Rare Earth Elements in Sediments from the Laptev Sea Shelf: Insight into Sources and Distribution Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sediment Sampling
2.2. Sediment Analysis
2.3. Scanning Electron Microscopy
2.4. REE Parameters and Statistical Analysis
3. Results
3.1. Inner Shelf
3.2. Middle Shelf
3.3. Outer Shelf
4. Discussion
4.1. Rare Earth Elements Distribution and Potential Sources
4.2. Controlling Factors of REE Distribution
5. Conclusions
- (1)
- The ΣREE ranged from 139 ppm to 239 ppm in the studied sediment samples, mainly silt. The NASC-normalized REE distribution patterns were characterized by enriched light REEs compared to heavy REEs, which is similar to that in Lena River SPM. In general, sediments were characterized by no Ce and Eu anomalies, but nearshore and some core sediment samples demonstrated weak or moderate Eu depletions.
- (2)
- Heavy minerals distrust “the grain-size effect” of REE distribution, causing a positive correlation between mean grain size and the total REE content in surface sediments. A weak increase in REE concentrations, accompanied by a decrease in the mean grain size in cores from the outer shelf, can indicate a change in REE occurrence form due to diagenetic alterations. Close correlations between the ∑REE and Ti, V, Cr, Zr, Hf, and Th point to the presence of REEs in heavy minerals, while the strong correlation with Al and K may indicate REEs accumulation in clay minerals. Thus, REE concentrations are primarily controlled by sediment genetic properties.
- (3)
- There were significantly positive correlations only between some individual REE concentrations in core sediments from the middle and outer, implying multiple REE sources. The primary REE sources for the study area were the Lena River SPM and the coast ice complex sediments. The REE composition of sediments depends on the relative contributions of these two sources. Vertical fluctuations of some geochemical indicators apparently reflect the variable dominance of one or another REE source during sediment accumulation.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobrovolsky, A.D.; Zalogin, B.S. Morya SSSR; Moscow State University: Moscow, Russia, 1982. [Google Scholar]
- Cai, Q.; Wang, J.; Beletsky, D.; Overland, J.; Ikeda, M.; Wan, L. Accelerated Decline of Summer Arctic Sea Ice during 1850–2017 and the Amplified Arctic Warming during the Recent Decades. Environ. Res. Lett. 2021, 16, 034015. [Google Scholar] [CrossRef]
- Ward, R.D. Sedimentary Response of Arctic Coastal Wetlands to Sea Level Rise. Geomorphology 2020, 370, 107400. [Google Scholar] [CrossRef]
- Are, F.E. The Role of Coastal Retreat for Sedimentation in the Laptev Sea. In Land-Ocean Systems in the Siberian Arctic: Dynamics and History; Springer: Berlin/Heidelberg, Germany, 1999; pp. 288–295. [Google Scholar] [CrossRef]
- Bauch, H.A.; Mueller-Lupp, T.; Taldenkova, E.; Spielhagen, R.F.; Kassens, H.; Grootes, P.M.; Thiede, J.; Heinemeier, J.; Petryashov, V.V. Chronology of the Holocene Transgression at the North Siberian Margin. Glob. Planet. Chang. 2001, 31, 125–139. [Google Scholar] [CrossRef]
- Rusakov, V.Y.; Borisov, A.P. Sedimentation on the Siberian Arctic Shelf as an Indicator of the Arctic Hydrological Cycle. Anthropocene 2023, 41, 100370. [Google Scholar] [CrossRef]
- Rachold, V.; Alabyan, A.; Hubberten, H.W.; Korotaev, V.N.; Zaitsev, A.A. Sediment Transport to the Laptev Sea—Hydrology and Geochemistry of the Lena River. Polar Res. 1996, 15, 183–196. [Google Scholar] [CrossRef]
- Rachold, V.; Eicken, H.; Gordeev, V.V.; Grigoriev, M.N.; Hubberten, H.-W.; Lisitzin, A.P.; Shevchenko, V.P.; Schirrmeister, L. Modern Terrigenous Organic Carbon Input to the Arctic Ocean. In The Organic Carbon Cycle in the Arctic Ocean; Springer: Berlin/Heidelberg, Germany, 2004; pp. 33–55. [Google Scholar] [CrossRef]
- Viscosi-Shirley, C.; Mammone, K.; Pisias, N.; Dymond, J. Clay Mineralogy and Multi-Element Chemistry of Surface Sediments on the Siberian-Arctic Shelf: Implications for Sediment Provenance and Grain Size Sorting. Cont. Shelf Res. 2003, 23, 1175–1200. [Google Scholar] [CrossRef]
- Feng, D.; Gleason, C.J.; Lin, P.; Yang, X.; Pan, M.; Ishitsuka, Y. Recent Changes to Arctic River Discharge. Nat. Commun. 2021, 12, 6917. [Google Scholar] [CrossRef] [PubMed]
- Frederick, J.; Mota, A.; Tezaur, I.; Bull, D. A Thermo-Mechanical Terrestrial Model of Arctic Coastal Erosion. J. Comput. Appl. Math. 2021, 397, 113533. [Google Scholar] [CrossRef]
- Lisitzin, A.P. Oceanic Sedimentation: Lithology and Geochemistry; American Geophysical Union: Washington, DC, USA, 2013. [Google Scholar]
- Nielsen, D.M.; Pieper, P.; Barkhordarian, A.; Overduin, P.; Ilyina, T.; Brovkin, V.; Baehr, J.; Dobrynin, M. Increase in Arctic Coastal Erosion and Its Sensitivity to Warming in the Twenty-First Century. Nat. Clim. Chang. 2022, 12, 263–270. [Google Scholar] [CrossRef]
- Reimnitz, E.; Dethleff, D.; Nürnberg, D. Contrasts in Arctic Shelf Sea-Ice Regimes and Some Implications: Beaufort Sea versus Laptev Sea. Mar. Geol. 1994, 119, 215–225. [Google Scholar] [CrossRef]
- Timmermans, M.-L.; Marshall, J. Understanding Arctic Ocean Circulation: A Review of Ocean Dynamics in a Changing Climate. J. Geophys. Res. Oceans 2020, 125, e2018JC014378. [Google Scholar] [CrossRef]
- Eicken, H.; Reimnitz, E.; Alexandrov, V.; Martin, T.; Kassens, H.; Viehoff, T. Sea-Ice Processes in the Laptev Sea and Their Importance for Sediment Export. Cont. Shelf Res. 1997, 17, 205–233. [Google Scholar] [CrossRef]
- Polyak, L.; Alley, R.B.; Andrews, J.T.; Brigham-Grette, J.; Cronin, T.M.; Darby, D.A.; Dyke, A.S.; Fitzpatrick, J.J.; Funder, S.; Holland, M.; et al. History of Sea Ice in the Arctic. Quat. Sci. Rev. 2010, 29, 1757–1778. [Google Scholar] [CrossRef]
- Wegner, C.; Wittbrodt, K.; Hölemann, J.A.; Janout, M.A.; Krumpen, T.; Selyuzhenok, V.; Novikhin, A.; Polyakova, Y.; Krykova, I.; Kassens, H.; et al. Sediment Entrainment into Sea Ice and Transport in the Transpolar Drift: A Case Study from the Laptev Sea in Winter 2011/2012. Cont. Shelf Res. 2017, 141, 1–10. [Google Scholar] [CrossRef]
- Henderson, P. General Geochemical Properties and Abundances of the Rare Earth Elements. Rare Earth Elem. Geochem. 1984, 2, 1–32. [Google Scholar] [CrossRef]
- Sholkovitz, E.R. The Aquatic Chemistry of Rare Earth Elements in Rivers and Estuaries. Aquat. Geochem. 1995, 1, 1–34. [Google Scholar] [CrossRef]
- Tyler, G. Rare Earth Elements in Soil and Plant Systems—A Review. Plant Soil 2004, 267, 191–206. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Wall, F. Rare Earth Elements: Minerals, Mines, Magnets (and More). Elements 2012, 8, 333–340. [Google Scholar] [CrossRef]
- McLennan, S.M.; Ross Taylor, S. Geology, Geochemistry and Natural Abundances. In Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; ISBN 9781119951438. [Google Scholar]
- Fleet, A.J. Aqueous and Sedimentary Geochemistry of the Rare Earth Elements. Dev. Geochem. 1984, 2, 343–373. [Google Scholar] [CrossRef]
- Astakhov, A.S.; Sattarova, V.V.; Xuefa, S.; Limin, H.; Aksentov, K.I.; Alatortsev, A.V.; Kolesnik, O.N.; Mariash, A.A. Distribution and Sources of Rare Earth Elements in Sediments of the Chukchi and East Siberian Seas. Polar Sci. 2019, 20, 148–159. [Google Scholar] [CrossRef]
- Fangjian, X.U.; Anchun, L.I.; Tiegang, L.I.; Kehui, X.U.; Shiyue, C. Rare Earth Element Geochemistry in the Inner Shelf of the East China Sea and Its Implication to Sediment Provenances. J. Rare Earths 2011, 29, 702–709. [Google Scholar] [CrossRef]
- Jung, H.; Lim, D.; Choi, J.; Yoo, H.; Rho, K.; Lee, H. Rare Earth Element Compositions of Core Sediments from the Shelf of the South Sea, Korea: Their Controls and Origins. Cont. Shelf Res. 2012, 48, 75–86. [Google Scholar] [CrossRef]
- Liu, H.; Guo, H.; Pourret, O.; Wang, Z.; Sun, Z.; Zhang, W.; Liu, M. Distribution of Rare Earth Elements in Sediments of the North China Plain: A Probe of Sedimentation Process. Appl. Geochem. 2021, 134, 105089. [Google Scholar] [CrossRef]
- Yang, S.Y.; Jung, H.S.; Choi, M.S.; Li, C.X. The Rare Earth Element Compositions of the Changjiang (Yangtze) and Huanghe (Yellow) River Sediments. Earth Planet. Sci. Lett. 2002, 201, 407–419. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, F.; Chen, X.; Zhang, W.; Deng, H. REEs Fractionation and Sedimentary Implication in Surface Sediments from Eastern South China Sea. J. Rare Earths 2012, 30, 614–620. [Google Scholar] [CrossRef]
- McLennan, S.M. Chapter 7. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. In Geochemistry and Mineralogy of Rare Earth Elements; Lipin, B.R., McKay, G.A., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA, 1989; pp. 169–200. ISBN 9781501509032. [Google Scholar]
- Lee, S.-G.; Kim, J.-K.; Yang, D.-Y.; Kim, J.-Y. Rare Earth Element Geochemistry and Nd Isotope Composition of Stream Sediments, South Han River Drainage Basin, Korea. Quat. Int. 2008, 176–177, 121–134. [Google Scholar] [CrossRef]
- Xu, Z.; Lim, D.; Choi, J. Rare Earth Elements in Bottom Sediments of Major Rivers around the Yellow Sea: Implications for Sediment Provenance. Geo-Marine Lett. 2009, 29, 291–300. [Google Scholar] [CrossRef]
- Lim, D.; Jung, H.S.; Choi, J.Y. REE Partitioning in Riverine Sediments around the Yellow Sea and Its Importance in Shelf Sediment Provenance. Mar. Geol. 2014, 357, 12–24. [Google Scholar] [CrossRef]
- Hu, S.; Zeng, Z.; Fang, X.; Zhu, B.; Li, X.; Chen, Z. Rare Earth Element Geochemistry of Sediments from the Southern Okinawa Trough since 3 Ka: Implications for River-Sea Processes and Sediment Source. Open Geosci. 2019, 11, 929–947. [Google Scholar] [CrossRef]
- Ferhaou, S.; Kechiched, R.; Bruguier, O.; Sinisi, R.; Kocsis, L.; Mongelli, G.; Bosch, D.; Ameur-Zaimeche, O.; Laouar, R. Rare Earth Elements plus Yttrium (REY) in Phosphorites from the Tébessa Region (Eastern Algeria): Abundance, Geochemical Distribution through Grain Size Fractions, and Economic Significance. J. Geochem. Explor. 2022, 241, 107058. [Google Scholar] [CrossRef]
- Rachold, V. Major, Trace and Rare Earth Element Geochemistry of Suspended Particulate Material of East Siberian Rivers Draining to the Arctic Ocean. In Land-Ocean Systems in the Siberian Arctic: Dynamics and History; Springer: Berlin/Heidelberg, Germany, 1999; pp. 199–222. [Google Scholar] [CrossRef]
- Laukert, G.; Frank, M.; Bauch, D.; Hathorne, E.C.; Gutjahr, M.; Janout, M.; Hölemann, J. Transport and Transformation of Riverine Neodymium Isotope and Rare Earth Element Signatures in High Latitude Estuaries: A Case Study from the Laptev Sea. Earth Planet. Sci. Lett. 2017, 477, 205–217. [Google Scholar] [CrossRef]
- Sattarova, V.; Astakhov, A.; Aksentov, K.; Shi, X.; Hu, L.; Liu, Y.; Polyakov, D.; Alatortsev, A.; Kolesnik, O. Geochemistry of the Laptev and East Siberian Seas Sediments with Emphasis on Rare-Earth Elements: Application for Sediment Sources and Paleoceanography. Cont. Shelf Res. 2023, 254, 104907. [Google Scholar] [CrossRef]
- Baranov, B.; Galkin, S.; Vedenin, A.; Dozorova, K.; Gebruk, A.; Flint, M. Methane Seeps on the Outer Shelf of the Laptev Sea: Characteristic Features, Structural Control, and Benthic Fauna. Geo-Marine Lett. 2020, 40, 541–557. [Google Scholar] [CrossRef]
- Macdonald, R.W.; Kuzyk, Z.A.; Johannessen, S.C. It Is Not Just about the Ice: A Geochemical Perspective on the Changing Arctic Ocean. J. Environ. Stud. Sci. 2015, 5, 288–301. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. GRADISTAT: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Folk, R.L. The Distinction between Grain Size and Mineral Composition in Sedimentary-Rock Nomenclature. J. Geol. 1954, 62, 344–359. [Google Scholar] [CrossRef]
- Shepard Francis, P. Nomenclature Based on Sand-Silt-Clay Ratios. SEPM J. Sediment. Res. 1954, 24, 151–158. [Google Scholar] [CrossRef]
- Gromet, L.P.; Haskin, L.A.; Korotev, R.L.; Dymek, R.F. The “North American Shale Composite”: Its Compilation, Major and Trace Element Characteristics. Geochim. Cosmochim. Acta 1984, 48, 2469–2482. [Google Scholar] [CrossRef]
- Astakhov, A.S.; Semiletov, I.P.; Sattarova, V.V.; Shi, X.; Hu, L.; Aksentov, K.I.; Vasilenko, Y.P.; Ivanov, M.V. Rare Earth Elements in the Bottom Sediments of the East Arctic Seas of Russia as Indicators of Terrigenous Input. Dokl. Earth Sci. 2018, 482, 1324–1327. [Google Scholar] [CrossRef]
- Chaillou, G.; Anschutz, P.; Lavaux, G.; Blanc, G. Rare Earth Elements in the Modern Sediments of the Bay of Biscay (France). Mar. Chem. 2006, 100, 39–52. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, N.; Chen, H.; Li, L.; Yan, W. The Surface Sediment Types and Their Rare Earth Element Characteristics from the Continental Shelf of the Northern South China Sea. Cont. Shelf Res. 2014, 88, 185–202. [Google Scholar] [CrossRef]
- Gordeev, V.V.; Sidorov, I.S. Concentrations of Major Elements and Their Outflow into the Laptev Sea by the Lena River. Mar. Chem. 1993, 43, 33–45. [Google Scholar] [CrossRef]
- Osadchiev, A.; Medvedev, I.; Shchuka, S.; Kulikov, M.; Spivak, E.; Pisareva, M.; Semiletov, I. Influence of Estuarine Tidal Mixing on Structure and Spatial Scales of Large River Plumes. Ocean Sci. 2020, 16, 781–798. [Google Scholar] [CrossRef]
- Pavlov, V.; Timokhov, L.; Baskakov, G.; Kulakov, M. Hydrometeorological Regime of the Kara, Laptev, and East-Siberian Seas; Applied Physics Laboratory, University of Washington: Washington, DC, USA, 1994. [Google Scholar]
- Alabyan, A.M.; Chalov, R.S.; Korotaev, V.N.; Sidorchuk, A.Y.; Zaitsev, A.A. Natural and Technogenic Water and Sediment Supply to the Laptev Sea. Rep. Polar Res. 1995, 176, 265–271. [Google Scholar]
- Dudarev, O.V.; Charkin, A.N.; Shakhova, N.E.; Mazurov, A.K.; Semiletov, I.P. Modern Lithomorphogenesis in the East Arctic Russian Shelf; Tomsk Polytechnic University: Tomsk, Russia, 2016; ISBN 978-5-4387-0737-0. [Google Scholar]
- Rachold, V.; Grigoriev, M.N.; Are, F.E.; Solomon, S.; Reimnitz, E.; Kassens, H.; Antonow, M. Coastal Erosion vs Riverine Sediment Discharge in the Arctic Shelf Seas. Int. J. Earth Sci. 2000, 89, 450–460. [Google Scholar] [CrossRef]
- Brüchert, V.; Bröder, L.; Sawicka, J.E.; Tesi, T.; Joye, S.P.; Sun, X.; Semiletov, I.P.; Samarkin, V.A. Carbon Mineralization in Laptev and East Siberian Sea Shelf and Slope Sediment. Biogeosciences 2018, 15, 471–490. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. Chapter 79 The Significance of the Rare Earths in Geochemistry and Cosmochemistry. In Two-Hundred-Year Impact of Rare Earths on Science; Handbook on the Physics and Chemistry of Rare Earths; Elsevier: Amsterdam, The Netherlands, 1988; Volume 11, pp. 485–578. [Google Scholar]
- Grigoriev, M.N.; Kunitsky, V.V.; Chzhan, R.V.; Shepelev, V.V. On the Variation in Geocryological, Landscape and Hydrological Conditions in the Arctic Zone of East Siberia in Connection with Climate Warming. Geogr. Nat. Resour. 2009, 30, 101–106. [Google Scholar] [CrossRef]
- Atlas Arktiki; AANII and GUGK: Moscow, Russia, 1985. (In Russian)
- Charette, M.A.; Kipp, L.E.; Jensen, L.T.; Dabrowski, J.S.; Whitmore, L.M.; Fitzsimmons, J.N.; Williford, T.; Ulfsbo, A.; Jones, E.; Bundy, R.M.; et al. The Transpolar Drift as a Source of Riverine and Shelf-Derived Trace Elements to the Central Arctic Ocean. J. Geophys. Res. Oceans 2020, 125, e2019JC015920. [Google Scholar] [CrossRef]
- Gordienko, P.A.; Laktionov, A.F. Circulation and Physics of the Arctic Basin Waters. In Oceanography; Annals of The International Geophysical Year; Gordon, A.L., Baker, F.W.G., Eds.; Pergamon Press: Oxford, UK, 1969; Volume 46, pp. 94–112. ISBN 978-1-4832-1306-4. [Google Scholar]
- Mysak, L.A. Patterns of Arctic Circulation. Science 2001, 293, 1269–1270. [Google Scholar] [CrossRef] [PubMed]
- Kechiched, R.; Laouar, R.; Bruguier, O.; Kocsis, L.; Salmi-Laouar, S.; Bosch, D.; Ameur-Zaimeche, O.; Foufou, A.; Larit, H. Comprehensive REE + Y and Sensitive Redox Trace Elements of Algerian Phosphorites (Tébessa, Eastern Algeria): A Geochemical Study and Depositional Environments Tracking. J. Geochem. Explor. 2020, 208, 106396. [Google Scholar] [CrossRef]
- Bau, M. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contrib. Mineral. Petrol. 1996, 123, 323–333. [Google Scholar] [CrossRef]
- Huang, J.; Wan, S.; Xiong, Z.; Zhao, D.; Liu, X.; Li, A.; Li, T. Geochemical Records of Taiwan-Sourced Sediments in the South China Sea Linked to Holocene Climate Changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 441, 871–881. [Google Scholar] [CrossRef]
- Prego, R.; Caetano, M.; Bernárdez, P.; Brito, P.; Ospina-Alvarez, N.; Vale, C. Rare Earth Elements in Coastal Sediments of the Northern Galician Shelf: Influence of Geological Features. Cont. Shelf Res. 2012, 35, 75–85. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Boston, MA, USA, 1985. [Google Scholar]
- Li, M.; Ouyang, T.; Zhu, Z.; Tian, C.; Peng, S.; Tang, Z.; Qiu, Y.; Zhong, H.; Peng, X. Rare Earth Element Fractionations of the Northwestern South China Sea Sediments, and Their Implications for East Asian Monsoon Reconstruction during the Last 36 Kyr. Quat. Int. 2019, 525, 16–24. [Google Scholar] [CrossRef]
- Mao, L.; Mo, D.; Yang, J.; Guo, Y.; Lv, H. Rare Earth Elements Geochemistry in Surface Floodplain Sediments from the Xiangjiang River, Middle Reach of Changjiang River, China. Quat. Int. 2014, 336, 80–88. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Wang, X.; Hu, L.; Yang, G.; Wang, H.; Bosin, A.A.; Astakhov, A.S.; Shi, X. Early Diagenesis and Accumulation of Redox-Sensitive Elements in East Siberian Arctic Shelves. Mar. Geol. 2020, 429, 106309. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Res. 1996, 79, 37–55. [Google Scholar] [CrossRef]
- Och, L.M.; Müller, B.; Wichser, A.; Ulrich, A.; Vologina, E.G.; Sturm, M. Rare Earth Elements in the Sediments of Lake Baikal. Chem. Geol. 2014, 376, 61–75. [Google Scholar] [CrossRef]
- Lina, S.S.; Fernandes, L.L.; Rao, V.P. Distribution and Fractionation of Rare Earth Elements and Yttrium in Suspended and Bottom Sediments of the Kali Estuary, Western India. Environ. Earth Sci. 2017, 76, 174. [Google Scholar] [CrossRef]
- Möller, P.; Dulski, P.; Luck, J. Determination of Rare Earth Elements in Seawater by Inductively Coupled Plasma-Mass Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 1992, 47, 1379–1387. [Google Scholar] [CrossRef]
Samples | Water Depth, m | Sand, % | Silt, % | Clay, % | Mz, µm | Sediment Type |
---|---|---|---|---|---|---|
AMK-6005 | 15 | 0.1 | 90.9 | 9.0 | 10.9 | Medium silt |
AMK-6006 | 19 | 0.0 | 88.8 | 11.2 | 8.8 | Medium silt |
AMK-6008 | 22 | 0.0 | 89.1 | 10.9 | 10.1 | Medium silt |
AMK-6016 | 40 | 0.2 | 88.6 | 11.2 | 9.1 | Medium silt |
AMK-6027 | 64 | 0.1 | 89.1 | 10.8 | 7.4 | Medium silt |
AMK-6045 | 72 | 0.0 | 86.7 | 13.3 | 7.5 | Medium silt |
AMK-6056 | 62 | 0.0 | 65.2 | 34.8 | 2.9 | Clayey fine silt |
AMK-6058 | 52 | 0.0 | 83.3 | 16.7 | 5.9 | Fine silt |
LV78-21 | 56 | 5.3 | 82.1 | 12.6 | 6.1 | Medium silt |
LV78-23 | 22 | 0.0 | 83.4 | 16.6 | 6.2 | Fine silt |
LV78-29 | 20 | 33.7 | 58.4 | 7.9 | 15.6 | Sandy medium silt |
Sample No | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ΣREE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMK-6005 | 43 | 86 | 9.5 | 37 | 6.96 | 1.3 | 6.3 | 0.76 | 4.3 | 0.79 | 2.3 | 0.39 | 2.2 | 0.32 | 201 |
AMK-6006 | 45 | 88 | 10 | 10 | 7.2 | 1.4 | 6.7 | 0.85 | 4.6 | 0.97 | 2.4 | 0.38 | 2.4 | 0.42 | 210 |
AMK-6008 | 47 | 90 | 10 | 38 | 6.99 | 1.4 | 6.6 | 0.75 | 4.3 | 0.90 | 2.4 | 0.10 | 2.2 | 0.36 | 211 |
AMK-6016 | 45 | 92 | 10 | 37 | 7.6 | 1.4 | 7.4 | 0.83 | 4.5 | 0.80 | 2.6 | 0.41 | 2.3 | 0.39 | 212 |
AMK-6027 | 29 | 60 | 6.5 | 26 | 4.8 | 1.0 | 4.6 | 0.59 | 2.9 | 0.49 | 1.6 | 0.22 | 1.6 | 0.25 | 139 |
AMK-6045 | 34 | 69 | 7.8 | 33 | 5.6 | 1.2 | 5.3 | 0.69 | 3.5 | 0.59 | 2.0 | 0.28 | 1.9 | 0.28 | 165 |
AMK-6056 | 31 | 67 | 7.6 | 28 | 5.3 | 1.1 | 4.6 | 0.71 | 3.2 | 0.51 | 1.9 | 0.30 | 1.7 | 0.27 | 153 |
AMK-6058 | 40 | 80 | 9.5 | 36 | 7.0 | 1.4 | 5.9 | 0.8 | 4.1 | 0.75 | 2.4 | 0.37 | 2.2 | 0.36 | 190 |
LV78-21 | 33 | 68 | 8.2 | 30 | 5.8 | 1.1 | 4.9 | 0.63 | 3.7 | 0.68 | 1.6 | 0.28 | 1.7 | 0.26 | 160 |
LV78-23 | 32 | 67 | 7.6 | 29 | 5.2 | 1.1 | 4.5 | 0.58 | 3.1 | 0.57 | 1.6 | 0.22 | 1.6 | 0.25 | 154 |
LV78-29 | 52 | 100 | 12 | 46 | 8.3 | 1.2 | 6.9 | 0.85 | 4.6 | 0.84 | 2.6 | 0.37 | 2.6 | 0.38 | 239 |
Sample No | LREE/HREE | Eu/Eu* | Ce/Ce* | La/Yb | Gd/Yb | Y/Ho |
---|---|---|---|---|---|---|
AMK-6005 | 10.6 | 0.87 | 0.99 | 1.92 | 1.79 | 27.8 |
AMK-6006 | 10.2 | 0.89 | 0.96 | 1.84 | 1.74 | 24.7 |
AMK-6008 | 10.8 | 0.91 | 0.96 | 2.10 | 1.87 | 25.5 |
AMK-6016 | 10.0 | 0.83 | 1.00 | 1.93 | 1.71 | 26.3 |
AMK-6027 | 10.4 | 0.96 | 1.00 | 1.78 | 1.80 | 28.6 |
AMK-6045 | 10.4 | 0.98 | 0.98 | 1.76 | 1.74 | 28.8 |
AMK-6056 | 10.6 | 0.99 | 1.01 | 1.79 | 1.69 | 27.5 |
AMK-6058 | 10.3 | 0.97 | 0.96 | 1.77 | 1.67 | 26.7 |
LV78-21 | 10.6 | 0.92 | 0.96 | 1.91 | 1.80 | 23.5 |
LV78-23 | 11.4 | 1.01 | 1.00 | 1.97 | 1.76 | 28.1 |
LV78-29 | 11.5 | 0.70 | 0.93 | 1.97 | 1.66 | 28.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruban, A.; Dudarev, O.; Rudmin, M.; Semiletov, I. Rare Earth Elements in Sediments from the Laptev Sea Shelf: Insight into Sources and Distribution Factors. Quaternary 2024, 7, 12. https://doi.org/10.3390/quat7010012
Ruban A, Dudarev O, Rudmin M, Semiletov I. Rare Earth Elements in Sediments from the Laptev Sea Shelf: Insight into Sources and Distribution Factors. Quaternary. 2024; 7(1):12. https://doi.org/10.3390/quat7010012
Chicago/Turabian StyleRuban, Alexey, Oleg Dudarev, Maxim Rudmin, and Igor Semiletov. 2024. "Rare Earth Elements in Sediments from the Laptev Sea Shelf: Insight into Sources and Distribution Factors" Quaternary 7, no. 1: 12. https://doi.org/10.3390/quat7010012
APA StyleRuban, A., Dudarev, O., Rudmin, M., & Semiletov, I. (2024). Rare Earth Elements in Sediments from the Laptev Sea Shelf: Insight into Sources and Distribution Factors. Quaternary, 7(1), 12. https://doi.org/10.3390/quat7010012