The Evolution of Long-Range Hunting with Stone-Tipped Weapons During the Afrotropic Middle Stone Age: A Testable Framework Based on Tip Cross-Sectional Area
Abstract
:1. Introduction
- Can we generate a feasible chronology for the evolution of long-range, stone-tipped weapons in the Afrotropic?
- Was there spatiotemporal variability in the use of hunting ranges during the Middle Stone Age?
- If so, can we suggest testable hypotheses about the different adaptive advantages?
2. Materials and Methods
- Contact hunting (thrusting/stabbing): Weapons generally do not leave the hands of hunters, e.g., bimanual thrusting spears, or heavyweight-multipurpose/ceremonial javelins.
- Short-range hunting: Weapons can be used in contact (single-handed stabbing), but can also be thrown effectively up to ~10 m, e.g., heavier assegais or heavyweight javelins.
- Medium-range hunting: Weapons are thrown effectively at ~11–19 m, e.g., long-narrow-tipped javelins or smaller assegais.
- Long-range hunting: Weapons are projected effectively over ~20–30 m, e.g., versatile Ethiopian javelins or those of the southern African San hunters.
- Hunting at maximum range: Weapons used at a maximum effective range of >30 m, e.g., bow hunting.
- As occasional a frequency of 15–32%: Occasional hunting ranges would hypothetically occur irregularly as an optional strategy that has negligible fitness consequences if it is not used. Thus, individuals or groups may gain fitness benefits from hunting at these ranges, but not much more than those who do not [46] (p. 206).
- As habitual a frequency of 33–65%: Habitual hunting ranges are mainstream, used with variable regularity and have variable evolutionary consequences. Thus, Individuals or groups hunting at these ranges reap fitness rewards differently than those who hunt from other ranges or who don’t hunt. The benefits fluctuate spatiotemporally and contextually [46] (p. 209).
- As obligatory a frequency of ≥66%: The success of obligatory hunting ranges is otherwise difficult or impossible to obtain. It probably has serious short-term fitness consequences. Individuals or groups who do not hunt from these ranges in a specific socio-ecological context may suffer serious adverse consequences [46] (p. 204).
3. Results
3.1. MIS 12-8
3.2. MIS 6
3.3. MIS 5
3.4. MIS 4
3.5. MIS 3
4. Discussion
4.1. Previous Interpretations of Long-Range Hunting Tested and Constrained
4.2. Chronology of Long-Range, Stone-Tipped Weapons in the Afrotropics
- ≥MIS 8 glacial (≥243 ka): Hunters before ~464 ka used contact weapons whilst starting to experiment with throwing them over short distances of up to ~10 m. Such short-range hunting with stone-tipped weapons became part of mainstream hunting behavior by MIS 8 (~300–243 ka). By that time, hunters started to experiment with medium-range hunting by throwing their weapons over distances of up to ~19 m. Currently, true long-range stone-tipped weapons that can be used effectively over distances of ~20–30 m do not seem to have been part of the Afrotropic arsenal before or during MIS 8.
- MIS 7 interglacial (~243–191 ka): No data meeting our chronological and sample size criteria.
- MIS 6 glacial (~191–130 ka): Short-range hunting with stone-tipped weapons remains part of the strategy, but this is relatively consistently paired with both contact- and medium-range hunting. These hunters may have used two or three spear/javelin types according to circumstance. In some instances, they started to experiment with long-range javelins. Whilst javelin hunting is indicated, long-range hunting was not a mainstream hunting strategy during MIS 6.
- MIS 5 (~130–71 ka): This stage is characterized by alternating interglacial and glacial sub-stages. The MIS 5 hunters seem to have continued with the three-weapon arsenal wherein up to the MIS 5c interglacial sub-stage (peaking at ~96 ka), short-range hunting was often mainstream. Subsequently, there is a shift at several sites towards medium-range hunting becoming a mainstream strategy. During the final MIS 5a interglacial substage (peaking at ~82 ka), long-range hunting becomes mainstream in tandem with medium-range hunting at some sites. MIS 5 is therefore the first time during which long-range hunting weapons became part of the everyday Afrotropic hunting arsenal.
- MIS 4 glacial (~71–57 ka): During this phase, long-range javelin hunting becomes regularly paired with hunting at maximum distance (e.g., bow hunting) in southern Africa. This geographic patterning is preliminary because dated Middle Stone Age assemblages with backed artefacts from elsewhere in the Afrotropics were not available for our study. It is, however, reasonable to hypothesize that MIS 4 Afrotropic hunters were able to hunt effectively across all the effective ranges to fit their respective needs, ecologies, and socio-cultural traditions.
- MIS 3 interstadial (~57–29 ka): Hunting at maximum distance with stone-tipped weaponry becomes rare during this stage. Instead, there is a general return to mainstream hunting with a combination of long-, medium- and short-range spears/javelins, especially in southern Africa. That said, after ~40 ka bone points similar to those used by southern African San hunters as arrowheads appear in greater numbers at several sites (e.g., [54,55]). The seeming reversion in stone-tipped hunting weaponry may thus in part reflect a shift in the use of arrow-tip materials, instead of a socio-cognitive regression. If this was the case, preservation issues may hamper our ability to detect Afrotropic maximum-range hunting post-MIS 4. The apparent reversion may also reflect the geographical range expansion (e.g., from the Rift Valley into ecotonal margins and montane habitats) and adaptive plasticity suggested for this period in such regions with very diverse ecogeographic features [56,57,58].
4.3. Spatiotemporal Variability in Hunting Ranges During the Afrotropic Middle Stone Age
4.4. Adaptive Advantages of the Different Hunting Ranges
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Churchill, S.E.; Rhodes, J.A. The evolution of the human capacity for “killing at a distance”: The human fossil evidence for the evolution of projectile weaponry. In The Evolution of Hominin Diets; Springer: Dordrecht, The Netherlands, 2009; pp. 201–210. [Google Scholar]
- Churchill, S.E. Weapon technology, prey size selection, and hunting methods in modern hunter-gatherers: Implications for hunting in the Palaeolithic and Mesolithic. Archeol. Pap. Am. Anthropol. Assoc. 1993, 4, 11–24. [Google Scholar] [CrossRef]
- Milks, A.; Parker, D.; Pope, M. External ballistics of Pleistocene hand-thrown spears: Experimental performance data and implications for human evolution. Sci. Rep. 2019, 9, 820. [Google Scholar] [CrossRef] [PubMed]
- Gaudzinski-Windheuser, S.; Noack, E.S.; Pop, E.; Herbst, C.; Pfleging, J.; Buchli, J.; Jacob, A.; Enzmann, F.; Kindler, L.; Iovita, R.; et al. Evidence for close-range hunting by last interglacial Neanderthals. Nat. Ecol. Evol. 2018, 2, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Milks, A.G. Lethal Threshold: The Evolutionary Implications of Middle Pleistocene Wooden Spears. Ph.D. Dissertation, University College London, London, UK, 2018. [Google Scholar]
- Brooks, A.S.; Nevell, L.; Yellen, J.E.; Hartman, G. Projectile technologies of the African MSA: Implications for modern human origins. In Transitions Before the Transition: Evolution, and Stability in the Middle Paleolithic and Middle Stone Age; Springer: New York, NY, USA, 2006; pp. 233–255. [Google Scholar]
- Sahle, Y.; Brooks, A.S. Assessment of complex projectiles in the early Late Pleistocene at Aduma, Ethiopia. PLoS ONE 2019, 14, e0216716. [Google Scholar] [CrossRef]
- Sisk, M.L.; Shea, J.J. The African origin of complex projectile technology: An analysis using tip cross-sectional area and perimeter. Int. J. Evol. Biol. 2011, 2011, 968012. [Google Scholar] [CrossRef]
- Kappelman, J.; Todd, L.C.; Davis, C.A.; Cerling, T.E.; Feseha, M.; Getahun, A.; Johnsen, R.; Kay, M.; Kocurek, G.A.; Nachman, B.A.; et al. Adaptive foraging behaviours in the Horn of Africa during Toba supereruption. Nature 2024, 628, 365–372. [Google Scholar] [CrossRef]
- Lombard, M.; Phillipson, L. Indications of bow and stone-tipped arrow use 64 000 years ago in KwaZulu-Natal, South Africa. Antiquity 2010, 84, 635–648. [Google Scholar] [CrossRef]
- Lombard, M. Quartz-tipped arrows older than 60 ka: Further use-trace evidence from Sibudu, KwaZulu-Natal, South Africa. journal Archaeol. Sci. 2011, 38, 1918–1930. [Google Scholar] [CrossRef]
- de la Peña, P.; Taipale, N.; Wadley, L.; Rots, V. A techno-functional perspective on quartz micro-notches in Sibudu’s Howiesons Poort indicates the use of barbs in hunting technology. J. Archaeol. Sci. 2018, 93, 166–195. [Google Scholar] [CrossRef]
- Thomas, D.H. Arrowheads and atlatl darts: How the stones got the shaft. Am. Antiq. 1978, 43, 461–472. [Google Scholar] [CrossRef]
- Shott, M.J. Stones and shafts redux: The metric discrimination of chipped-stone dart and arrow points. Am. Antiq. 1997, 62, 86–101. [Google Scholar] [CrossRef]
- Shea, J.J.; Davis, Z.; Brown, K. Experimental tests of Middle Paleolithic spear points using a calibrated crossbow. J. Archaeol. Sci. 2001, 28, 807–816. [Google Scholar] [CrossRef]
- Sahle, Y.; Ahmed, S.; Dira, S.J. Javelin use among Ethiopia’s last indigenous hunters: Variability and further constraints on tip cross-sectional geometry. J. Anthropol. Archaeol. 2023, 70, 101505. [Google Scholar] [CrossRef]
- Lombard, M.; Lotter, M.G.; Caruana, M.V. The tip cross-sectional area (TCSA) method strengthened and constrained with ethno-historical material from sub-Saharan Africa. J. Archaeol. Method Theory 2024, 31, 26–50. [Google Scholar] [CrossRef]
- Lombard, M. Re-considering the origins of Old World spearthrower-and-dart hunting. Quat. Sci. Rev. 2022, 293, 107677. [Google Scholar] [CrossRef]
- Lombard, M. Variation in hunting weaponry for more than 300,000 years: A tip cross-sectional area study of Middle Stone Age points from southern Africa. Quat. Sci. Rev. 2021, 264, 107021. [Google Scholar] [CrossRef]
- Lombard, M.; Churchill, S. Revisiting Middle Stone Age hunting at ≠GI, Botswana: A tip cross-sectional area study. South. Afr. Field Archaeol. 2022, 17, 1138. [Google Scholar] [CrossRef]
- Schoville, B.J.; Wilkins, J.; Ritzman, T.; Oestmo, S.; Brown, K.S. The performance of heat-treated silcrete backed pieces in actualistic and controlled complex projectile experiments. J. Archaeol. Sci. Rep. 2017, 14, 302–317. [Google Scholar] [CrossRef]
- Brown, K.S.; Marean, C.W.; Jacobs, Z.; Schoville, B.J.; Oestmo, S.; Fisher, E.C.; Bernatchez, J.; Karkanas, P.; Matthews, T. An early and enduring advanced technology originating 71,000 years ago in South Africa. Nature 2012, 491, 590–593. [Google Scholar] [CrossRef]
- McBrearty, S. Sharpening the mind. Nature 2012, 491, 531–532. [Google Scholar] [CrossRef]
- Sahle, Y.; Hutchings, W.K.; Braun, D.R.; Sealy, J.C.; Morgan, L.E.; Negash, A.; Atnafu, B. Earliest stone-tipped projectiles from the Ethiopian Rift date to >279,000 years ago. PLoS ONE 2013, 8, e78092. [Google Scholar] [CrossRef] [PubMed]
- Schoville, B.J.; Brown, K.S.; Harris, J.A.; Wilkins, J. New experiments and a model-driven approach for interpreting Middle Stone Age lithic point function using the edge damage distribution method. PLoS ONE 2016, 11, e0164088. [Google Scholar] [CrossRef]
- Werner, J.J.; Willoughby, P.R. Middle Stone Age point technology: Blind-testing the damage distribution method. J. Archaeol. Sci. Rep. 2018, 19, 138–147. [Google Scholar] [CrossRef]
- Douze, K.; Igreja, M.; Rots, V.; Cnuts, D.; Porraz, G. Technology and function of middle stone age points. Insights from a combined approach at Bushman Rock Shelter, South Africa. In Culture History and Convergent Evolution: Can We Detect Populations in Prehistory? Springer International: Cham, Switzerland, 2020; pp. 127–141. [Google Scholar]
- Fischer, A.; Hansen, P.V.; Rasmussen, P. Macro and micro wear traces on lithic projectile points: Experimental results and prehistoric examples. J. Dan. Archaeol. 1984, 3, 19–46. [Google Scholar] [CrossRef]
- Lombard, M. Evidence of hunting and hafting during the Middle Stone Age at Sibidu Cave, KwaZulu-Natal, South Africa: A multianalytical approach. J. Hum. Evol. 2005, 48, 279–300. [Google Scholar] [CrossRef] [PubMed]
- Lombard, M. A method for identifying Stone Age hunting tools. S. Afr. Archaeol. Bull. 2005, 60, 115–120. [Google Scholar]
- Pargeter, J. Assessing the macrofracture method for identifying Stone Age hunting weaponry. J. Archaeol. Sci. 2011, 38, 2882–2888. [Google Scholar] [CrossRef]
- Rots, V.; Lentfer, C.; Schmid, V.C.; Porraz, G.; Conard, N.J. Pressure flaking to serrate bifacial points for the hunt during the MIS5 at Sibudu Cave (South Africa). PLoS ONE 2017, 12, e0175151. [Google Scholar] [CrossRef]
- Hughes, S.S. Getting to the point: Evolutionary change in prehistoric weaponry. J. Archaeol. Method Theory 1998, 5, 345–408. [Google Scholar] [CrossRef]
- Shea, J.J. The origins of lithic projectile point technology: Evidence from Africa, the Levant, and Europe. J. Archaeol. Sci. 2006, 33, 823–846. [Google Scholar] [CrossRef]
- Assefa, Z. Faunal remains from Porc-Epic: Paleoecological and zooarchaeological investigations from a Middle Stone Age site in southeastern Ethiopia. J. Hum. Evol. 2006, 51, 50–75. [Google Scholar] [CrossRef] [PubMed]
- Milo, R.G. Evidence for hominid predation at Klasies River Mouth, South Africa, and its implications for the behaviour of early modern humans. J. Archaeol. Sci. 1998, 25, 99–133. [Google Scholar] [CrossRef]
- Frayer, D.W. Body size, weapon use, and natural selection in the European Upper Paleolithic and Mesolithic. Am. Anthropol. 1981, 83, 57–73. [Google Scholar] [CrossRef]
- Cundy, B.J. Formal Variation in Australian Spear and Spearthrower Technology; BAR International Series 546; BAR Publishing: Oxford, England, 1989. [Google Scholar]
- Friis-Hansen, J. Mesolithic cutting arrows: Functional analysis of arrows used in the hunting of large game. Antiquity 1990, 64, 494–504. [Google Scholar] [CrossRef]
- Hitchcock, R.; Bleed, P. Each according to need and fashion: Spear and arrow use among San hunters of the Kalahari. In Projectile Technology; Springer: Boston, MA, USA, 1997; pp. 345–368. [Google Scholar]
- Cattelain, P. Hunting during the Upper Paleolithic: Bow, spearthrower, or both? In Projectile Technology; Springer: Boston, MA, USA, 1997; pp. 213–240. [Google Scholar]
- Hickman, C.N.; Nagler, F.; Klopsteg, P.E. Archery: The Technical Side; National Field Archery Association: Yankton, SD, USA, 1947. [Google Scholar]
- Cotterell, B.; Kamminga, J. Mechanics of Pre-Lndustrial Technology; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Sitton, J.; Story, B.; Buchanan, B.; Eren, M.I. Tip cross-sectional geometry predicts the penetration depth of stone-tipped projectiles. Sci. Rep. 2020, 10, 13289. [Google Scholar] [CrossRef]
- Pettigrew, D.B.; Garnett, J.; Ryals-Luneberg, C.; Vance, E.A. Terminal ballistics of stone-tipped atlatl darts and arrows: Results from exploratory naturalistic experiments. Open Archaeol. 2023, 9, 20220299. [Google Scholar] [CrossRef]
- Shea, J.J. Occasional, obligatory, and habitual stone tool use in hominin evolution. Evol. Anthropol. Issues News Rev. 2017, 26, 200–217. [Google Scholar] [CrossRef]
- Wilkins, J.; Schoville, B.J.; Brown, K.S.; Chazan, M. Evidence for early hafted hunting technology. Science 2012, 338, 942–946. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Kier, G.; Mutke, J.; Dinerstein, E.; Ricketts, T.H.; Küper, W.; Kreft, H.; Barthlott, W. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 2005, 32, 1107–1116. [Google Scholar] [CrossRef]
- Mutke, J.; Barthlott, W. Patterns of vascular plant diversity at continental to global scales. Biol. Skr. 2005, 55, 521–531. [Google Scholar]
- Burgin, C.J.; Colella, J.P.; Kahn, P.L.; Upham, N.S. How many species of mammals are there? J. Mammal. 2018, 99, 1–14. [Google Scholar] [CrossRef]
- Krige, E.J. The Social System of the Zulus; Shuter and Shooter: Pietermaritzburg, South Africa, 1962. [Google Scholar]
- Tanaka, J. A study of the comparative ecology of African gatherer-hunters with special reference to San (Bushman-speaking people) and Pygmies. Senri Ethnol. Stud. 1979, 1, 189–212. [Google Scholar]
- d’Errico, F.; Backwell, L.; Villa, P.; Degano, I.; Lucejko, J.J.; Bamford, M.K.; Higham, T.F.G.; Colombini, M.P.; Beaumont, P.B. Early evidence of San material culture represented by organic artifacts from Border Cave, South Africa. Proc. Natl. Acad. Sci. USA 2012, 109, 13214–13219. [Google Scholar] [CrossRef]
- Robbins, L.H.; Campbell, A.C.; Brook, G.A.; Murphy, M.L.; Hitchcock, R.K. The antiquity of the bow and arrow in the Kalahari Desert: Bone points from White Paintings Rock Shelter, Botswana. J. Afr. Archaeol. 2012, 10, 7–20. [Google Scholar] [CrossRef]
- Ossendorf, G.; Groos, A.R.; Bromm, T.; Tekelemariam, M.G.; Glaser, B.; Lesur, J.; Miehe, G. Middle Stone Age foragers resided in high elevations of the glaciated Bale Mountains, Ethiopia. Science 2019, 365, 583–587. [Google Scholar] [CrossRef]
- Brandt, S.A.; Fisher, E.C.; Hildebrand, E.A.; Vogelsang, R.; Ambrose, S.H.; Lesur, J.; Wang, H. Early MIS 3 occupation of Mochena Borago Rockshelter, Southwest Ethiopian Highlands: Implications for Late Pleistocene archaeology, paleoenvironments and modern human dispersals. Quat. Int. 2012, 274, 38–54. [Google Scholar] [CrossRef]
- Viehberg, F.A.; Just, J.; Dean, J.R.; Wagner, B.; Franz, S.O.; Klasen, N.; Kleinen, T.; Ludwig, P.; Asrat, A.; Lamb, H.F.; et al. Environmental change during MIS4 and MIS 3 opened corridors in the Horn of Africa for Homo sapiens expansion. Quat. Sci. Rev. 2018, 202, 139–153. [Google Scholar] [CrossRef]
- Roach, N.T.; Venkadesan, M.; Rainbow, M.J.; Lieberman, D.E. Elastic energy storage in the shoulder and the evolution of high-speed throwing in Homo. Nature 2013, 498, 483–486. [Google Scholar] [CrossRef]
- Bruner, E.; Spinapolice, E.; Burke, A.; Overmann, K.A. Visuospatial integration: Paleoanthropological and archaeological perspectives. In Evolution of Primate Social Cognition; Springer: Cham, Switzerland, 2018; pp. 299–326. [Google Scholar]
- Bruner, E.; Pereira-Pedro, A.S.; Bastir, M. Patterns of morphological integration between parietal and temporal areas in the human skull. J. Morphol. 2017, 278, 1312–1320. [Google Scholar] [CrossRef]
- Clark, J.D.; Williams, M.A.J. Recent archaeological research in southeastern Ethiopia. 1974–1975. Ann. d’Ethiopie 1978, 11, 19–44. [Google Scholar] [CrossRef]
- Williams, M. Paul Bishop: The early years in Australia and Ethiopia. Scott. Geogr. J. 2023, 139, 274–283. [Google Scholar] [CrossRef]
- Basell, L.S. Middle Stone Age (MSA) site distributions in eastern Africa and their relationship to Quaternary environmental change, refugia and the evolution of Homo sapiens. Quat. Sci. Rev. 2008, 27, 2484–2498. [Google Scholar] [CrossRef]
- Kurashina, H. An Examination of Prehistoric Lithic Technology in Eastcentral Ethiopia. Ph.D. Dissertation, University of California, Berkeley, CA, USA, 1978. [Google Scholar]
- Brandt, S.A. The Upper Pleistocene and early Holocene prehistory of the Horn of Africa. Afr. Archaeol. Rev. 1986, 4, 41–82. [Google Scholar] [CrossRef]
- Negash, A.; Brown, F.; Nash, B. Varieties and sources of artefactual obsidian in the Middle Stone Age of the Middle Awash, Ethiopia. Archaeometry 2011, 53, 661–673. [Google Scholar] [CrossRef]
- Howard, C.D. The ancient missle launcher of aboriginal America. Cent. States Archaeol. J. 2004, 51, 46–49. [Google Scholar]
- Pettigrew, D.B. The Origins and Evolution of Pre-Industrial Hunting Weapons: Ongoing Challenges and Recent Developments. Ph.D. Dissertation, University of Colorado at Boulder, Boulder, CO, USA, 2021. [Google Scholar]
- Wadley, L. Were snares and traps used in the Middle Stone Age and does it matter? A review and a case study from Sibudu, South Africa. J. Hum. Evol. 2010, 58, 179–192. [Google Scholar] [CrossRef]
- Allott, L.F. Archaeological charcoal as a window on palaeovegetation and wood-use during the Middle Stone Age at Sibudu Cave. South. Afr. Humanit. 2006, 18, 173–201. [Google Scholar]
- Hall, G.; Woodborne, S.M. Ecosystem Change During MIS4 and Early MIS 3: Evidence from Middle Stone Age Sites in South Africa; CRC Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Clark, J.L. The Howieson’s poort fauna from Sibudu cave: Documenting continuity and change within Middle Stone Age industries. J. Hum. Evol. 2017, 107, 49–70. [Google Scholar] [CrossRef]
- Terashima, H. Mota and other hunting activities of the Mbuti archers: A socio-ecological study of subsistence technology. Afr. Study Monogr. 1983, 3, 71–85. [Google Scholar]
- Harako, R. The Mbuti as hunters: A study of ecological anthropology of the Mbuti pygmies. Kyoto Univ. Afr. Stud. 1976, 10, 37–99. [Google Scholar]
- Bruner, E.; Silva-Gago, M.; Fedato, A.; Martín-Loeches, M.; Colom, R. Psychometrics, visuospatial abilities, and cognitive archaeology. In Cognitive Archaeology, Body Cognition, and the Evolution of Visuospatial Perception; Academic Press: Cambridge, MA, USA, 2023; pp. 279–304. [Google Scholar]
- Lombard, M. Paying attention: The neurocognition of archery, Middle Stone Age bow hunting, and the shaping of the sapient mind. Phenomenol. Cogn. Sci. 2024, 1–25. [Google Scholar] [CrossRef]
- Alvard, M. Mutualistic hunting. In Meat-Eating and Human Evolution; Stanford, C.B., Bunn, H.T., Eds.; Oxford University Press: Oxford, UK, 2001; pp. 261–278. [Google Scholar]
- Apicella, C.L.; Silk, J.B. The evolution of human cooperation. Curr. Biol. 2019, 29, R447–R450. [Google Scholar] [CrossRef] [PubMed]
Weapon Type | Local Names | Users | General Use | Maximal Distance | Effective Distance |
---|---|---|---|---|---|
Heavyweight-multipurpose spears/javelins | Golda gina, bambele baqe | Elite hunters | Ceremonial dances symbolizing elite-hunting status, and striking at cornered, large and dangerous prey such as buffaloes, large antelopes, bush pigs and forest hogs. | ≤27 m | Contact, <10 m |
Heavyweight hunting javelins | Koisha gina, dimoyi baqe | Competent, experienced hunters | Killing large prey and predators (e.g., hyaenas) from a greater distance. | 33–40 m | ≤13 m |
Long-narrow-tipped hunting javelins | Mechamia/ganchiria gina, guruchek baqe | Any hunter | Ambush hunting, inflicting wounds from a distance, or wounding large, difficult-to-catch prey that is then tracked and killed at close-range with a heavier weapon. | ≥40 m | ~19 m |
Versatile hunting javelins | Tsinka gina, bodoy baqe | All adult hunters | Considered to have superior velocity and efficiency, for long-range throwing to startle, divert, wound/kill startled animals | ≥50 m | ~27 m |
Light-weight hunting javelins | Boda gina, donkoche baqe | Novice hunters | Target practice on small prey, e.g., duikers, porcupines, or bushbucks around the camp | 25–40 m | not for adult hunting |
Results of the Mann-Whitney Pairwise Test | |||||
Distance | Contact n = 21 | ≤10 m n = 181 | ~11–19 m n = 99 | ~20–30 m n = 310 | ≥30 m n = 339 |
Contact n = 21 | <0.001 | <0.001 | <0.001 | <0.001 | |
≤10 m n = 181 | <0.001 | <0.001 | <0.001 | <0.001 | |
~11–19 m n = 99 | <0.001 | <0.001 | <0.001 | <0.001 | |
~20–30 m n = 310 | <0.001 | <0.001 | <0.001 | <0.001 | |
≥30 m n = 339 | <0.001 | <0.001 | <0.001 | <0.001 | |
TCSA Standards for Probable/Best-Fit Preferred-Effective Hunting Distances | |||||
TCSA Standard | Hunting Range | Mean mm2 | SD mm2 | Range mm2 | Median mm2 |
Contact n = 21 | Contact | 284 | 88 | >195 (provisional) | 261 |
≤10 m n = 181 | Short-range | 151 | 43 | 108–194 | 140 |
~11–19 m n = 99 | Medium-range | 95 | 23 | 72–118 | 96 |
~20–30 m n = 310 | Long-range | 61 | 21 | 40–82 | 60 |
≥30 m n = 339 | Maximum-range | 23 | 15 | 8–38 | 21 |
Assemblage | TCSA (mm2) Summary Statistics | % Probable Hunting Range (TCSA Ranges in mm2) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max. ≥30 m | Long ~20–30 m | Medium ~11–19 m | Short ≤10 m | Contact | ||||||||||
n | Mean | SD | Median | n | % | n | % | n | % | n | % | n | % | |
Kathu Pan, MIS 12 | 148 | 219 | 80 | 207 | 0 | 0 | 3 | 2 | 13 | 9 | 51 | 34 | 86 | 58 |
Gademotta, MIS 8 [A] | 65 | 178 | 83 | 162 | 0 | 0 | 7 | 11 | 12 | 18 | 31 | 48 | 22 | 34 |
Gademotta, MIS 8 [B] | 37 | 181 | 91 | 172 | 0 | 0 | 4 | 11 | 10 | 27 | 14 | 38 | 14 | 38 |
Cumulative MIS 12-8 | 250 | 202 | 85 | 193 | 0 | 0 | 14 | 6 | 35 | 14 | 96 | 38 | 122 | 49 |
Assemblage | TCSA (mm2) Summary Statistics | % Probable Hunting Distance (Range in mm2) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max. ≥30 m | Long ~20–30 m | Medium ~11–19 m | Short ≤10 m | Contact | ||||||||||
n | Mean | SD | Median | n | % | n | % | n | % | n | % | n | % | |
Rooidam 2, MIS 6 | 130 | 170 | 101 | 150 | 3 | 2 | 24 | 18 | 31 | 24 | 30 | 23 | 50 | 38 |
Florisbad, MIS 6 [A] | 63 | 200 | 68 | 189 | 0 | 0 | 0 | 0 | 4 | 6 | 32 | 51 | 30 | 48 |
Pinnacle Point 13B, MIS 6 | 51 | 139 | 50 | 132 | 0 | 0 | 6 | 12 | 14 | 27 | 31 | 61 | 7 | 13 |
Olieboomspoort, MIS 6 | 79 | 158 | 75 | 139 | 0 | 0 | 7 | 9 | 24 | 30 | 37 | 47 | 21 | 27 |
Klasies River, MIS 6 | 71 | 159 | 59 | 150 | 0 | 0 | 3 | 4 | 14 | 20 | 46 | 65 | 13 | 18 |
Florisbad, MIS 6 [B] | 70 | 208 | 85 | 198 | 0 | 0 | 4 | 6 | 11 | 16 | 26 | 37 | 36 | 51 |
Cumulative MIS 6 | 464 | 173 | 81 | 158 | 3 | 1 | 44 | 9 | 98 | 21 | 202 | 44 | 157 | 34 |
Assemblage | TCSA (mm2) Summary Statistics | % Probable Hunting Distance (Range in mm2) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max. ≥30 m | Long ~20–30 m | Medium ~11–19 m | Short ≤10 m | Contact | ||||||||||
n | Mean | SD | Median | n | % | n | % | n | % | n | % | n | % | |
Prospect Farm, MIS 5-3? | 85 | 144 | 73 | 142 | 4 | 5 | 16 | 19 | 18 | 21 | 37 | 44 | 18 | 20 |
Klasies River, MIS 5e [A] | 48 | 88 | 79 | 62 | 14 | 29 | 17 | 35 | 10 | 21 | 3 | 6 | 6 | 13 |
Klasies River, MIS 5d [B] | 236 | 189 | 94 | 183 | 11 | 5 | 19 | 8 | 29 | 12 | 78 | 33 | 110 | 47 |
Makgadikgadi, MIS 5d | 21 | 183 | 92 | 182 | 0 | 0 | 1 | 5 | 5 | 24 | 6 | 29 | 9 | 43 |
Klasies River, MIS 5d [C] | 46 | 188 | 111 | 175 | 3 | 7 | 8 | 17 | 5 | 11 | 16 | 35 | 20 | 43 |
Klasies River, MIS 5d [D] | 823 | 180 | 76 | 168 | 2 | 0.2 | 46 | 6 | 144 | 17 | 412 | 50 | 295 | 36 |
Gademotta, MIS 5d | 24 | 118 | 39 | 108 | 1 | 4 | 2 | 8 | 12 | 50 | 10 | 42 | 2 | 8 |
Halibee, MIS 5d-c | 47 | 216 | 106 | 202 | 0 | 0 | 2 | 4 | 6 | 13 | 15 | 32 | 20 | 43 |
Pinnacle Point 13B, MIS 5c | 40 | 163 | 77 | 144 | 0 | 0 | 3 | 8 | 10 | 25 | 21 | 53 | 10 | 25 |
Hollow Rock Shelter, MIS 5c [A] | 30 | 150 | 72 | 141 | 1 | 3 | 3 | 10 | 7 | 23 | 19 | 63 | 5 | 17 |
Bushman Rock Shelter MIS 5c-a | 166 | 146 | 81 | 130 | 6 | 4 | 30 | 18 | 42 | 25 | 60 | 36 | 43 | 26 |
Pinnacle Point 5-6, MIS 5c | 86 | 151 | 78 | 135 | 1 | 1 | 10 | 12 | 19 | 22 | 41 | 48 | 20 | 23 |
Aduma, MIS 5c | 22 | 194 | 108 | 156 | 0 | 0 | 0 | 0 | 9 | 41 | 8 | 36 | 7 | 32 |
Aduma, MIS 5c-b | 35 | 110 | 45 | 94 | 0 | 0 | 10 | 29 | 17 | 49 | 12 | 34 | 3 | 9 |
Aduma, MIS 5a | 25 | 93 | 62 | 73 | 2 | 8 | 12 | 48 | 8 | 32 | 4 | 16 | 2 | 8 |
≠Gi Pan, MIS 5a | 294 | 185 | 62 | 171 | 0 | 0 | 0 | 0 | 19 | 6 | 192 | 65 | 102 | 35 |
Sibudu Cave, MIS 5a [A] | 24 | 103 | 66 | 84 | 1 | 4 | 9 | 38 | 12 | 50 | 7 | 29 | 2 | 8 |
Diepkloof, MIS 5a | 46 | 128 | 64 | 116 | 1 | 2 | 12 | 26 | 16 | 35 | 19 | 41 | 7 | 15 |
Blombos Cave, MIS 5a | 28 | 107 | 54 | 95 | 1 | 4 | 9 | 32 | 13 | 46 | 11 | 39 | 1 | 4 |
Hollow Rock Shelter, MIS 5a-4 | 56 | 132 | 56 | 119 | 0 | 0 | 8 | 14 | 21 | 38 | 28 | 50 | 7 | 13 |
Shinfa-Metema, MIS 5a | 26 | 93 | 23 | 99 | 0 | 0 | 7 | 27 | 19 | 73 | 7 | 27 | 0 | 0 |
Apollo 11, MIS 5a | 33 | 182 | 105 | 153 | 1 | 3 | 4 | 12 | 7 | 21 | 15 | 45 | 11 | 33 |
Sibudu Cave, MIS 5a [B] | 32 | 117 | 53 | 102 | 0 | 0 | 10 | 31 | 14 | 44 | 11 | 34 | 4 | 13 |
Mumba, MIS 5a-4 | 170 | 156 | 64 | 144 | 0 | 0 | 9 | 5 | 51 | 30 | 99 | 58 | 33 | 19 |
Umhlatuzana, MIS 5a | 39 | 89 | 31 | 92 | 3 | 8 | 13 | 33 | 22 | 56 | 8 | 21 | 0 | 0 |
Cumulative MIS 5 | 2482 | 165 | 81 | 150 | 52 | 2 | 260 | 10 | 536 | 22 | 1141 | 46 | 725 | 29 |
Assemblage | TCSA (mm2) Summary Statistics | % Probable Hunting Distance (Range in mm2) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max. ≥30 m | Long ~20–30 m | Medium ~11–19 m | Short ≤10 m | Contact | ||||||||||
n | Mean | SD | Median | n | % | n | % | n | % | n | % | n | % | |
Prospect Farm, MIS 5-3(?) | 85 | 144 | 73 | 142 | 4 | 5 | 16 | 19 | 18 | 21 | 37 | 44 | 18 | 20 |
Pinnacle Point 5-6, MIS 4 | 88 | 57 | 58 | 35 | 42 | 48 | 23 | 26 | 16 | 18 | 7 | 8 | 4 | 5 |
Makgadikgadi, MIS 4 | 46 | 286 | 91 | 280 | 0 | 0 | 0 | 0 | 2 | 4 | 5 | 11 | 40 | 87 |
Rose Cottage Cave, MIS 4 | 84 | 47 | 32 | 39 | 41 | 49 | 27 | 32 | 15 | 18 | 4 | 5 | 0 | 0 |
White Paintings Shelter, MIS 4 | 29 | 94 | 31 | 88 | 0 | 0 | 12 | 41 | 17 | 59 | 10 | 34 | 0 | 0 |
Klein Kliphuis, MIS 4 | 135 | 52 | 30 | 44 | 53 | 39 | 52 | 39 | 24 | 18 | 6 | 4 | 0 | 0 |
Sibudu Cave, MIS 4 | 219 | 51 | 44 | 36 | 112 | 51 | 69 | 32 | 28 | 13 | 21 | 10 | 3 | 1 |
Diepkloof, MIS 4 | 132 | 58 | 30 | 53 | 42 | 32 | 63 | 48 | 36 | 27 | 13 | 10 | 0 | 0 |
Klipdrift, MIS 4 | 31 | 42 | 25 | 35 | 18 | 58 | 11 | 35 | 0 | 0 | 1 | 3 | 0 | 0 |
Klasies River, MIS 4 | 56 | 59 | 36 | 47 | 18 | 32 | 25 | 45 | 11 | 20 | 8 | 14 | 0 | 0 |
Apollo 11, MIS 4 | 57 | 56 | 44 | 51 | 27 | 47 | 18 | 32 | 6 | 11 | 7 | 12 | 1 | 2 |
Umhlatuzana, MIS 4 | 232 | 24 | 21 | 17 | 181 | 78 | 19 | 8 | 7 | 3 | 4 | 2 | 0 | 0 |
K’one, MIS 4 | 21 | 163 | 48 | 153 | 1 | 5 | 4 | 19 | 4 | 19 | 6 | 29 | 8 | 38 |
Border Cave, MIS 4-3 | 52 | 178 | 100 | 153 | 0 | 0 | 10 | 19 | 14 | 27 | 20 | 38 | 17 | 33 |
Umhlatuzana, MIS 4-3 | 20 | 148 | 59 | 150 | 0 | 0 | 2 | 10 | 5 | 25 | 12 | 60 | 3 | 15 |
Sibudu Cave, MIS 4-3 | 44 | 144 | 75 | 140 | 0 | 0 | 7 | 16 | 13 | 30 | 25 | 57 | 7 | 16 |
Rose Cottage Cave, MIS 4-3 | 35 | 78 | 33 | 75 | 2 | 6 | 21 | 60 | 15 | 43 | 6 | 17 | 0 | 0 |
Cumulative MIS 4 | 1366 | 74 | 74 | 48 | 478 | 35 | 379 | 28 | 232 | 17 | 192 | 14 | 99 | 7 |
Assemblage | TCSA (mm2) Summary Statistics | % Probable Hunting Distance (Range in mm2) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max. ≥30 m | Long ~20–30 m | Medium ~11–19 m | Short ≤10 m | Contact | ||||||||||
n | Mean | SD | Median | n | % | n | % | n | % | n | % | n | % | |
Prospect Farm, MIS 5-3? | 85 | 144 | 73 | 142 | 4 | 5 | 16 | 19 | 18 | 21 | 37 | 44 | 18 | 20 |
Border Cave, MIS 4-3 | 52 | 178 | 100 | 153 | 0 | 0 | 10 | 19 | 14 | 27 | 20 | 38 | 17 | 33 |
Umhlatuzana, MIS 4-3 | 20 | 148 | 59 | 150 | 0 | 0 | 2 | 10 | 5 | 25 | 12 | 60 | 3 | 15 |
Sibudu Cave, MIS 4-3 | 44 | 144 | 75 | 140 | 0 | 0 | 7 | 16 | 13 | 30 | 25 | 57 | 7 | 16 |
Rose Cottage Cave, MIS 4-3 | 35 | 78 | 33 | 75 | 2 | 6 | 21 | 60 | 15 | 43 | 6 | 17 | 0 | 0 |
Sibudu Cave, MIS 3 | 100 | 119 | 66 | 104 | 9 | 9 | 23 | 23 | 33 | 33 | 34 | 34 | 14 | 14 |
Mumba, MIS 3 [A] | 317 | 126 | 47 | 120 | 3 | 1 | 46 | 15 | 122 | 38 | 190 | 60 | 26 | 8 |
Nasera, MIS 3 | 24 | 78 | 36 | 79 | 4 | 17 | 8 | 33 | 11 | 46 | 4 | 17 | 0 | 0 |
Porc-Epic, MIS 3 | 403 | 94 | 51 | 81 | 21 | 5 | 181 | 45 | 152 | 38 | 109 | 27 | 14 | 3 |
Fincha Habera, MIS 3 | 22 | 51 | 20 | 43 | 8 | 36 | 10 | 45 | 4 | 18 | 0 | 0 | 0 | 0 |
Goda Buticha, MIS 3 | 20 | 81 | 35 | 78 | 1 | 5 | 10 | 50 | 10 | 50 | 3 | 15 | 0 | 0 |
Umhlatuzana, MIS 3 | 23 | 125 | 48 | 108 | 0 | 0 | 3 | 13 | 11 | 48 | 11 | 48 | 2 | 9 |
Gorgora, MIS 3 [A] | 21 | 133 | 41 | 120 | 0 | 0 | 1 | 5 | 9 | 43 | 12 | 57 | 2 | 10 |
Gorgora, MIS 3 [B] | 24 | 139 | 42 | 143 | 0 | 0 | 3 | 13 | 5 | 21 | 14 | 58 | 2 | 8 |
Gorgora, MIS 3 [C] | 93 | 126 | 51 | 121 | 1 | 1 | 20 | 22 | 28 | 30 | 45 | 48 | 12 | 13 |
Mumba, MIS 3 [B] | 28 | 109 | 45 | 101 | 1 | 4 | 7 | 25 | 16 | 57 | 11 | 39 | 2 | 7 |
Holley Shelter, MIS 3 | 45 | 144 | 49 | 136 | 0 | 0 | 5 | 11 | 10 | 22 | 30 | 67 | 6 | 13 |
Cumulative MIS 3 | 1356 | 119 | 60 | 108 | 50 | 4 | 373 | 27 | 476 | 35 | 573 | 42 | 124 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahle, Y.; Lombard, M. The Evolution of Long-Range Hunting with Stone-Tipped Weapons During the Afrotropic Middle Stone Age: A Testable Framework Based on Tip Cross-Sectional Area. Quaternary 2024, 7, 50. https://doi.org/10.3390/quat7040050
Sahle Y, Lombard M. The Evolution of Long-Range Hunting with Stone-Tipped Weapons During the Afrotropic Middle Stone Age: A Testable Framework Based on Tip Cross-Sectional Area. Quaternary. 2024; 7(4):50. https://doi.org/10.3390/quat7040050
Chicago/Turabian StyleSahle, Yonatan, and Marlize Lombard. 2024. "The Evolution of Long-Range Hunting with Stone-Tipped Weapons During the Afrotropic Middle Stone Age: A Testable Framework Based on Tip Cross-Sectional Area" Quaternary 7, no. 4: 50. https://doi.org/10.3390/quat7040050
APA StyleSahle, Y., & Lombard, M. (2024). The Evolution of Long-Range Hunting with Stone-Tipped Weapons During the Afrotropic Middle Stone Age: A Testable Framework Based on Tip Cross-Sectional Area. Quaternary, 7(4), 50. https://doi.org/10.3390/quat7040050