online: https://faculty.ksu.edu.sa/sites/default/files/Explanatory%20notes%20for%20the%20shield%20SGS-TR-2006-4.pdf (accessed on 30 May 2024).
- Moufti, A.M.B. Mineralogy and mineral chemistry of auriferous stream sediments from Al Wajh area, NW Saudi Arabia. Arab. J. Geosci. 2009, 2, 1–17. [Google Scholar] [CrossRef]
- Davies, F.B. Explanatory Notes on the Geologic Map of Al Wajh Quadrangle, Sheet 26 B; Ministry of Petroleum and Mineral Resources, Deputy Ministry for Mineral Resources: Jeddah, Kingdom of Saudi Arabia, 1985; 27p. [Google Scholar]
- Grammatikopoulos, T.; Mcken, A.; Hamilton, C.; Christiansen, O. A vanadium-bearing magnetite and ilmenite mineralization and beneficiation from the Sinarsuk V-Ti project, West Greenland. Cim. Bull. 2002, 95, 87–95. [Google Scholar]
- Wu, B.; Cao, J.; Tang, Y.; Zou, J.; Yu, Z. Geological features of the vandium-titanium-magnetite deposit in the Hongge area and its geophysical prospecting. Geol. Explor. 2012, 48, 140–147. [Google Scholar]
- Abdel-Karim, A.M.; Barakat, M.G. Separation, upgrading, and mineralogy of placer magnetite in the black sands, northern coast of Egypt. Arab. J. Geosci. 2017, 10, 298. [Google Scholar] [CrossRef]
- Lee, S. A review on types of vanadium deposits and process mineralogical characteristics. J. Korean Soc. Min. Energy Resour. Engin. 2020, 57, 640–651. [Google Scholar] [CrossRef]
- Khedr, M.Z.; Zaghloul, H.; Takazawa, E.; El-Nahas, H.; Azer, M.K.; El-Shafei, S.A. Genesis and evaluation of heavy minerals in black sands: A case study from the southern Eastern Desert of Egypt. Geochemistry 2023, 83, 125945. [Google Scholar] [CrossRef]
- Habtoor, A.; Ahmed, A.H.; Harbi, H. Petrogenesis of the Alaskan-type mafic-ultramafic complex in the Makkah quadrangle, western Arabian Shield, Saudi Arabia. Lithos 2016, 263, 33–51. [Google Scholar] [CrossRef]
- Surour, A.A.; Ahmed, A.H.; Harbi, H.M. Mineral chemistry as a tool for understanding the petrogenesis of Cryogenian (arc-related) Ediacaran (post-collisional) gabbros in the western Arabian Shield of Saudi Arabia. Int. J. Earth Sci. (Geol. Rundsch) 2017, 106, 1597–1617. [Google Scholar] [CrossRef]
- Gahlan, H.A.; Azer, M.K.; Al-Hashim, M.H.; Osman, M.S.M. New insights and constraints on the Late Neoproterozoic post-collisional mafic magmatism in the Arabian Shield, Saudi Arabia. Lithos 2023, 436, 106989. [Google Scholar] [CrossRef]
- Abdel-Karim, A.M. Petrographic and chemical characterization of Fe-Ti oxides and sulfides hosted in mafic intrusions, south Sinai, Egypt: Implication for genesis. J. Geol. Min. Res. 2009, 1, 067–093. [Google Scholar]
- Khedr, M.Z.; Takazawa, E.; Arai, S.; Stern, R.J.; Morishita, T.; El-Awady, A. Styles of Fe-Ti-V ore deposits in the Neoproterozoic layered mafic-ultramafic intrusions, south Eastern Desert of Egypt: Evidence for fractional crystallization of V-rich melts. J. Afr. Earth Sci. 2022, 194, 104620. [Google Scholar] [CrossRef]
- Najorka, J.N.; Gottschalk, M.; Franz, G.; Heinrich, W. Ca-Sr distribution among amphibole, clinopyroxene, and chloride-bearing solutions. Am. Mineral. 1999, 84, 596–606. [Google Scholar] [CrossRef]
- Eldougdoug, A.; Abd El-Rahman, Y.; Harbi, H. The Ediacaran post-collisional Khamal gabbro-anorthosite complex from the Arabian Shield and its Fe-Ti-P ore: An analogy to Proterozoic massif-type anorthosites. Lithos 2020, 372, 105674. [Google Scholar] [CrossRef]
- Broska, I.; Harlov, D.; Tropper, P.; Siman, P. Formation of magmatic titanite and titanite–ilmenite phase relations during granite alteration in the Tribeč Mountains, Western Carpathians, Slovakia. Lithos 2007, 95, 58–71. [Google Scholar] [CrossRef]
- Angiboust, S.; Harlov, D. Ilmenite breakdown and rutile-titanite stability in metagranitoids: Natural observations and experimental results. Am. Mineral. 2017, 102, 1696–1708. [Google Scholar] [CrossRef]
- Moustafa, M.I. Mineralogy and Beneficiation of Some Economic Minerals in the Egyptian Black Sands. Ph.D. Thesis, Mansoura University, Mansoura, Egypt, 1999. [Google Scholar]
- Al Safarjalani, A.M. Placer Gold Deposits in the Hofuf Formation, the Eastern Province of Saudi Arabia; Research Project No. 4022; King Faisal University: Riyadh, Kingdom of Saudi Arabia, 2004; 99p. [Google Scholar]
- Moufti, A.M.B.; Qadhi, T.M. Abnormal concentrations of boron, gold and heavy metals in the Pleistocene and Recent terraces at Wadi Al Hamd, northwestern KSA. J. King Abdulaziz Univ. Earth Sci. Sect. 2009, 20, 67–91. [Google Scholar] [CrossRef]
- Abd El-Naby, H.H.; Dawood, Y.H. Testing the validity of detrital zircon chemistry as a provenance indicator. Arab. J. Geosci. 2014, 7, 341–353. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Kinny, P.D.; Wyborn, D.; Chappell, B.W. Identifying accessory mineral saturation during differentiation in granitoid magmas: An integrated approach. J. Petrol. 2000, 41, 1365–1396. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.I. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Miner. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Darby, D.A.; Tsang, Y.W. Variation in ilmenite element composition within and among drainage basins: Implications for provenance. J. Sed. Petrol. 1987, 57, 831–838. [Google Scholar]
- Ramdohr, P. The Ore Minerals and Their Intergrowths; Pergamon Press: Oxford, UK, 1980; 1207p. [Google Scholar]
- Rao, D.S.; Murthy, G.V.S.; Rao, K.V.; Das, D.; Chintalapudi, S.N. Alteration characteristics of beach placer ilmenite from Chatrapur coast, Orissa, India. J. Appl. Geochem. 2002, 4, 47–59. [Google Scholar]
- Pownceby, M.I. Alteration and associated impurity element enrichment in detrital ilmenites from the Murray Basin, southeast Australia: A product of multistage alteration. Austr. J. Earth Sci. 2010, 57, 243–258. [Google Scholar] [CrossRef]
- Haggerty, S.E. Opaque mineral oxides in terrestrial igneous rocks. In Oxide Minerals; Rumble, D., Ed.; Walter de Gruyter GmbH: Berlin, Germany, 1976; pp. 101–300. [Google Scholar]
- Reynolds, I.M. The iron-titanium oxide mineralogy of Karoo dolerite in the eastern Cape and southern Orange Free State. Trans. Geol. Soc. South Africa 1983, 86, 211–220. [Google Scholar]
- Geissman, J.W.; Strangway, D.W.; Tasillo-Hirt, A.M.; Jensen, I.S. Paleomaenetism of Late Archean metavolcanics and metasediments Abitibi orogen, Canada: Tholeiites of the Kinojevrs Group. Can. Earth Sci. 1983, 20, 436–461. [Google Scholar] [CrossRef]
- Cassidy, K.F.; Groves, D.I.; Binns, R.A. Manganoan ilmenite formed during regional metamorphism of Archean mafic and ultramagic rocks from Western Australia. Can. Mineral. 1988, 26, 999–1012. [Google Scholar]
- Surour, A.A.; Moufti, A.M.B. Opaque mineralogy as a tracer the magmatic history of volcanic rocks: An example from the Neogene-Quaternary Harrat Rahat intercontinental volcanic field, north western Saudi Arabia. Acta Geol. Sin.-Engl. Ed. 2013, 87, 1281–1305. [Google Scholar] [CrossRef]
- Ross, S.D. Inorganic Infrared and Raman Spectra; McGraw-Hill Book Company Ltd.: London, UK, 1972; 414p. [Google Scholar]
- Bouchard, M.; Smith, D.C. Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochim Acta Part A 2003, 59, 2247–2266. [Google Scholar] [CrossRef]
- Petriglieri, J.R.; Bersani, D.; Andò, S.; Lottici, P.P. Identification of impurities in gemological materials by means of photoluminescence using micro-Raman apparatus. In Proceedings of the GeoRaman Xth Meeting, Nancy, France, 11–13 June 2012. Extend Abstract. [Google Scholar]
- Durie, R.A.; Rosevear, P. A Study of the Potential of Infrared Spectroscopy for the Rapid Identification and Estimation of Minerals in Beach Sands and Their Concentrate; Investigation Report No. 85; Commonwealth Scientific and Industrial Research Organization, Division of Mineral Chemistry: Sydney, NSW, Australia, 1970; 28p. [Google Scholar]
- Bower, D.; Misra, P.; Peterson, M.; Howard, M.; Hewagama, T.; Gorius, N.; Li, S.; Asalam, S.; Livengood, T.; McAdam, K.J. Comparative VIS and NIR Raman and FTIR spectroscopy of lunar analog samples. In Proceedings of the Europlanet Science Conference, Madrid, Spain, 23–28 September 2012. EPSC Volume 14, Extended Abstract No 427. [Google Scholar]
- Andrut, M.; Gottschalk, M.; Melzer, S.; Najorka, J. Lattice vibrational modes in synthetic tremolite-Sr-tremolite and tremolite-richterite solid solutions. Phys. Chem. Miner. 2000, 27, 301–309. [Google Scholar] [CrossRef]
- Reig, F.B.; Adelantado, J.V.G.; Moya Moreno, M.C.M. FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method: Application to geological samples. Talanta 2002, 58, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Della Ventura, G.; Vigliaturo, R.; Gieré, R.; Pollastri, S.; Gualtieri, A.F.; Iezzi, G. FTIR spectroscopy of the regulated asbestos amphiboles. Minerals 2018, 8, 413. [Google Scholar] [CrossRef] [PubMed]
- Betancur, A.F.; Pérez, F.R.; Correa, M.M.; Barrero, C.A. Quantitative aproach in iron oxides and oxihydroxides by vibrational analysis. Opt. Pura Y Apl. 2012, 45, 269–275. [Google Scholar] [CrossRef]
- Veneranda, M.; Aramendia, J.; Bellot-Gurlet, L.; Colomban, P.; Castro, K.; Madariaga, J.M. FTIR spectroscopic semi-quantification of iron phases: A new method to evaluate the protection ability index (PAI) of archaeological artefacts corrosion systems. Corros. Sci. 2018, 133, 68–77. [Google Scholar] [CrossRef]
- Ruran, H.D.; Frost, R.L.; Kloprogge, J.T. The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite. Spectrochim Acta Part A Mol. Biomol. Spectrosc. 2001, 57, 2575–2586. [Google Scholar] [CrossRef]
- Omran, M.; Fabritius, T.; Elmahdy, A.M.; Abdel-Khalek, N.A.; El-Aref, M.; Elmanawi, A. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore. Appl. Surf. Sci. 2015, 345, 127–140. [Google Scholar] [CrossRef]
- Bertie, J.E. Lattice modes of molecular crystals. In Analytical Applications of FT-IR to Molecular and Biological Systems; Durig, J.R., Ed.; NATO Advanced Study Institutes Series Springer: Dordrecht, Netherlands, 1980; Volume 57, pp. 433–465. [Google Scholar]
- Degiorgi, L.; Blatter-Merke, I.; Wachter, P. Magnetite: Phonon modes and the Verwey transition. Phys. Rev. B-Conden Matter Mater Phys. 1987, 35, 5421. [Google Scholar] [CrossRef]
- Gasparov, L.V.; Tanner, D.B.; Romero, D.B.; Berger, H.; Margaritondo, G.; Forro, L. Infrared and Raman studies of the Verwey transition in magnetite. Phys Rev B-Conden. Matter Mater Phys. 2000, 62, 7939–7944. [Google Scholar] [CrossRef]
- Shebanova, O.L.; Lazor, P. Raman spectroscopic study of magnetite (FeFe2O4): A new assignment for the vibrational spectrum. J. Solid State Chem. 2003, 174, 424–430. [Google Scholar] [CrossRef]
- Shebanova, O.L.; Lazor, P. Raman study of magnetite (Fe3O4): Laser-induced thermal effects and oxidation. J. Raman Spectrosc. 2003, 34, 845–852. [Google Scholar] [CrossRef]
- Graves, P.R.; Johnston, C.; Campaniello, J.J. Raman scattering in spinel structure ferrites. Mater Res. Bull. 1988, 23, 1651–1660. [Google Scholar] [CrossRef]
- Baddour-Hadjean, R.; Pereira-Ramos, J.-P. Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem. Rev. 2010, 110, 1278–1319. [Google Scholar] [CrossRef]
- Wang, A.; Kuebler, K.E.; Jolliff, B.L.; Haskin, L.A. Raman spectroscopy of Fe-Ti-Cr-oxides, case study: Martian meteorite EETA79001. Am. Mineral. 2004, 89, 665–680. [Google Scholar] [CrossRef]
- Zinin, P.; Tatsumi-Petrochilos, L.; Bonal, L.; Acosta, T.; Hammer, J.; Gilder, S.; Fuller, M. Raman spectroscopy of titanomagnetites: Calibration of the intensity of Raman peaks as a sensitive indicator for their Ti content. Am. Mineral. 2011, 96, 1537–1547. [Google Scholar] [CrossRef]
- Beattie, I.R.; Gilson, T.R. The single-crystal Raman spectra of nearly opaque materials. Iron(III) oxide and chromium(III) oxide. J. Chem. Soc. A Inorg. Phys. Chem. 1970, 5, 980–986. [Google Scholar] [CrossRef]
- Chamritski, I.; Burns, G. Infrared- and Raman-active phonons of magnetite, maghemite, and hematite: A computer simulation and spectroscopic study. J. Phys. Chem. B 2005, 109, 4965–4968. [Google Scholar] [CrossRef]
- McCarty, K.F. Inelastic light scattering in α-Fe2O3: Phonon vs. magnon scattering. Solid State Commun. 1988, 68, 799–802. [Google Scholar] [CrossRef]
- Massey, M.J.; Baier, U.; Weber, W.H. Effects of pressure and isotopic substitution on the Raman spectrum of α-Fe2O3: Identification of two-magnon scattering. Phys. Rev. B-Conden Matter Mater Phys. 1990, 41, 7822–7827. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.-H.; Duffy, T.S. Raman spectroscopy of Fe2O3 to 62 GP. Am. Mineral. 2002, 87, 318–326. [Google Scholar] [CrossRef]
- Muralha, V.S.F.; Rehen, T.; Clark, R.J.H. Characterisation of iron smelting slag from Zimbabwe by Raman spectroscopy and electron beam analysis. J. Raman Spectrosc. 2011, 42, 2077–2084. [Google Scholar] [CrossRef]
- De Faria, D.L.A.; Silva, S.V.; de Oliveira, M.T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878. [Google Scholar] [CrossRef]
- Sbroscia, M.; Della Ventura, G.; Iezzi, G.; Sodo, A. Quantifying the A-site occupancy in amphiboles: A Raman study in the OH-stretching region. Eur. J. Mineral. 2018, 30, 429–436. [Google Scholar] [CrossRef]
- Maftei, A.E.; Buzatu, A.; Damian, G.; Buzgar, N.; Dill, H.; Apopei, A.L. Micro-Raman—A tool for the heavy mineral analysis of gold placer-type deposits (Pianu Valley, Romania). Minerals 2020, 10, 988. [Google Scholar] [CrossRef]
- Stanish, E.A.; Turenne, N.N.; Connell, S.A.; Cloutis, E.A.; Applin, D.M. Single grain spectroscopic analysis of olivine, pyroxene and ilmenite. In Proceedings of the 51st Annual Lunar and Planetary Science Conference, Woodlands, TX, USA, 16–20 March 2020. Extended Abstract #2261. [Google Scholar]
- Takai, Z.I.; Mostafa, M.K.; Asman, S.; Sekak, K.A. Preparation and characterization of magnetite (Fe3O4) nanoparticles by Sol-Gel method. Intern. J. Nanoelectron Mater 2019, 12, 37–46. [Google Scholar]
Site # | Location | Identification | Size Fraction | Heavy Minerals Content | |
---|---|---|---|---|---|
Heavy Minerals % | Opaque % | ||||
TH1 | 26°39′55″ N 36°10′59″ E | Beach black sand | 63–125 μm | 14.3 | 53 |
TH1 | 26°39′55″ N 36°10′59″ E | Beach black sand | 125–250 μm | 14.3 | 55 |
TH2 | 26°39′55″ N 36°10′59″ E | Beach black sand | 125–250 μm | 13.7 | 57 |
TH3 | 26°45′39″ N 36°18′48″ E | Wadi alluvium | 63–125 μm | 4.7 | 35 |
MH1 | 26°13′31″ N 36°40′59″ E | Wadi alluvium | 63–125 μm | 3.9 | 30 |
HR1 | 26°27′53″ N 36°28′14″ E | Wadi alluvium | 125–250 μm | 8.6 | 28 |
Sample No. * | TH1 | TH2 | TH5 | TH4 | MH6 | RH3 |
---|---|---|---|---|---|---|
Major oxides (wt%) | ||||||
SiO2 | 28 | 34.4 | 23.8 | 36.3 | 38.8 | 36.7 |
TiO2 | 10.5 | 9.4 | 13.7 | 4.3 | 4 | 4.3 |
Al2O3 | 7.7 | 8 | 6.7 | 9.9 | 13.3 | 12.1 |
Fe2O3t ** | 36 | 31 | 40.2 | 33.1 | 28.2 | 33.7 |
CaO | 10.7 | 12.1 | 8 | 9.4 | 9.1 | 6.6 |
MnO | 0.8 | 0.7 | 0.99 | 0.7 | 0.7 | 0.5 |
K2O | 0.6 | 0.7 | 0.5 | 1 | 1 | 1.1 |
P2O5 | 0.9 | 0.6 | 0.9 | 1.1 | 1 | 0.8 |
Total *** | 95.2 | 96.9 | 94.7 | 95.1 | 96.1 | 95.8 |
Minor oxides (wt%) | ||||||
RbO | 0.02 | 0.01 | n.d. | 0.01 | 0.03 | 0.01 |
BaO | n.d. | n.d. | 0.31 | n.d. | n.d. | n.d. |
SrO | 0.18 | 0.22 | 0.13 | 0.14 | 0.13 | 0.11 |
Cr2O3 | 0.18 | n.d. | n.d. | n.d. | n.d. | n.d. |
CoO | n.d. | n.d. | n.d. | n.d. | n.d. | 0.4 |
NiO | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
V2O5 | 0.36 | n.d. | 0.34 | n.d. | n.d. | n.d. |
ZrO2 | 0.14 | 0.09 | 0.57 | 0.26 | 0.08 | 0.09 |
Nb2O5 | 0.04 | 0.03 | 0.04 | 0.03 | 0.01 | 0.01 |
ZnO | 0.05 | 0.04 | 0.04 | 0.05 | 0.06 | 0.02 |
MoO3 | 0.02 | n.d. | n.d. | n.d. | 0.02 | n.d. |
CdO | 0.01 | 0.01 | n.d. | n.d. | n.d. | n.d. |
HgO | 0.01 | n.d. | n.d. | 0.01 | 0.01 | 0.01 |
Total | 1.02 | 0.41 | 1.44 | 0.51 | 0.35 | 0.66 |
Non-Opaque Minerals | |||||||||||||||
Monazite | Zircon | ||||||||||||||
P2O5 | 18.9 | 16 | 22.7 | 24.6 | 23 | SiO2 | 42.1 | 39.5 | 37.5 | 35.1 | 32.7 | 44.9 | 28.8 | 26 | |
Al2O3 | 5.4 | 8.6 | n.d. * | 9.2 | n.d. | ZrO2 | 52.6 | 48.4 | 57.1 | 61.2 | 59 | 46.9 | 33.7 | 38.5 | |
SiO2 | 7 | 11.7 | 3.7 | 5.6 | 2.2 | HfO2 | 5.6 | 3.6 | 5.4 | 3.7 | 5.5 | 3.8 | 7.7 | 3.8 | |
ThO2 | 10.5 | 6.3 | 3.6 | 6 | 4.1 | ThO2 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 17.5 | 16.1 | |
UO2 | 2.3 | 1.3 | 1.2 | 3.1 | 1.1 | UO2 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 5.8 | 7.2 | |
CaO | 2.4 | 1.1 | 4.4 | 3.8 | 1.6 | FeO ** | n.d. | 5.4 | n.d. | n.d. | 2.8 | 4.5 | 2.4 | 5 | |
FeO ** | 1.6 | 3.8 | 3.3 | 2.7 | n.d. | CaO | n.d. | 3.2 | n.d. | n.d. | n.d. | n.d. | 4.1 | 3.5 | |
REE Oxides | 52 | 51.4 | 61.1 | 45.3 | 67.9 | ||||||||||
Opaque Minerals | |||||||||||||||
Mn-free ilmenite | Mn-bearing ilmenite | ||||||||||||||
TiO2 | 41.9 | 40.2 | 48.6 | 39.9 | 48.2 | 46.2 | 45.8 | TiO2 | 43 | 367 | 45.5 | ||||
FeO ** | 58.1 | 59.8 | 51.4 | 37.3 | 41.2 | 43.2 | 45.2 | FeO ** | 51.5 | 58.5 | 50.6 | ||||
SiO2 | n.d. | n.d. | n.d. | 12.1 | 6.8 | 6 | 5.1 | MnO | 5.5 | 4.5 | 3.9 | ||||
CaO | n.d. | n.d. | n.d. | 10.7 | 3.8 | 4.6 | 3.8 | ||||||||
Ti-bearing magnetite | |||||||||||||||
FeO + Fe2O3 | 95.8 | 93.1 | 94.5 | ||||||||||||
TiO2 | 4.2 | 6.9 | 5.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surour, A.A.; El-Tohamy, A.M. Characterization of Heavy Minerals and Their Possible Sources in Quaternary Alluvial and Beach Sediments by an Integration of Microanalytical Data and Spectroscopy (FTIR, Raman and UV-Vis). Quaternary 2024, 7, 46. https://doi.org/10.3390/quat7040046
Surour AA, El-Tohamy AM. Characterization of Heavy Minerals and Their Possible Sources in Quaternary Alluvial and Beach Sediments by an Integration of Microanalytical Data and Spectroscopy (FTIR, Raman and UV-Vis). Quaternary. 2024; 7(4):46. https://doi.org/10.3390/quat7040046
Chicago/Turabian StyleSurour, Adel A., and Amira M. El-Tohamy. 2024. "Characterization of Heavy Minerals and Their Possible Sources in Quaternary Alluvial and Beach Sediments by an Integration of Microanalytical Data and Spectroscopy (FTIR, Raman and UV-Vis)" Quaternary 7, no. 4: 46. https://doi.org/10.3390/quat7040046
APA StyleSurour, A. A., & El-Tohamy, A. M. (2024). Characterization of Heavy Minerals and Their Possible Sources in Quaternary Alluvial and Beach Sediments by an Integration of Microanalytical Data and Spectroscopy (FTIR, Raman and UV-Vis). Quaternary, 7(4), 46. https://doi.org/10.3390/quat7040046