Digital Twins Driven Supply Chain Visibility within Logistics: A New Paradigm for Future Logistics
Abstract
:1. Introduction
2. Research Materials and Methods
2.1. Search and Selection Process
2.2. Literature Consideration
2.3. Analysis Process
2.4. Analysis Using ATLAS.ti Version 9
3. Supply Chain Visibility
3.1. Visibility for Learning
3.2. Visibility for Coordinating
3.3. Visibility for Sensing
3.4. Visibility for Integrating
4. Digital Twins
- A Digital Twins is a virtual representation (or model) of a physical object or process.
- The Digital Twins is continuously updated with real-time data to reflect the physical object or process’s current state and behavior.
- The Digital Twins can help visualize and analyse the physical object or process, and by use of machine learning, further optimizations and predictions can be made.
5. Improving Supply Chain Visibility with a Digital Twins
5.1. The Impact of Digital Twins upon Supply Chain Visibility
5.2. Visibility for Sensing and the Digital Twins
5.3. Visibility to Learning and the Digital Twins
5.4. Visibility for Coordinating and the Digital Twins
5.5. Visibility for Integrating and the Digital Twins
6. The Technologies Enabling Digital Twins
6.1. Machine Learning
6.2. Internet of Things
6.3. Cloud Computing
6.4. Augmented and Virtual Reality
6.5. Application Programming Interface
7. The Benefits of a Digital Twins
7.1. Analytical Value
7.2. Descriptive Value
7.3. Predictive Value
7.4. Diagnostics Value
8. Challenges When Implementing a Digital Twins
8.1. Education
8.2. Accurate Representation
8.3. Data Quality
8.4. Costs
8.5. IP Protection
8.6. Digital Security
8.7. Interoperability
9. Discussion
Suggestions Steps to Overcome the Aforementioned Challenges in Implementing a Digital Twins
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Qadir, I.; Ali, A. Importance of logistics processes for customer service and firm performance: Evidence from furniture industry of pakistan. Manag. Sustain. Bus. Manag. Solutions Emerg. Econ. 2017, 22, 27–36. [Google Scholar] [CrossRef]
- Mira, M.; Choong, Y.; Thim, C. Mediating role of port supply chain integration between involvement of human resource practices and port performance in Kingdom of Saudi Arabia. Uncertain Supply Chain Manag. 2019, 7, 507–516. [Google Scholar] [CrossRef]
- Kovacs, G.; Kot, S. New logistics and production trends as the effect of global economy changes. Pol. J. Manag. Stud. 2016, 14, 115–126. [Google Scholar] [CrossRef]
- Creazza, A.; Dallari, F.; Melacini, M. Evaluating logistics network configurations for a global supply chain. Supply Chain Manag. Int. J. 2010, 15, 154–164. [Google Scholar] [CrossRef]
- Murciego, Á.L.; Jiménez-Bravo, D.; Martínez, D.P.; Román, A.V.; Lazo, G.L. Voice assistant and route optimization system for logistics companies in depopulated rural areas. Sustainability 2020, 12, 5377. [Google Scholar] [CrossRef]
- Caridi, M.; Moretto, A.; Perego, A.; Tumino, A. The benefits of supply chain visibility: A value assessment model. Int. J. Prod. Econ. 2014, 151, 1–19. [Google Scholar] [CrossRef]
- Blomkvist, Y.; Ullemar Loenbom, L. Improving Supply Chain Visibility within Logistics by Implementing a Digital Twin: A Case Study at Scania Logistics; KTH Royal Institute of Technology: Stockholm, Sweden, 2020. [Google Scholar]
- Tarli, M.; Masithah, S. The Effects of Supply Chain Visibility, Supply Chain Flexibility, Supplier Development and Inventory Control Toward Supply Chain Effectiveness. 2017. Available online: https://ssrn.com/abstract=2984513 (accessed on 19 April 2021).
- Kot, S.; Haque, A.; Baloch, A. Supply chain management in smes: Global perspective. Montenegrin J. Econ. 2020, 16, 87–104. [Google Scholar] [CrossRef]
- Lasi, H.; Fettke, P.D.P.; Kemper, H.-G.; Feld, D.-I.T.; Hoffmann, D.-H.M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [Google Scholar] [CrossRef]
- Tjahjono, B.; Esplugues, C.; Ares, E.; Pelaez, G. What does industry 4.0 mean to supply chain? Procedia Manuf. 2017, 13, 1175–1182. [Google Scholar] [CrossRef]
- Birkel, H.; Müller, J.M. Potentials of industry 4.0 for supply chain management within the triple bottom line of sustainability—A systematic literature review. J. Clean. Prod. 2020, 289, 125612. [Google Scholar] [CrossRef]
- Oláh, J.; Aburumman, N.; Popp, J.; Khan, M.A.; Haddad, H.; Kitukutha, N. Impact of Industry 4.0 on Environmental Sustainability. Sustainability 2020, 12, 4674. [Google Scholar] [CrossRef]
- Moshood, T.D.; Adeleke, A.Q.; Nawanir, G.; Ajibike, W.A.; Shittu, R.A. Emerging Challenges and Sustainability of Industry 4.0 Era in the Malaysian Construction Industry. Emerg. Chall. Sustain. Ind. 2020, 4, 1627–1634. [Google Scholar]
- Pfohl, H.-C.; Yahsi, B.; Kurnaz, T. The Impact of Industry 4.0 on the Supply Chain. In Innovations and Strategies for Logistics and Supply Chains: Technologies, Business Models and Risk Management. Proceedings of the Hamburg International Conference of Logistics (HICL); Hamburg University of Technology (TUHH): Hamburg, Germany, 2015; pp. 31–58. [Google Scholar]
- Erboz, G. How to define industry 4.0: Main pillars of industry 4.0. Manag. Trends Dev. Enterp. Glob. Era 2017, 1, 761–767. [Google Scholar]
- Uhlemann, T.H.-J.; Lehmann, C.; Steinhilper, R. The digital twin: Realizing the cyber-physical production system for industry 4.0. Procedia CIRP 2017, 61, 335–340. [Google Scholar] [CrossRef]
- Negri, E.; Fumagalli, L.; Macchi, M. A review of the roles of Digital Twins in CPS-based production systems. Procedia Manuf. 2017, 11, 939–948. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Briner, R.B.; Denyer, D. Systematic Review and Evidence Synthesis as a Practice and Scholarship Tool. In The Oxford Handbook of Evidence-Based Management; Oxford University Press: New York, NY, USA, 2012; pp. 112–129. [Google Scholar]
- Webster, J.; Watson, R.T. Analyzing the past to prepare for the future: Writing a literature review. MIS Q. 2002, 26, xiii–xxiii. [Google Scholar]
- Moshood, T.; Adeleke, A.; Nawanir, G.; Mahmud, F. Ranking of human factors affecting contractors’ risk attitudes in the Malaysian construction industry. Soc. Sci. Humanit. Open 2020, 2, 100064. [Google Scholar] [CrossRef]
- Rousseau, D.M.; Manning, J.; Denyer, D. Evidence in Management and Organizational Science: Assembling the Field’s Full Weight of Scientific Knowledge through Syntheses. Acad. Manag. Ann. 2008, 2, 475–515. [Google Scholar] [CrossRef]
- Watson, R.T. Beyond being Systematic in Literature Reviews in IS. J. Inf. Technol. 2015, 30, 185–187. [Google Scholar] [CrossRef]
- Durach, C.F.; Kembro, J.; Wieland, A. A New Paradigm for Systematic Literature Reviews in Supply Chain Management. J. Supply Chain Manag. 2017, 53, 67–85. [Google Scholar] [CrossRef]
- Kitchenham, B. Procedures for performing systematic reviews. Keele Univ. J. 2004, 33, 1–26. [Google Scholar]
- Bastas, A.; Liyanage, K. Sustainable supply chain quality management: A systematic review. J. Clean. Prod. 2018, 181, 726–744. [Google Scholar] [CrossRef] [Green Version]
- Thornhill, A.; Saunders, M.; Lewis, P. Research Methods for Business Students; Essex Pearson Education Ltd: Harlow, Essex, UK, 2009. [Google Scholar]
- Rajeev, A.; Pati, R.K.; Padhi, S.S.; Govindan, K. Evolution of sustainability in supply chain management: A literature review. J. Clean. Prod. 2017, 162, 299–314. [Google Scholar] [CrossRef]
- Paulus, T.M.; Bennett, A.M. I have a love-hate relationship with ATLAS.tiTM: Integrating qualitative data analysis software into a graduate research methods course. Int. J. Res. Method Educ. 2017, 40, 19–35. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Sorooshian, S.; Mahmud, F.; Adeleke, A.Q. Barriers and benefits of ICT adoption in the nigerian construction industry. a comprehensive literature review. Appl. Syst. Innov. 2020, 3, 46. [Google Scholar] [CrossRef]
- Moshood, T.D.; Shittu, R.A.; Abidin, T. Covid-19 and 5G radiation are two parallel lines: A systematic review. Int. J. Innov. Sci. Res. Technol. 2020, 5, 744–751. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Hsieh, S.-H. A review of building information modeling research for green building design through building performance analysis. J. Inf. Technol. Constr. 2020, 25, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 349, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Yuan, H. A framework for understanding waste management studies in construction. Waste Manag. 2011, 31, 1252–1260. [Google Scholar] [CrossRef] [Green Version]
- Friese, S.; Soratto, J.; Pires, D. Carrying out A Computer-Aided Thematic Content Analysis with ATLAS.ti. 2018. (18-02). Available online: http://hdl.handle.net/21.11116/0000-0001-364E-C (accessed on 19 April 2021).
- Friese, S.; Soratto, J.; Pires, D. Thematic content analysis using ATLAS.ti software: Potentialities for health research. Rev. Bras. Enferm. 2020, 73, e20190250. [Google Scholar]
- Dolgui, A.; Ivanov, D.; Sokolov, B. Reconfigurable supply chain: The X-network. Int. J. Prod. Res. 2020, 58, 4138–4163. [Google Scholar] [CrossRef]
- Srai, J.S.; Settanni, E.; Tsolakis, N.; Aulakh, P.K. Supply chain digital twins: Opportunities and challenges beyond the hype. In Proceedings of the 23rd Cambridge International Manufacturing Symposium University of Cambridge, Cambridge, UK, 26–27 September 2019. [Google Scholar]
- Grieves, M.; Vickers, J. Digital twin: Mitigating Unpredictable, Undesirable Emergent Behaviour in Complex Systems. In Transdisciplinary Perspectives on Complex Systems; Springer: Berlin/Heidelberg, Germany, 2017; pp. 85–113. [Google Scholar]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inform. 2018, 15, 2405–2415. [Google Scholar] [CrossRef]
- Li, Z.; Wu, H.; King, B.; Ben Miled, Z.; Wassick, J.; Tazelaar, J. On the Integration of Event-Based and Transaction-Based Architectures for Supply Chains. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW), Atlanta, GA, USA, 5–8 June 2017; pp. 376–382. [Google Scholar]
- Francis, V. Supply chain visibility: Lost in translation? Int. J. Supply Chain Manag. 2008, 13, 180–184. [Google Scholar] [CrossRef]
- Swift, C.; Guide, V.D.R., Jr.; Muthulingam, S. Does supply chain visibility affect operating performance? Evidence from conflict minerals disclosures. J. Oper. Manag. 2019, 65, 406–429. [Google Scholar] [CrossRef]
- Lohmer, J.; Bugert, N.; Lasch, R. Analysis of resilience strategies and ripple effect in blockchain-coordinated supply chains: An agent-based simulation study. Int. J. Prod. Econ. 2020, 228, 107882. [Google Scholar] [CrossRef]
- Wei, H.-L.; Wang, E.T.G. The strategic value of supply chain visibility: Increasing the ability to reconfigure. Eur. J. Inf. Syst. 2010, 19, 238–249. [Google Scholar] [CrossRef]
- Busse, C.; Schleper, M.C.; Weilenmann, J.; Wagner, S.M. Extending the supply chain visibility boundary: Utilizing stakeholders for identifying supply chain sustainability risks. Int. J. Phys. Distrib. Logist. Manag. 2017. [Google Scholar] [CrossRef]
- Supply Chain Control Tower Visuals (Page 2)-Line.17QQ.com. Available online: https://line.17qq.com/articles/wwkffkwy_p2.html (accessed on 19 April 2021).
- Barratt, M.; Oke, A. Antecedents of supply chain visibility in retail supply chains: A resource-based theory perspective. J. Oper. Manag. 2007, 25, 1217–1233. [Google Scholar] [CrossRef]
- Kiss, K.; Ruszaki, C.; Szűcs, A.; Koncz, G. Examining the Role of Local Products in Rural Development in the Light of Consumer Preferences—Results of a Consumer Survey from Hungary. Sustainability 2020, 12, 5473. [Google Scholar] [CrossRef]
- Mirabelli, G.; Solina, V. Blockchain and agricultural supply chains traceability: Research trends and future challenges. Procedia Manuf. 2020, 42, 414–421. [Google Scholar] [CrossRef]
- Wang, E.T.G.; Wei, H.-L. Interorganizational Governance Value Creation: Coordinating for Information Visibility and Flexibility in Supply Chains. Decis. Sci. 2007, 38, 647–674. [Google Scholar] [CrossRef]
- Kimseng, T.; Javed, A.; Jeenanunta, C.; Kohda, Y. Sustaining Innovation through Joining Global Supply Chain Networks: The Case of Manufacturing Firms in Thailand. Sustainability 2020, 12, 5259. [Google Scholar] [CrossRef]
- Christidis, K.; Devetsikiotis, M. Blockchains and Smart Contracts for the Internet of Things. IEEE Access 2016, 4, 2292–2303. [Google Scholar] [CrossRef]
- Teece, D.J. Explicating dynamic capabilities: The nature and microfoundations of (sustainable) enterprise performance. Strat. Manag. J. 2007, 28, 1319–1350. [Google Scholar] [CrossRef] [Green Version]
- Zollo, M.; Winter, S.G. Deliberate Learning and the Evolution of Dynamic Capabilities. Organ. Sci. 2002, 13, 339–351. [Google Scholar] [CrossRef]
- Simatupang, T.M.; Sridharan, R. A benchmarking scheme for supply chain collaboration. Benchmarking Int. J. 2004, 11, 9–30. [Google Scholar] [CrossRef]
- Kraft, T.; Valdés, L.; Zheng, Y. Supply chain visibility and social responsibility: Investigating consumers’ behaviours and motives. Manuf. Serv. Oper. Manag. 2018, 20, 617–636. [Google Scholar] [CrossRef]
- Somapa, S.; Cools, M.; Dullaert, W. Characterizing supply chain visibility—A literature review. Int. J. Logist. Manag. 2018. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Papadopoulos, T.; Luo, Z.; Roubaud, D. Upstream supply chain visibility and complexity effect on focal company’s sustainable performance: Indian manufacturers’ perspective. Ann. Oper. Res. 2020, 290, 343–367. [Google Scholar] [CrossRef] [Green Version]
- Gosain, S.; Malhotra, A.; El Sawy, O.A. Coordinating for Flexibility in e-Business Supply Chains. J. Manag. Inf. Syst. 2004, 21, 7–45. [Google Scholar] [CrossRef]
- Silva, N.; Ferreira, L.M.D.; Silva, C.; Magalhães, V.; Neto, P. Improving Supply Chain Visibility With Artificial Neural Networks. Procedia Manuf. 2017, 11, 2083–2090. [Google Scholar] [CrossRef]
- Elgarah, W.; Falaleeva, N.; Saunders, C.C.; Ilie, V.; Shim, J.T.; Courtney, J.F. Data Exchange in Inter-Organizational Relationships: A Review through Multiple Conceptual Lenses. In Data Base for Advances in Information Systems; ACM SIGMIS Database; Association for Computing Machinery: New York, NY, USA, 2005; pp. 8–29. [Google Scholar]
- Grieves, M. Digital twin: Manufacturing excellence through virtual factory replication. White Pap. 2014, 1, 1–7. [Google Scholar]
- Lu, Y.; Liu, C.; Wang, K.I.-K.; Huang, H.; Xu, X. Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robot. Comput. Integr. Manuf. 2020, 61, 101837. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F.; Zuo, Y.; Zhao, D. Digital twin service towards smart manufacturing. Procedia CIRP 2018, 72, 237–242. [Google Scholar] [CrossRef]
- How Digital Twin and Analytics Improve Operations, Minimize Costs|Jacobs. Available online: https://www.jacobs.com/projects/replica-digital-twin (accessed on 19 April 2021).
- Mandal, S. The influence of dynamic capabilities on hospital-supplier collaboration and hospital supply chain performance. Int. J. Oper. Prod. Manag. 2017, 37, 664–684. [Google Scholar] [CrossRef]
- Tozanlı, Ö.; Kongar, E.; Gupta, S. Evaluation of Waste Electronic Product Trade-in Strategies in Predictive Twin Disassembly Systems in the Era of Blockchain. Sustainability 2020, 12, 5416. [Google Scholar] [CrossRef]
- Srinivasan, R.; Swink, M. An Investigation of Visibility and Flexibility as Complements to Supply Chain Analytics: An Organizational Information Processing Theory Perspective. Prod. Oper. Manag. 2018, 27, 1849–1867. [Google Scholar] [CrossRef]
- Ivanov, D.; Dolgui, A.; Das, A.; Sokolov, B. Digital Supply Chain Twins: Managing the Ripple Effect, Resilience, and Disruption Risks by Data-Driven Optimization, Simulation, and Visibility. In Handbook of Ripple Effects in the Supply Chain; Springer: Berlin/Heidelberg, Germany, 2019; pp. 309–332. [Google Scholar]
- Fan, C.; Zhang, C.; Yahja, A.; Mostafavi, A. Disaster CityDigital Twins: A vision for integrating artificial and human intelligence for disaster management. Int. J. Inf. Manag. 2021, 56, 102049. [Google Scholar] [CrossRef]
- Wang, J.; Ye, L.; Gao, R.X.; Li, C.; Zhang, L. Digital Twin for rotating machinery fault diagnosis in smart manufacturing. Int. J. Prod. Res. 2019, 57, 3920–3934. [Google Scholar] [CrossRef]
- Fan, C.; Jiang, Y.; Mostafavi, A. Social Sensing in Disaster City Digital Twin: Integrated Textual–Visual–Geo Framework for Situational Awareness during Built Environment Disruptions. J. Manag. Eng. 2020, 36, 04020002. [Google Scholar] [CrossRef]
- Shahat, E.; Hyun, C.T.; Yeom, C. City digital twin potentials: A review and research agenda. Sustainability 2021, 13, 3386. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, Y.; Liu, X.; Zheng, Y. A Digital-Twin-Assisted Fault Diagnosis Using Deep Transfer Learning. IEEE Access 2019, 7, 19990–19999. [Google Scholar] [CrossRef]
- Elmo, D.; Stead, D. Disrupting rock engineering concepts: Is there such a thing as a rock mass digital twin and are machines capable of learning rock mechanics? In Proceedings of the 2020 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering, Perth, WA, Australia, 12–14 May 2020; pp. 565–576. [Google Scholar]
- Wang, P.; Luo, M. A digital twin-based big data virtual and real fusion learning reference framework supported by industrial internet towards smart manufacturing. J. Manuf. Syst. 2021, 58, 16–32. [Google Scholar] [CrossRef]
- Franciosa, P.; Sokolov, M.; Sinha, S.; Sun, T.; Ceglarek, D. Deep learning enhanced digital twin for Closed-Loop In-Process quality improvement. CIRP Ann. 2020, 69, 369–372. [Google Scholar] [CrossRef]
- Wanasinghe, T.R.; Wroblewski, L.; Petersen, B.; Gosine, R.G.; James, L.A.; De Silva, O.; Mann, G.K.I.; Warrian, P.J. Digital twin for the oil and gas industry: Overview, research trends, opportunities, and challenges. IEEE Access 2020, 8, 104175–104197. [Google Scholar] [CrossRef]
- Barricelli, B.R.; Casiraghi, E.; Gliozzo, J.; Petrini, A.; Valtolina, S. Human Digital Twins for fitness management. IEEE Access 2020, 8, 26637–26664. [Google Scholar] [CrossRef]
- Park, K.T.; Son, Y.H.; Noh, S.D. The architectural framework of a cyber physical logistics system for digital-twin-based supply chain control. Int. J. Prod. Res. 2020, 1–22. [Google Scholar] [CrossRef]
- Guo, D.; Zhong, R.Y.; Lin, P.; Lyu, Z.; Rong, Y.; Huang, G.Q. Digital twin-enabled Graduation Intelligent Manufacturing System for fixed-position assembly islands. Robot. Comput. Integr. Manuf. 2020, 63, 101917. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Camerer, C.F. Artificial Intelligence and Behavioural Economics. In The Economics of Artificial Intelligence: An Agenda; University of Chicago Press: Chicago, IL, USA, 2018; pp. 587–608. [Google Scholar]
- Xia, F.; Yang, L.T.; Wang, L.; Vinel, A. Internet of Things. Int. J. Commun. Syst. 2012, 25, 1101–1102. [Google Scholar] [CrossRef]
- Ben-Daya, M.; Hassini, E.; Bahroun, Z. Internet of Things and supply chain management: A literature review. Int. J. Prod. Res. 2019, 57, 4719–4742. [Google Scholar] [CrossRef] [Green Version]
- Haße, H.; Li, B.; Weißenberg, N.; Cirullies, J.; Otto, B. Digital Twin for Real-Time Data Processing in Logistics. In Artificial Intelligence and Digital Transformation in Supply Chain Management: Innovative Approaches for Supply Chains. Proceedings of the Hamburg International Conference of Logistics (HICL); Technische Universität Hamburg: Hamburg, Germany, 2019; pp. 4–28. [Google Scholar]
- Arora, R.; Parashar, A. Secure user data in cloud computing using encryption algorithms. Int. J. Eng. Res. Appl. 2013, 3, 1922–1926. [Google Scholar]
- Jung, T.; tom Dieck, M.C. Augmented Reality and Virtual Reality; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Olshannikova, E.; Ometov, A.; Koucheryavy, Y.; Olsson, T. Visualizing Big Data with augmented and virtual reality: Challenges and research agenda. J. Big Data 2015, 2, 1–27. [Google Scholar] [CrossRef]
- Ge, X.; Pan, L.; Li, Q.; Mao, G.; Tu, S. Multipath Cooperative Communications Networks for Augmented and Virtual Reality Transmission. IEEE Trans. Multimed. 2017, 19, 2345–2358. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-S. Maritime shipping digitalization: Blockchain-based technology applications, future improvements, and intention to use. Transp. Res. Part E Logist. Transp. Rev. 2019, 131, 108–117. [Google Scholar] [CrossRef]
- Omollo, C.A. Disruptive Technologies in the Logistics And Supply Chain Industry: A Study on Blockchain; United States International University Africa: Nairobi, Kenya, 2019. [Google Scholar]
- Conrad, E.; Misenar, S.; Feldman, J. Domain 8: Software Development Security (Understanding, Applying, and Enforcing Software Security). In CISSP Study Guide, 3rd ed.; Syngress: Boston, MA, USA, 2016; pp. 429–477. [Google Scholar]
- Modoni, G.E.; Caldarola, E.G.; Sacco, M.; Terkaj, W. Synchronizing physical and digital factory: Benefits and technical challenges. Procedia CIRP 2019, 79, 472–477. [Google Scholar] [CrossRef]
- Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine 2018, 51, 1016–1022. [Google Scholar] [CrossRef]
- Loup, R.; Koller, R. The road to commitment: Capturing the head, hearts and hands of people to effect change. Organ. Dev. J. 2005, 23, 73–81. [Google Scholar]
- Samir, K.; Maffei, A.; Onori, M.A. Real-Time asset tracking: A starting point for Digital Twin implementation in Manufacturing. Procedia CIRP 2019, 81, 719–723. [Google Scholar] [CrossRef]
- Phelps, L.W.; Ackerman, J.M. Making a case for disciplinarity in rhetoric, composition, and writing studies: The visibility project. Coll. Compos. Commun. 2010, 60, 180–215. [Google Scholar]
- Rasheed, O.S.; Kvamsdal, T. Digital twin: Values, challenges and enablers. arXiv 2019, arXiv:1910.01719. [Google Scholar]
- Ham, Y.; Kim, J. Participatory sensing and digital twin city: Updating virtual city models for enhanced risk-informed decision-making. J. Manag. Eng. 2020, 36, 4020005. [Google Scholar] [CrossRef]
- Miri, S. Digital Twin for Hybrid Installations. Maste’s Thesis, Tampere University, Tampere, Finland, 2018. Available online: http://urn.fi/URN:NBN:fi:tty-201809122285 (accessed on 3 October 2020).
- Orozco-Romero, A.; Arias Portela, C.; Marmolejo, J.A. The Use of Agent-Based Models Boosted by Digital Twins in the Supply Chain: A Literature Review. In Proceedings of the 2nd International Conference on Intelligent Computing and Optimization (ICO 2019); Springer: Berlin/Heidelberg, Germany, 2019; pp. 642–652. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moshood, T.D.; Nawanir, G.; Sorooshian, S.; Okfalisa, O. Digital Twins Driven Supply Chain Visibility within Logistics: A New Paradigm for Future Logistics. Appl. Syst. Innov. 2021, 4, 29. https://doi.org/10.3390/asi4020029
Moshood TD, Nawanir G, Sorooshian S, Okfalisa O. Digital Twins Driven Supply Chain Visibility within Logistics: A New Paradigm for Future Logistics. Applied System Innovation. 2021; 4(2):29. https://doi.org/10.3390/asi4020029
Chicago/Turabian StyleMoshood, Taofeeq D., Gusman Nawanir, Shahryar Sorooshian, and Okfalisa Okfalisa. 2021. "Digital Twins Driven Supply Chain Visibility within Logistics: A New Paradigm for Future Logistics" Applied System Innovation 4, no. 2: 29. https://doi.org/10.3390/asi4020029
APA StyleMoshood, T. D., Nawanir, G., Sorooshian, S., & Okfalisa, O. (2021). Digital Twins Driven Supply Chain Visibility within Logistics: A New Paradigm for Future Logistics. Applied System Innovation, 4(2), 29. https://doi.org/10.3390/asi4020029