Palaeoecological Conditions in the South-Eastern and Western Baltic Sea during the Last Millennium
Abstract
:1. Introduction
2. Study Area
2.1. Arkona Basin
2.2. Bornholm Basin
2.3. Gdansk Basin
3. Materials and Methods
3.1. Grain Size Analysis
3.2. Geochemical Analyses
3.2.1. Loss on Ignition
3.2.2. XRF Analysis
3.3. Microfossil Analysis
3.4. Dating and Age Modelling
4. Results
4.1. Gdansk–Gotland Sill (ABP-43026)
4.2. Gdansk Deep (ABP-43035)
4.3. Gdansk Deep (ABP-43105)
4.4. Bornholm Basin (ABP-44063)
4.5. Arkona Basin (ABP-44059)
4.6. Chronology
5. Discussion
5.1. The Dark Ages
5.2. The Medieval Climatic Anomaly
5.3. The Little Ice Age
5.4. The Modern Warm Period
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohrholz, V.; Naumann, M.; Nausch, G.; Krüger, S.; Gräwe, U. Fresh oxygen for the Baltic Sea—An exceptional saline inflow after a decade of stagnation. J. Mar. Syst. 2015, 148, 152–166. [Google Scholar] [CrossRef]
- Hermelin, J.O.R. Distribution of Holocene benthic foraminifera in the Baltic Sea. J. Foraminifer. Res. 1987, 17, 62–73. [Google Scholar] [CrossRef]
- Kabel, K.; Moros, M.; Porsche, C.; Neumann, T.; Adolphi, F.; Andersen, T.J.; Siegel, H.; Gerth, M.; Leipe, T.; Jansen, E.; et al. Impact of climate change on the Baltic Sea ecosystem over the past 1000 years. Nat. Clim. Chang. 2012, 2, 871–874. [Google Scholar] [CrossRef]
- Jilbert, T.; Slomp, C.P. Rapid high-amplitude variability in Baltic Sea hypoxia during the Holocene. Geology 2013, 41, 1183–1186. [Google Scholar] [CrossRef]
- Carstensen, J.; Conley, D.J.; Bonsdorff, E.; Gustafsson, B.G.; Hietanen, S.; Janas, U.; Jilbert, T.; Maximov, A.; Norkko, A.; Norkko, J.; et al. Hypoxia in the Baltic Sea: Biogeochemical Cycles, Benthic Fauna, and Management. AMBIO 2014, 43, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Reckermann, M.; Omstedt, A.; Pawlak, J.; von Storch, H. Climate Change in the Baltic Sea region—What do we know? Soc. Dimens. Clim. Change Adapt. Coast. Reg. Find. Transdiscipl. Res. 2014, 19, 32. [Google Scholar]
- Conley, D.J.; Humborg, C.; Rahm, L.; Savchuk, O.P.; Wulff, F. Hypoxia in the Baltic Sea and Basin-Scale Changes in Phosphorus Biogeochemistry. Environ. Sci. Technol. 2002, 36, 5315–5320. [Google Scholar] [CrossRef] [PubMed]
- Conley, D.J.; Björck, S.; Bonsdorff, E.; Carstensen, J.; Destouni, G.; Gustafsson, B.G.; Hietanen, S.; Kortekaas, M.; Kuosa, H.; Meier, H.E.M.; et al. Hypoxia-Related Processes in the Baltic Sea. Environ. Sci. Technol. 2009, 43, 3412–3420. [Google Scholar] [CrossRef]
- Feistel, R.; Nausch, G.; Wasmund, N. State and Evolution of the Baltic Sea, 1952–2005: A Detailed 50-Year Survey of Meteorology and Climate, Physics, Chemistry, Biology, and Marine Environment; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Mohrholz, V. Major Baltic Inflow Statistics—Revised. Front. Mar. Sci. 2018, 5, 384. [Google Scholar] [CrossRef]
- Schimanke, S.; Meier, H.E.M.; Kjellström, E.; Strandberg, G.; Hordoir, R. The climate in the Baltic Sea region during the last millennium simulated with a regional climate model. Clim. Past. 2012, 8, 1419–1433. [Google Scholar] [CrossRef]
- Concheyro, A.; Caramés, A.; Amenábar, C.R.; Lescano, M. Nannofossils, foraminifera and microforaminiferal linings in the Cenozoic diamictites of Cape Lamb, Vega Island, Antarctica. Pol. Polar Res. 2014, 35, 1–26. [Google Scholar] [CrossRef]
- Boonstra, M.; Ramos, M.; Lammertsma, E.; Antoine, P.-O.; Hoorn, C. Marine connections of Amazonia: Evidence from foraminifera and dinoflagellate cysts (early to middle Miocene, Colombia/Peru). Palaeogeogr. Palaeoclim. Palaeoecol. 2015, 417, 176–194. [Google Scholar] [CrossRef]
- Binczewska, A.; Moros, M.; Asteman, I.P.; Sławińska, J.; Bąk, M. Changes in the inflow of saline water into the Bornholm Basin (SW Baltic Sea) during the past 7100 years—Evidence from benthic foraminifera record. Boreas 2017, 47, 297–310. [Google Scholar] [CrossRef]
- Brodniewicz, I. Recent and some holocene foraminifera of the southern baltic sea. Acta Palaeontol. Pol. 1965, 10, 131–236. [Google Scholar]
- Witkowski, A.; Latałowa, M.; Borówka, R.K.; Gregorowicz, P.; Bąk, M.; Osadczuk, A.; Święta, J.; Lutyńska, M.; Wawrzyniak-Wydrowska, B.; Woziński, R. Palaeoenvironmental changes in the area of the Szczecin Lagoon (the south western Baltic Sea) as recorded from diatoms. Stud. Quat. 2004, 21, 153–165. [Google Scholar]
- AndrÉn, E.; AndrÉn, T.; Sohlenius, G. The Holocene history of the southwestern Baltic Sea as reflected in a sediment core from the Bornholm Basin. Boreas 2000, 29, 233–250. [Google Scholar] [CrossRef]
- Sohlenius, G.; Emeis, K.-C.; Andrén, E.; Andrén, T.; Kohly, A. Development of anoxia during the Holocene fresh–brackish water transition in the Baltic Sea. Mar. Geol. 2001, 177, 221–242. [Google Scholar] [CrossRef]
- Emeis, K.-C.; Struck, U.; Blanz, T.; Kohly, A.; Voβ, M. Salinity changes in the central Baltic Sea (NW Europe) over the last 10,000 years. Holocene 2003, 13, 411–421. [Google Scholar] [CrossRef]
- Saidova, K.M. Modern biocenoses of benthic foraminifera, stratigraphy and paleogeography of the Holocene of the Baltic Sea based on foraminifera. In Sedimentation in the Baltic Sea; Emelyanov, E., Lisitsyn, A., Eds.; Nauka: Moscow, Russia, 1981; pp. 215–232. (In Russian) [Google Scholar]
- Lukashina, N. Foramimifera. In Geology of the Gdansk Basin, Baltic Sea; Emelyanov, E., Ed.; Yantarnyi Skaz: Kaliningrad, Russia, 2002; pp. 134–137. (In Russian) [Google Scholar]
- Grigoriev, A.; Zhamoida, V.; Spiridonov, M.; Sharapova, A.; Sivkov, V.; Ryabchuk, D. Late-glacial and Holocene palaeoenvironments in the Baltic Sea based on a sedimentary record from the Gdansk Basin. Clim. Res. 2011, 48, 13–21. [Google Scholar] [CrossRef]
- Dickson, R.R. A recurrent and persistent pressure-anomaly pattern as the principal cause of intermediate-scale hydro-graphic variation in the European shelf seas. Dtsch. Hydrogr. Z. 1971, 24, 97–119. [Google Scholar] [CrossRef]
- Dickson, R.R. The prediction of major Baltic inflows. Dtsch. Hydrogr. Z. 1973, 26, 97–105. [Google Scholar] [CrossRef]
- Matthäus, W. The history of investigation of salt water inflows into the Baltic Sea—From the early beginning to recent results. Meereswissenschaftliche Berichte Mar. Sci. Rep. 2006, 65, 1–65. [Google Scholar]
- Matthäus, W.; Franck, H. Characteristics of major Baltic inflows—A statistical analysis. Cont. Shelf Res. 1992, 12, 1375–1400. [Google Scholar] [CrossRef]
- Fischer, H.; Matthäus, W. The importance of the Drogden Sill in the Sound for major Baltic inflows. J. Mar. Syst. 1996, 9, 137–157. [Google Scholar] [CrossRef]
- Lehmann, A.; Krauss, W.; Hinrichsen, H.H. Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus A Dyn. Meteorol. Oceanogr. 2002, 54, 299–316. [Google Scholar] [CrossRef]
- Reissmann, J.H.; Burchard, H.; Feistel, R.; Hagen, E.; Lass, H.U.; Mohrholz, V.; Nausch, G.; Umlauf, L.; Wieczorek, G. Vertical mixing in the Baltic Sea and consequences for eutrophication—A review. Prog. Oceanogr. 2009, 82, 47–80. [Google Scholar] [CrossRef]
- Dippner, J.; Voss, M. Climate reconstruction of the MWP in the Baltic Sea area based on biogeochemical proxies from a sediment record. Baltica 2004, 17, 5–16. [Google Scholar]
- Seip, K.L.; Grøn, Ø.; Wang, H. The North Atlantic Oscillations: Cycle Times for the NAO, the AMO and the AMOC. Climate 2019, 7, 43. [Google Scholar] [CrossRef]
- Mohrholz, V.; Dutz, J.; Kraus, G. The impact of exceptionally warm summer inflow events on the environmental conditions in the Bornholm Basin. J. Mar. Syst. 2006, 60, 285–301. [Google Scholar] [CrossRef]
- Olsen, J.; Anderson, N.J.; Knudsen, M.F. Variability of the North Atlantic Oscillation over the past 5200 years. Nat. Geosci. 2012, 5, 808–812. [Google Scholar] [CrossRef]
- Omstedt, A.; Elken, J.; Lehmann, A.; Leppäranta, M.; Meier, H.E.; Myrberg, K.; Rutgersson, A. Progress in physical oceanography of the Baltic Sea during the 2003–2014 period. Prog. Oceanogr. 2014, 128, 139–171. [Google Scholar] [CrossRef]
- Hurrell, J.W. Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef]
- Markus Meier, H.E.; Barghorn, L.; Börgel, F.; Gröger, M.; Naumov, L.; Radtke, H. Multidecadal climate variability dominated past trends in the water balance of the Baltic Sea watershed. Npj Clim. Atmos. Sci. 2023, 6, 58. [Google Scholar] [CrossRef]
- Alheit, J.; Hagen, E. Long-term climate forcing of European herring and sardine populations. Fish. Oceanogr. 1997, 6, 130–139. [Google Scholar] [CrossRef]
- Voipio, A. The Baltic Sea; Elsevier: Amsterdam, The Netherlands, 1981. [Google Scholar]
- Winterhalter, B. Late-Quaternary stratigraphy of Baltic Sea basins—A review. Bull. Geol. Soc. Finl. 1992, 64, 189–194. [Google Scholar] [CrossRef]
- Ryabchuk, D.V.; Sergeev, A.Y.; Prishchepenko, D.V.; Zhamoida, V.A.; Elkina, D.V.; Piskarev, A.L.; Bashirova, L.D.; Ponomarenko, E.P.; Budanov, L.M.; Grigoriev, A.G.; et al. Impact of climate change on sedimentation processes in the eastern Gulf of Finland during the Middle to Late Holocene. Boreas 2021, 50, 381–403. [Google Scholar] [CrossRef]
- Leppäranta, M.; Myrberg, K. Physical Oceanography of the Baltic Sea; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Bunke, D.; Leipe, T.; Moros, M.; Morys, C.; Tauber, F.; Virtasalo, J.J.; Forster, S.; Arz, H.W. Natural and Anthropogenic Sediment Mixing Processes in the South-Western Baltic Sea. Front. Mar. Sci. 2019, 6, 677. [Google Scholar] [CrossRef]
- Christiansen, C.; Edelvang, K.; Emeis, K.; Graf, G.; Jähmlich, S.; Kozuch, J.; Laima, M.; Leipe, T.; Löffler, A.; Lund-Hansen, L.; et al. Material transport from the nearshore to the basinal environment in the southern Baltic Sea: I. Processes and mass estimates. J. Mar. Syst. 2002, 35, 133–150. [Google Scholar] [CrossRef]
- Porz, L.; Zhang, W.; Schrum, C. Density-driven bottom currents control development of muddy basins in the southwest-ern Baltic Sea. Mar. Geol. 2021, 438, 106523. [Google Scholar] [CrossRef]
- Lemke, W. Sedimentation und paläogeographische Entwicklung im westlichen Ostseeraum (Mecklenburger Bucht bis Arkonabecken) vom Ende der Weichselvereisung bis zur Litorinatransgression; Institut für Ostseeforschung Warnemünde: Rostock, Germany, 1998. [Google Scholar]
- Lass, H.U.; Mohrholz, V. On dynamics and mixing of inflowing saltwater in the Arkona Sea. J. Geophys. Res. Oceans 2003, 108 (C2), 3042. [Google Scholar] [CrossRef]
- Kouts, T.; Omstedt, A. Deep water exchange in the Baltic Proper. Tellus A Dyn. Meteorol. Oceanogr. 1993, 45, 311–324. [Google Scholar] [CrossRef]
- Kögler, F.; Larsen, B. The West Bornholm basin in the Baltic Sea: Geological structure and Quaternary sediments. Boreas 1979, 8, 1–22. [Google Scholar] [CrossRef]
- Stigebrandt, A.; Kalén, O. Improving Oxygen Conditions in the Deeper Parts of Bornholm Sea by Pumped Injection of Winter Water. AMBIO 2012, 42, 587–595. [Google Scholar] [CrossRef]
- Zalewska, T.; Przygrodzki, P.; Suplińska, M.; Saniewski, M. Geochronology of the southern Baltic Sea sediments derived from 210Pb dating. Quat. Geochronol. 2020, 56, 101039. [Google Scholar] [CrossRef]
- Emelyanov, E.M. Baltic Sea: Geology, Geochemistry, Paleoceanography, Pollution; PP Shirshov Institute of Oceanology RAS, Atlantic Branch/Baltic Ecological Institute of Hydrosphere/Academy of Natural Sciences, RF: Kaliningrad, Russia, 1995. [Google Scholar]
- Christoffersen, P.L.; Christiansen, C.; Jensen, J.B.; Leipe, T.; Hille, S. Depositional conditions and organic matter distribution in the Bornholm Basin, Baltic Sea. Geo-Mar. Lett. 2007, 27, 325–338. [Google Scholar] [CrossRef]
- Emelyanov, E.M. Geology of the Gdansk Basin, Baltic Sea; Yantarnyi Skaz: Kaliningrad, Russia, 2002. (In Russian) [Google Scholar]
- Glasby, G.; Szefer, P.; Geldon, J.; Warzocha, J. Heavy-metal pollution of sediments from Szczecin Lagoon and the Gdansk Basin, Poland. Sci. Total. Environ. 2004, 330, 249–269. [Google Scholar] [CrossRef]
- Suplińska, M.M.; Pietrzak-Flis, Z. Sedimentation rates and dating of bottom sediments in the Southern Baltic Sea region. Nukleonika 2008, 53, 105–111. [Google Scholar]
- Zachowicz, J.; Miotk-Szpiganowicz, G.; Kramarska, R.; Uścinowicz, S.; Przezdziecki, P. A critical review and reinterpretation of bio-, litho- and seismostratigraphic data of the Southern Baltic deposits. Polish Geol. Inst. Spec. Pap. 2008, 23, 117–138. [Google Scholar]
- Staniszewski, A.; Lejman, A.; Pempkowiak, J. Horizontal and vertical distribution of lignin in surface sediments of the Gdańsk Basin. Oceanologia 2001, 43, 421–439. [Google Scholar]
- Kuliński, K.; Pempkowiak, J. Carbon Cycling in the Baltic Sea. GeoPlanet: Earth and Planetary Sciences; Springer Science & Business Media: New York, NY, USA, 2012; Volume 7. [Google Scholar]
- Niemistö, L. A Grawty Corer for Studies of Soft Sediments. Päleoredox Cond. East. Gotländ Bäsin Dur. Recent Centuries 1974, 238, 33–38. [Google Scholar]
- Schönfeld, J.; Alve, E.; Geslin, E.; Jorissen, F.; Korsun, S.; Spezzaferri, S. The FOBIMO (FOraminiferal BIo-MOnitoring) initiative—Towards a standardised protocol for soft-bottom benthic foraminiferal monitoring studies. Mar. Micropaleontol. 2012, 94–95, 1–13. [Google Scholar] [CrossRef]
- Uścinowicz, S.; Chiocci, F.L.; Chivas, A.R. Chapter 7 The Baltic Sea continental shelf. Geol. Soc. Lond. Mem. 2014, 41, 69–89. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sedi-ments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Folk, R.L. The Distinction between Grain Size and Mineral Composition in Sedimentary-Rock Nomenclature. J. Geol. 1954, 62, 344–359. [Google Scholar] [CrossRef]
- McCave, I.N.; Hall, I.R. Size sorting in marine muds: Processes, pitfalls, and prospects for paleoflow-speed proxies. Geochem. Geophys. Geosyst. 2006, 7, 1–37. [Google Scholar] [CrossRef]
- McCave, I.N.; Manighetti, B.; Robinson, S.G. Sortable silt and fine sediment size/composition slicing: Parameters for palaeocurrent speed and palaeoceanography. Paleoceanography 1995, 10, 593–610. [Google Scholar] [CrossRef]
- Leipe, T.; Tauber, F.; Vallius, H.; Virtasalo, J.; Uścinowicz, S.; Kowalski, N.; Hille, S.; Lindgren, S.; Myllyvirta, T. Particulate organic carbon (POC) in surface sediments of the Baltic Sea. Geo-Mar. Lett. 2010, 31, 175–188. [Google Scholar] [CrossRef]
- Jensen, J.B.; Moros, M.; Endler, R. The Bornholm Basin, southern Scandinavia: A complex history from Late Cretaceous structural developments to recent sedimentation. Boreas 2016, 46, 3–17. [Google Scholar] [CrossRef]
- Boyle, J.F.; Chiverrell, R.C.; Schillereff, D. Approaches to Water Content Correction and Calibration for µXRF Core Scanning: Comparing X-ray Scattering with Simple Regression of Elemental Concentrations. In Micro-XRF Studies of Sediment Cores. Developments in Paleoenvironmental Research; Springer: Dordrecht, The Netherlands, 2015; pp. 373–390. [Google Scholar] [CrossRef]
- Laskina, D.; Dorokhova, E.; Koroleva, Y. Water Content and Pb Concentrations in the Bottom Sediments Of The Gdansk Deep (South-Eastern Baltic Sea) According to the Portable X-Ray Fluorescence Analyzer Olympus Vanta C. Russ. J. Earth Sci. 2024, 24, 3003. [Google Scholar] [CrossRef]
- Marsh, R.; Mills, R.A.; Green, D.R.; Salter, I.; Taylor, S. Controls on sediment geochemistry in the Crozet region. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 2260–2274. [Google Scholar] [CrossRef]
- Kylander, M.E.; Ampel, L.; Wohlfarth, B.; Veres, D. High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: New insights from chemical proxies. J. Quat. Sci. 2011, 26, 109–117. [Google Scholar] [CrossRef]
- van der Land, C.; Mienis, F.; de Haas, H.; de Stigter, H.C.; Swennen, R.; Reijmer, J.J.; van Weering, T.C. Paleo-redox fronts and their formation in carbonate mound sediments from the Rockall Trough. Mar. Geol. 2011, 284, 86–95. [Google Scholar] [CrossRef]
- Thomson, J.; Higgs, N.C.; Croudace, I.W.; Colley, S.; Hydes, D.J. Redox zonation of elements at an oxic/post-oxic boundary in deep-sea sediments. Geochim. Cosmochim. Acta 1993, 57, 579–595. [Google Scholar] [CrossRef]
- Huckriede, H.; Meischner, D. Origin and environment of manganese-rich sediments within black-shale basins. Geochim. Cosmochim. Acta 1996, 60, 1399–1413. [Google Scholar] [CrossRef]
- Brown, E.T.; Johnson, T.C.; Scholz, C.A.; Cohen, A.S.; King, J.W. Abrupt change in tropical African climate linked to the bipolar seesaw over the past 55,000 years. Geophys. Res. Lett. 2007, 34, L20702. [Google Scholar] [CrossRef]
- Agnihotri, R.; Altabet, M.A.; Herbert, T.D.; Tierney, J.E. Subdecadally resolved paleoceanography of the Peru margin during the last two millennia. Geochem. Geophys. Geosyst. 2008, 9, Q05013. [Google Scholar] [CrossRef]
- Cunningham, L.; Vogel, H.; Wennrich, V.; Juschus, O.; Nowaczyk, N.; Rosen, P. Amplified bioproductivity during Transition IV (332 000–342 000 yr ago): Evidence from the geo-chemical record of Lake El’gygytgyn. Clim. Past 2013, 9, 679–686. [Google Scholar] [CrossRef]
- Peinerud, E.K.; Ingri, J.; Pontér, C. Non-detrital Si concentrations as an estimate of diatom concentrations in lake sediments and suspended material. Chem. Geol. 2001, 177, 229–239. [Google Scholar] [CrossRef]
- Rothwell, R.G.; Hoogakker, B.; Thomson, J.; Croudace, I.W.; Frenz, M. Turbidite emplacement on the southern Balearic Abyssal Plain (western Mediterranean Sea) during Marine Isotope Stages 1–3: An application of ITRAX XRF scanning of sediment cores to lithostratigraphic analysis. Geol. Soc. Lond. Spec. Publ. 2006, 267, 79–98. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, H.; Xie, X.; Fan, D.; Yang, S.; Zhao, Q.; Wang, K. A 600-year flood history in the Yangtze River drainage: Comparison between a subaqueous delta and historical records. Chin. Sci. Bull. 2011, 56, 188–195. [Google Scholar] [CrossRef]
- Kaminski, M.A.; Gradstein, F.M. Atlas of Paleogene Cosmopolitan Deep-Water Agglutinated Foraminifera; Grzybowski Foundation: Krakow, Poland, 2005. [Google Scholar]
- Polovodova, I.; Schönfeld, J. Foraminiferal Test Abnormalities in the Western Baltic Sea. J. Foraminifer. Res. 2008, 38, 318–336. [Google Scholar] [CrossRef]
- Lutze, F. Zur Foraminiferen-Fauna der Ostsee. Meyniana 1965, 15, 75–142. [Google Scholar]
- Reimer, P.J.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Ramsey, C.B.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Virtasalo, J.J.; Ryabchuk, D.; Kotilainen, A.T.; Zhamoida, V.; Grigoriev, A.; Sivkov, V.; Dorokhova, E. Middle Holocene to present sedimentary environment in the easternmost Gulf of Finland (Baltic Sea) and the birth of the Neva River. Mar. Geol. 2014, 350, 84–96. [Google Scholar] [CrossRef]
- Virtasalo, J.J.; Bonsdorff, E.; Moros, M.; Kabel, K.; Kotilainen, A.T.; Ryabchuk, D.; Kallonen, A.; Hämäläinen, K. Ichnological trends along an open-water transect across a large marginal-marine epicontinental basin, the modern Baltic Sea. Sediment. Geol. 2011, 241, 40–51. [Google Scholar] [CrossRef]
- Lougheed, B.C.; Obrochta, S.P.; Lenz, C.; Mellström, A.; Metcalfe, B.; Muscheler, R.; Reinholdsson, M.; Snowball, I.; Zillén, L. Bulk sediment 14C dating in an estuarine environment: How accurate can it be? Paleoceanography 2017, 32, 123–131. [Google Scholar] [CrossRef]
- Van Wirdum, F.; Andrén, E.; Wienholz, D.; Kotthoff, U.; Moros, M.; Fanget, A.S.; Seidenkrantz, M.S.; Andrén, T. Middle to late holocene variations in salinity and primary productivity in the central Baltic Sea: A multiproxy study from the landsort deep. Front. Mar. Sci. 2019, 6, 51. [Google Scholar] [CrossRef]
- Lougheed, B.C.; Filipsson, H.L.; Snowball, I. Large spatial variations in coastal 14C reservoir age—A case study from the Baltic Sea. Clim. Past. 2013, 9, 1015–1028. [Google Scholar] [CrossRef]
- Olsen, J.; Rasmussen, P.; Heinemeier, J. Holocene temporal and spatial variation in the radiocarbon reservoir age of three Danish fjords. Boreas 2009, 38, 458–470. [Google Scholar] [CrossRef]
- Zillén, L.; Lenz, C.; Jilbert, T. Stable lead (Pb) isotopes and concentrations—A useful independent dating tool for Baltic Sea sediments. Quat. Geochronol. 2011, 8, 41–45. [Google Scholar] [CrossRef]
- Häusler, K.; Moros, M.; Wacker, L.; Hammerschmidt, L.; Dellwig, O.; Leipe, T.; Kotilainen, A.; Arz, H.W. Mid-to late Holocene environmental separation of the northern and central Baltic Sea basins in response to differential land uplift. Boreas 2016, 46, 111–128. [Google Scholar] [CrossRef]
- Andrén, E.; van Wirdum, F.; Ivarsson, L.N.; Lönn, M.; Moros, M.; Andrén, T. Medieval versus recent environmental conditions in the Baltic Proper, what was different a thousand years ago? Palaeogeogr. Palaeoclim. Palaeoecol. 2020, 555, 109878. [Google Scholar] [CrossRef]
- Lougheed, B.C.; Snowball, I.; Moros, M.; Kabel, K.; Muscheler, R.; Virtasalo, J.J.; Wacker, L. Using an independent geochronology based on palaeomagnetic secular variation (PSV) and atmos-pheric Pb deposition to date Baltic Sea sediments and infer 14C reservoir age. Quat. Sci. Rev. 2012, 42, 43–58. [Google Scholar] [CrossRef]
- Renberg, I.; Bindler, R.; Brännvall, M.L. Using the historical atmospheric lead-deposition record as a chronological marker in sediment deposits in Europe. Holocene 2001, 11, 511–516. [Google Scholar] [CrossRef]
- Renberg, I.; Brännvall, M.-L.; Bindler, R.; Emteryd, O. Stable lead isotopes and lake sediments—A useful combination for the study of atmospheric lead pollution history. Sci. Total. Environ. 2002, 292, 45–54. [Google Scholar] [CrossRef]
- Bindler, R.; Renberg, I.; Rydberg, J.; Andrén, T. Widespread waterborne pollution in central Swedish lakes and the Baltic Sea from pre-industrial mining and metallurgy. Environ. Pollut. 2009, 157, 2132–2141. [Google Scholar] [CrossRef]
- Stanton, T.; Snowball, I.; Zillén, L.; Wastegård, S. Validating a Swedish varve chronology using radiocarbon, palaeomagnetic secular variation, lead pollution history and statistical correlation. Quat. Geochronol. 2010, 5, 611–624. [Google Scholar] [CrossRef]
- De Vleeschouwer, F.; Fagel, N.; Cheburkin, A.; Pazdur, A.; Sikorski, J.; Mattielli, N.; Renson, V.; Fialkiewicz, B.; Piotrowska, N.; Le Roux, G. Anthropogenic impacts in North Poland over the last 1300 years—A record of Pb, Zn, Cu, Ni and S in an ombrotrophic peat bog. Sci. Total Environ. 2009, 407, 5674–5684. [Google Scholar] [CrossRef]
- Brännvall, M.-L.; Bindler, R.; Renberg, I.; Emteryd, O.; Bartnicki, J.; Billström, K. The Medieval Metal Industry Was the Cradle of Modern Large-Scale Atmospheric Lead Pollution in Northern Europe. Environ. Sci. Technol. 1999, 33, 4391–4395. [Google Scholar] [CrossRef]
- Renberg, I.; Persson, M.W.; Emteryd, O. Pre-industrial atmospheric lead contamination detected in Swedish lake sediments. Nature 1994, 368, 323–326. [Google Scholar] [CrossRef]
- Trouet, V.; Esper, J.; Graham, N.E.; Baker, A.; Scourse, J.D.; Frank, D.C. Persistent Positive North Atlantic Oscillation Mode Dominated the Medieval Climate Anomaly. Science 2009, 324, 78–80. [Google Scholar] [CrossRef]
- Mendes, I.; Lobo, F.J.; Hanebuth, T.J.; López-Quirós, A.; Schönfeld, J.; Lebreiro, S.; Reguera, M.I.; Antón, L.; Ferreira, O. Temporal variability of flooding events of Guadiana River (Iberian Peninsula) during the middle to late Holocene: Imprints in the shallow-marine sediment record. Palaeogeogr. Palaeoclim. Palaeoecol. 2020, 556, 109900. [Google Scholar] [CrossRef]
- Ponomarenko, E. Holocene palaeoenvironment of the central Baltic Sea based on sediment records from the Gotland Basin. Reg. Stud. Mar. Sci. 2023, 63, 102992. [Google Scholar] [CrossRef]
- Zillén, L.; Conley, D.J.; Andrén, T.; Andrén, E.; Björck, S. Past occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impact. Earth-Sci. Rev. 2008, 91, 77–92. [Google Scholar] [CrossRef]
- Cook, E.R.; D’Arrigo, R.D.; Mann, M.E. A Well-Verified, Multiproxy Reconstruction of the Winter North Atlantic Oscillation Index since AD 1400. J. Clim. 2002, 15, 1754–1764. [Google Scholar] [CrossRef]
- Luterbacher, J.; Xoplaki, E.; Dietrich, D.; Rickli, R.; Jacobeit, J.; Beck, C.; Gyalistras, D.; Schmutz, C.; Wanner, H. Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim. Dyn. 2002, 18, 545–561. [Google Scholar] [CrossRef]
- Ojaveer, H.; Jaanus, A.; MacKenzie, B.R.; Martin, G.; Olenin, S.; Radziejewska, T.; Telesh, I.; Zettler, M.L.; Zaiko, A. Status of Biodiversity in the Baltic Sea. PLoS ONE 2010, 5, e12467. [Google Scholar] [CrossRef]
- Snoeijs-Leijonmalm, P.; Schubert, H.; Radziejewska, T. Biological Oceanography of the Baltic Sea; Springer Science & Business Media: New York, NY, USA, 2017. [Google Scholar]
- Kostecki, R.; Radziejewska, T. The foraminiferal record in the Holocene evolution of the Mecklenburg Bay (south-western Baltic Sea). Oceanol. Hydrobiol. Stud. 2021, 50, 169–183. [Google Scholar] [CrossRef]
- Groeneveld, J.; Filipsson, H.L.; Austin, W.E.; Darling, K.; McCarthy, D.; Quintana Krupinski, N.B.; Bird, C.; Schweizer, M. Assessing proxy signatures of temperature, salinity, and hypoxia in the Baltic Sea through foraminifera-based geochemistry and faunal assemblages. J. Micropalaeontol. 2018, 37, 403–429. [Google Scholar] [CrossRef]
- Blazhchishin, A.I. Palaeogeography and evolution of late Quaternary sedimentation in the Baltic Sea; Yantarnyi Skaz: Kaliningrad, Russia, 1998. (In Russian) [Google Scholar]
- Bond, G.; Showers, W.; Cheseby, M.; Lotti, R.; Almasi, P.; Demenocal, P.; Priore, P.; Cullen, H.; Hajdas, I.; Bonani, G. A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates. Science 1997, 278, 1257–1266. [Google Scholar] [CrossRef]
- Seppä, H.; Hammarlund, D.; Antonsson, K. Low-frequency and high-frequency changes in temperature and effective humidity during the Holocene in south-central Sweden: Implications for atmospheric and oceanic forcings of climate. Clim. Dyn. 2005, 25, 285–297. [Google Scholar] [CrossRef]
- Fogg, G.E. The phytoplanktonic ways of life. New Phytol. 1991, 118, 191–232. [Google Scholar] [CrossRef]
- Wasmund, N.; Nausch, G.; Matthäus, W. Phytoplankton spring blooms in the southern Baltic Sea—Spatio-temporal development and long-term trends. J. Plankton Res. 1998, 20, 1099–1117. [Google Scholar] [CrossRef]
- Zorita, E.; Laine, A. Dependence of salinity and oxygen concentrations in the Baltic Sea on large-scale atmospheric circulation. Clim. Res. 2000, 14, 25–41. [Google Scholar] [CrossRef]
- Harff, J.; Endler, R.; Emelyanov, E.; Kotov, S.; Leipe, T.; Moros, M.; Olea, R.; Tomczak, M.; Witkowski, A. Late Quaternary Climate Variations Reflected in Baltic Sea Sediments. In The Baltic Sea Basin; Harff, J., Björck, S., Hoth, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Ponomarenko, E.P.; Krechik, V.A. Benthic foraminifera distribution in the modern sediments of the Southeastern Baltic Sea with respect to North Sea water inflows. Russ. J. Earth Sci. 2018, 18, 1–7. [Google Scholar] [CrossRef]
- Ponomarenko, E.; Krechik, V.; Dorokhova, E. Environmental factors affecting recent benthic foraminiferal distribution in the south-eastern Baltic Sea. Baltica 2020, 33, 58–70. [Google Scholar] [CrossRef]
- Kotilainen, A.T.; Arppe, L.; Dobosz, S.; Jansen, E.; Kabel, K.; Karhu, J.; Kotilainen, M.M.; Kuijpers, A.; Lougheed, B.C.; Meier, H.E.M.; et al. Echoes from the Past: A Healthy Baltic Sea Requires More Effort. AMBIO 2014, 43, 60–68. [Google Scholar] [CrossRef]
Lab. Code | Core Depth (cm) | Dated Material | 14C Age (a BP) | Error ± | Calibrated Age Median (cal a BP) |
---|---|---|---|---|---|
ABP-43026 | |||||
Poz-121066 | 7–8 | Bulk sediment | 710 | 30 | 664 |
Poz-121841 | 41–42 | Bulk sediment | 6890 | 40 | 7721 |
ABP-43035 | |||||
Poz-121363 | 9–10 | Bulk sediment | 2320 | 30 | 2342 |
Poz-121067 | 39–40 | Bulk sediment | 3695 | 30 | 4036 |
ABP-43105 | |||||
Poz-121068 | 7–8 | Bulk sediment | 3225 | 30 | 3429 |
Poz-121070 | 49–50 | Bulk sediment | 2130 | 30 | 2098 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponomarenko, E.; Pugacheva, T.; Kuleshova, L. Palaeoecological Conditions in the South-Eastern and Western Baltic Sea during the Last Millennium. Quaternary 2024, 7, 44. https://doi.org/10.3390/quat7040044
Ponomarenko E, Pugacheva T, Kuleshova L. Palaeoecological Conditions in the South-Eastern and Western Baltic Sea during the Last Millennium. Quaternary. 2024; 7(4):44. https://doi.org/10.3390/quat7040044
Chicago/Turabian StylePonomarenko, Ekaterina, Tatiana Pugacheva, and Liubov Kuleshova. 2024. "Palaeoecological Conditions in the South-Eastern and Western Baltic Sea during the Last Millennium" Quaternary 7, no. 4: 44. https://doi.org/10.3390/quat7040044
APA StylePonomarenko, E., Pugacheva, T., & Kuleshova, L. (2024). Palaeoecological Conditions in the South-Eastern and Western Baltic Sea during the Last Millennium. Quaternary, 7(4), 44. https://doi.org/10.3390/quat7040044