Assessment of Several Approaches to Biofortified Products: A Literature Review
Abstract
:1. Introduction
- Examine the trend of the literature (i.e., the number of articles and distribution over time) and the value of the published articles (considering citation indices);
- Classify the articles consulted, according to specific criteria that will be described later in the methodological part;
- Mapping of research themes and directions, through the analysis of the “keywords” with which articles were labelled.
2. Materials and Methods
- The description of the topic;
- The purpose of the review through the formulation of research questions;
- The method used to carry out the literature review, with the description of the search strategy, the databases and keywords used, the limiters and criteria for selecting the studies;
- Summary of findings and response to initial questions, describing the information obtained from the review.
Inclusion and Exclusion Criteria
3. Results
3.1. Primary Findings
- Reduction of world hunger;
- Human health;
- GMOs;
- Agronomy, herbaceous crops;
- Economics and the market.
3.2. The Complexity of Dimensions of the Biofortified Products
- Society and food security, with the social implications of food accessibility that can be identified in the context of human health and hunger reduction in global phenomena;
- Technical-normative definition of biofortified products, in contrast or in relation to the definition of GMOs;
- Market and marketing in different territorial contexts;
- Cultivation, factors influencing agronomic technical choices.
3.2.1. Biofortification, Human Health and Reducing Hunger
3.2.2. Biofortification and Technical-Normative Definition
3.2.3. Biofortification, Economy, and Market
3.2.4. Biofortification, Cultivation, Factors Influencing Agronomic Technical Choices
4. Discussion, Limitations, and Future Research
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, L.; Kerr, P.S. Genetically Engineered Crops: Their Potential use for improvment human nutrition. Nutr. Rev. 2002, 60, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.; Sharma, N.; Sharma, S.; Kapoor, P.; Kumar, A.; Chunduri, V.; Arora, P. Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World. Front. Nutr. 2018, 5, 12. [Google Scholar] [CrossRef]
- Garcia-Casal, M.N.; Pena-Rosas, P.J.; Giyose, B.; De Steur, H.; Van Der Straeten, D. Staple crops biofortified with increased vitamins and minerals: Considerations for a public health strategy. Ann. N. Y. Acad. Sci. 2017, 1390, 3–13. [Google Scholar] [CrossRef] [Green Version]
- United Nations. The Millennium Development Goals Report. 2015. Available online: https://www.un.org/millenniumgoals/2015_MDG_Report/pdf/MDG%202015%20rev%20 (July%201).pdf (accessed on 2 July 2020).
- Meyer, J.E.; Pfeiffer, W.H.; Beyer, P. Biofortified crops to alleviate micronutrient malnutrition. Curr. Opin. Plant Biol. 2008, 11, 166–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeyeye, S.; Ayofemi, O.; Idowu-Adebayo, F. Genetically modified and biofortified crops and food security in developing countries. Nutr. Food Sci. 2019, 49, 978–986. [Google Scholar] [CrossRef]
- FAO. The State of Food Security and Nutrition in the World. 2019. Available online: http://www.fao.org/publications/card/en/c/CA5162EN/ (accessed on 17 September 2020).
- Scuderi, A.; Bellia, C.; Foti, V.T.; Sturiale, L.; Timpanaro, G. Evaluation of consumers’ behavior in the online purchasing process of organic agrifood products. Aims Agric. Food 2019, 4, 251–265. [Google Scholar] [CrossRef]
- Benini, F. Nuovi trend nei consumi alimentari. Largo Consumo 2005, 3, 12–13. [Google Scholar]
- Kim, S.S.; Rogers, B.L.; Coates, J.; Gilligan, D.O.; Sarriot, E. Building evidence for sustainability of food and nutrition intervention programs in developing countries. Adv. Nutr. 2013, 4, 524–526. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Meenakshi, J.V.; Tomlins, K.I.; Owori, C. Are consumers in developing countries willing to pay more for micronutrient-dense biofortified foods? Evidence from a field experiment in Uganda. Am. J. Agric. Econ. 2011, 93, 83–97. [Google Scholar] [CrossRef]
- Mejia, L.A.; Dary, O.; Boukerdenna, H. Global regulatory framework for production and marketing of crops biofortified with vitamins and minerals. Ann. N. Y. Acad. Sci. 2017, 1390, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Michel-Villarreal, R.; Hingley, M.; Canavari, M.; Bregoli, I. Sustainability in Alternative Food Networks: A Systematic Literature Review. Sustainability 2019, 11, 859. [Google Scholar] [CrossRef] [Green Version]
- Meenakshi, J.V.; Johnson, N.L.; Manyong, V.M.; DeGroote, H.; Javelosa, J.; Yanggen, D.R.; Meng, E. How cost-effective is biofortification in combating micronutrient malnutrition? An ex ante assessment. World Dev. 2010, 38, 64–75. [Google Scholar] [CrossRef] [Green Version]
- De Steur, H.; Wesana, J.; Blancquaert, D.; Van Der Straeten, D.; Gellynck, X. The socioeconomics of genetically modified biofortified crops: A systematic review and meta-analysis. Ann. N. Y. Acad. Sci. 2016, 1390, 14–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridley, D. The Literature Review: A Step-By-Step Guide for Students; Sage Publications: London, UK, 2012. [Google Scholar]
- Cronin, P.; Ryan, F.; Coughlan, M. Undertaking a literature review: A step-by-step approach. Br. J. Nurs. 2008, 17, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef]
- Jahan, N.; Naveed, S.; Zeshan, M.; Tahir, M.A. How to conduct a systematic review: A narrative literature review. Cureus 2016, 8, e864. [Google Scholar] [CrossRef] [Green Version]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Timpanaro, G.; Bellia, C.; Foti, V.T.; Scuderi, A. Consumer Behaviour of Purchasing Biofortified Food Products. Sustainability 2020, 12, 6297. [Google Scholar] [CrossRef]
- Baas, J.; Schotten, M.; Plume, A.; Côté, G.; Karimi, R. Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quant. Sci. Stud. 2020, 1, 377–386. [Google Scholar] [CrossRef]
- Seuring, S.; Müller, M. From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 2008, 16, 1699–1710. [Google Scholar] [CrossRef]
- Hefferon, K.L. Crops With Improved Nutritional Content Though Agricultural Biotechnology. In Plant Micronutrient Use Efficiency-Molecular and Genomic Perspectives in Crop Plants; Hossain, A.M., Kamiya, T., Burritt, D.J., Tran, L.-S.P., Fujiwara, T., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 279–294. [Google Scholar]
- Haas, J.H.; Miller, D.D. Overview of experimental biology 2005 symposium: Food fortification in developing countries. J. Nutr. 2006, 136, 1053–1054. [Google Scholar] [CrossRef]
- Saltzman, A.; Birol, E.; Bouis, H.E.; Boy, E.; Moura, F.; Islam, Y.; Pfeiffer, W. Biofortification: Progress toward a more nourishing future. Glob. Food Secur. 2013, 2, 9–17. [Google Scholar] [CrossRef]
- Dubock, A. An overview of agriculture, nutrition and fortification, supplementation and biofortification: Golden Rice as an example for enhancing micronutrient intake. Agric. Food Secur. 2017, 6, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Tung, C.W.; Eizenga, G.; Wright, M.H.; Ali, M.L.; Price, A.H.; Norton, G.J.; Islam, R.; Reynolds, A.; Mezey, J.; et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat. Commun. 2011, 2, 467. [Google Scholar] [CrossRef] [PubMed]
- Birla, D.S.; Malik, K.; Sainger, M.; Chaudhary, D.; Jaiwal, R.; Jaiwal, P.K. Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.). Crit. Rev. Food Sci. Nutr. 2017, 57, 2455–2481. [Google Scholar] [CrossRef]
- Sanahuja, G.; Farré, G.; Berman, J.; Zorrilla-López, U.; Twyman, R.M.; Capell, T.; Christou, P.; Zhu, C.A. question of balance: Achieving appropriate nutrient levels in biofortified staple crops. Nutr. Res. Rev. 2013, 26, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Tian, L. Carotenoids, genetically modified foods, and vitamin A nutrition. In Genetically Modified Organisms in Food: Production, Safety, Regulation and Public Health; Elsevier: Amsterdam, The Netherlands, 2015; pp. 353–360. [Google Scholar] [CrossRef]
- Martin, C.; Butelli, E.; Petroni, K.; Tonelli, C. How Can Research on Plants Contribute to Promoting Human Health? Plant Cell 2011, 23, 1685–1699. [Google Scholar] [CrossRef] [Green Version]
- Cannella, C.; Giusti, A.M.; Pinto, A. Dal Cibo Per Tutti Agli Alimenti Personalizzati (From Food to All to Personalised Foodstuffs); Pensiero Scientifico Editore: Rome, Italy, 2007. [Google Scholar]
- Pray, C.E.; Huang, J. Biofortification for China: Political responses to food fortification and GM technology, interest groups, and possible strategies. AgBioForum 2007, 10, 161–169. [Google Scholar]
- Klepacka, J.; Gujska, E.; Michalak, J. Phenolic compounds as cultivar-and variety-distinguishing factors in some plant products. Plant Foods Hum. Nutr. 2011, 66, 64–69. [Google Scholar] [CrossRef] [Green Version]
- De Steur, H.; Blancquaert, D.; Strobbe, S.; Lambert, W.; Gellynck, X.; Van Der Straeten, D. Status and market potential of transgenic biofortified crops. Nat. Biotechnol. 2015, 33, 25–29. [Google Scholar] [CrossRef]
- Araya-Quesada, M.; Mezzetti, B.; Tzotzos, G. Food safety considerations for the assessment of a genetically modified tomato fortified for folate production. Mediterr. J. Nutr. Metab. 2010, 3, 1–8. [Google Scholar] [CrossRef]
- Codex Alimentarius. Commission. Proposed Draft Definition for Biofortification, CX/NFSDU 18/40/7, 26–30 November 2018 Berlin, Germany. 2018. Available online: https://ec.europa.eu/food/safety/international_affairs/standard_setting_bodies/codex/ccnfsdu_en (accessed on 5 February 2020).
- Codex Alimentarius. Commission. Proposed Draft Definition for Biofortification, CX/NFSDU 17/39/5, 4–8 December 2017 Berlin, Germany. 2017. Available online: https://ec.europa.eu/food/safety/international_affairs/standard_setting_bodies/codex/ccnfsdu_en (accessed on 5 February 2020).
- Popek, S.; Halagarda, M. Genetically modified foods: Consumer awareness, opinions and attitudes in selected EU countries. Int. J. Consum. Stud. 2017, 41, 325–332. [Google Scholar] [CrossRef]
- Wozniak, E.; Zimny, T.; Twardowski, T. Agri-biotechnology: Legal and economic aspects of using GMOs in EU. Bioeconomy Sustain. Dev. 2019, 1, 21–41. [Google Scholar]
- Qaim, M. Genetically modified crops and global food security. Front. Econ. Glob. 2011, 10, 29–54. [Google Scholar]
- Roberfroid, M.B. Global view on functional foods: European perspectives. Br. J. Nutr. 2002, 88, S133–S138. [Google Scholar] [CrossRef]
- Butkevičiene, E.; Pikelyte, D. Regulation of products containing GMO and food additives. Public Policy Adm. 2011, 10, 475–484. [Google Scholar] [CrossRef]
- Annunziata, A.; Vecchio, R. Functional foods development in the European market: A consumer perspective. J. Funct. Foods 2011, 3, 223–228. [Google Scholar] [CrossRef]
- Ogunmefun, O.; Ewodage, G.; Omondi, V. Project Bloom Research Findings; Report to HarvestPlus; TNS Global: Lagos, Nigeria, 2014. [Google Scholar]
- Uchitelle-Pierce, B.; Ubomba-Jaswa, P.A. Marketing biofortified crops: Insights from consumer research. Afr. J. Foodagriculturenutrition Dev. 2017, 17, 12051–12062. [Google Scholar] [CrossRef]
- Oparinde, A.; Banerji, A.; Birol, E.; Ilona, P. Information and consumer willingness to pay for biofortified yellow cassava: Evidence from experimental auctions in Nigeria. Agric. Econ. 2016, 47, 215–233. [Google Scholar] [CrossRef]
- Murekezi, A.; Oparinde, A.; Birol, E. Consumer market segments for biofortified iron beans in Rwanda: Evidence from a hedonic testing study. Food Policy 2017, 66, 35–49. [Google Scholar] [CrossRef]
- Olaosebikan, O.; Abdulrazaq, B.; Owoade, D.; Ogunade, A.; Aina, O.; Ilona, P.; Muheebwa, A.; Teeken, B.; Iluebbey, P.; Kulakow, P.; et al. Gender-based constraints affecting biofortified cassava production, processing and marketing among men and women adopters in Oyo and Benue States, Nigeria. Physiol. Mol. Plant Pathol. 2019, 105, 17–27. [Google Scholar] [CrossRef]
- Bellia, C.; Safonte, F. Agri-food products and branding which distinguishes quality. Economic dimension of branded products such as pdo/pgi under EU legislation and value-enhancement strategies. Econ. Agro–Aliment. Food Econ. 2015, 17, 81–105. [Google Scholar] [CrossRef]
- Birol, E.; Meenakshi, J.V.; Oparinde, A.; Pérez, S.; Tomlins, K. Developing country consumers’ acceptance of biofortified. Food Sec. 2015, 7, 555–568. [Google Scholar] [CrossRef] [Green Version]
- Talsma, E.F.; Melse-Boonstra, A.; Brouwer, I.D. Acceptance and adoption of biofortified crops in low- and middle-income countries: A systematic review. Nutr. Rev. 2017, 75, 798–829. [Google Scholar] [CrossRef] [PubMed]
- Huffman, W.; McCluskey, J. Food labels, information, and trade in GMOs. J. Agric. Food Ind. Organ. 2017, 15, 20160038. [Google Scholar] [CrossRef]
- De Groote, H.; Kimenju, S.C.; Morawetz, U.B. Estimating consumer willingness to pay for food quality with experimental auctions: The case of yellow versus fortified maize meal in Kenya. Agric. Econ. 2011, 42, 1–16. [Google Scholar] [CrossRef]
- Vaiknoras, K.; Larochelle, C.; Birol, E.; Asare-Marfo, D.; Herrington, C. Promoting rapid and sustained adoption of biofortified crops: What we learned from iron-biofortified bean delivery approaches in Rwanda. Food Policy 2019, 83, 271–284. [Google Scholar] [CrossRef]
- Mogendi, J.B.; De Steur, H.; Makokha, A.; Gellynck, X. Integration and validation of an SMS-based bidding procedure of eliciting consumers’ willingness-to-pay for food. Br. Food J. 2016, 118, 2200–2217. [Google Scholar] [CrossRef]
- Korzycka Iwanow, M.; Zboralska, M. Never-ending Debate on Food Supplements: Harmonization or Disharmonization of the Law? Eur. Food Feed Law Rev. 2010, 3, 131. [Google Scholar]
- Campos-Bowers, M.H.; Wittenmyer, B.F. Biofortification in China: Policy and practice. Health Res. Policy Syst. 2007, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Prescott, C.; Pilato, M.; Bellia, C. Geographical indications in the UK after Brexit: An uncertain future? Food Policy 2020, 90, 101808. [Google Scholar] [CrossRef]
- Covic, N.; Low, J.; MacKenzie, A.; Ball, A. Advocacy for biofortification: Building stakeholder support, integration into regional and national policies, and sustaining momentum. Afr. J. Foodagriculturenutrition Dev. 2017, 17, 12116–12129. [Google Scholar] [CrossRef]
- De Steur, H.; Demont, M.; Gellynck, X.; Stein, A.J. The social and economic impact of biofortification through genetic modification. Curr. Opin. Biotechnol. 2017, 44, 161–168. [Google Scholar] [CrossRef]
- Pérez, S.; Buritica, A.; Oparinde, A.; Birol, E.; Gonzalez, C.; Zeller, M. Identifying Socioeconomic Characteristics Defining Consumers’ Acceptance for Main Organoleptic Attributes of an Iron-biofortified Bean Variety in Guatemala. Int. J. Food Syst. Dyn. 2017, 8, 222–235. [Google Scholar]
- Murray-Kolb, L.E.; Wenger, M.J.; Scott, S.P.; Rhoten, S.E.; Lung’aho, M.G.; Haas, J.D. Consumption of iron-biofortified beans positively affects cognitive performance in 18-to 27-Year-Old Rwandan female college students in an 18-week randomized controlled efficacy trial. J. Nutr. 2017, 147, 2109–2117. [Google Scholar] [CrossRef] [Green Version]
- Scott, S.P.; Murray-Kolb, L.E.; Wenger, M.J.; Udipi, S.A.; Ghugre, P.S.; Boy, E.; Haas, J.D. Cognitive performance in Indian school-going adolescents is positively affected by consumption of iron-biofortified pearl millet: A 6-month randomized controlled efficacy trial. J. Nutr. 2018, 148, 1462–1471. [Google Scholar] [CrossRef]
- Qaim, M.; Stein, A.J.; Meenakshi, J.V. Economics of biofortification. Agric. Econ. 2007, 37, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Van Jaarsveld, P.J.; Faber, M.; Tanumihardjo, S.A.; Nestel, P.; Lombard, C.J.; Benadé, A.J.S. β-Carotene–rich orange-fleshed sweet potato improves the vitamin A status of primary school children assessed with the modified-relative-dose-response test. Am. J. Clin. Nutr. 2005, 81, 1080–1087. [Google Scholar] [CrossRef]
- Mehta, S.; Finkelstein, J.L.; Venkatramanan, S.; Huey, S.L.; Udipi, S.A.; Ghugre, P.; Ruth, C.; Canfield, R.L.; Kurpad, A.V.; Potdar, R.D.; et al. Effect of iron and zinc-biofortified pearl millet consumption on growth and immune competence in children aged 12–18 months in India: Study protocol for a randomised controlled trial. BMJ open 2017, 7, e017631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, J.; Finkelstein, J.; Udipi, S.; Ghugre, P.; Mehta, S. Iron biofortified pearl millet improves iron status in Indian school children: Results of a feeding trial. J. Fed. Am. Soc. Exp. Biol. 2013, 27, 355.2. [Google Scholar]
- Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Secur. 2017, 12, 49–58. [Google Scholar] [CrossRef]
- Nestel, P.; Bouis, H.E.; Meenakshi, J.; Pfeier, W. Biofortification of staple foodcrops. J. Nutr. 2006, 136, 1064–1067. [Google Scholar] [CrossRef]
- Bouis, H.E.; Saltzman, A.; Low, J.; Ball, A.; Covic, N. An overview of the landscape and approach for biofortification in Africa. Afr. J. Foodagriculturenutrition Dev. 2017, 17, 11848–11864. [Google Scholar]
- La Frano, M.R.; de Moura, F.F.; Boy, E.; Lönnerdal, B.; Burri, B.J. Bioavailability of iron, zinc, and provitamin A carotenoids in biofortified staple crops. Nutr. Rev. 2014, 72, 289–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeid, A. Food Biofortification Technologies; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2017. [Google Scholar]
- D’Imperio, M.; Renna, M.; Cardinali, A.; Buttaro, D.; Santamaria, P.; Serio, F. Silicon biofortification of leafy vegetables and its bioaccessibility in the edible parts. J. Sci. Food Agric. 2016, 96, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Piątkowska, E.; Kopeć, A.; Bieżanowska-Kopeć, R.; Pysz, M.; Kapusta-Duch, J.; Koronowicz, A.A.; Maślak, E. The impact of carrot enriched in iodine through soil fertilization on iodine concentration and selected biochemical parameters in wistar rats. PLoS ONE 2016, 11, e0152680. [Google Scholar] [CrossRef] [Green Version]
- De Valença, A.W.; Bake, A.; Brouwer, I.D.; Giller, K.E. Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob. Food Secur. 2017, 12, 8–14. [Google Scholar] [CrossRef]
- Khush, G.S.; Lee, S.; Cho, J.I.; Jeon, J.S. Biofortification of crops for reducing malnutrition. Plant Biotechnol. Rep. 2012, 6, 195–202. [Google Scholar] [CrossRef]
- Tanumihardjo, S.A.; Bouis, H.; Hotz, C.; Meenakshi, J.V.; McClafferty, B. Biofortification of staple crops: An emerging strategy to combat hidden hunger. Rev. Food Sci. Food Saf. 2008, 7, 329–334. [Google Scholar]
- Saini, D.K.; Devi, P.; Kaushik, P. Advances in genomic interventions for wheat biofortification: A review. Agronomy 2020, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Bouis, H.E.; Welch, R.M. Biofortification—A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci. 2010, 50, S-20–S-32. [Google Scholar] [CrossRef] [Green Version]
- Wambugu, F.; Obukosia, S.; Gaffney, J.; Kamanga, D.; Che, P.; Albertsen, M.C.; Zhao, Z.Y.; Ragland, L.; Yeye, M. Is there a place for nutrition-sensitive agriculture? Proc. Nutr. Soc. 2015, 74, 441–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klemm, R.D.; Palmer, A.C.; Greig, A.; Engle-Stone, R.; Dalmiya, N. A Changing landscape for vitamin A programs: Implications for optimal intervention packages, program monitoring, and safety. Food Nutr. Bull. 2016, 37 (Suppl. 2), S75–S86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giordano, M.; El-Nakhel, C.; Pannico, A.; Kyriacou, M.C.; Stazi, S.R.; De Pascale, S.; Rouphael, Y. Iron biofortification of red and green pigmented lettuce in closed soilless cultivation impacts crop performance and modulates mineral and bioactive composition. Agronomy 2019, 9, 290. [Google Scholar] [CrossRef] [Green Version]
- Ayetigbo, O.; Latif, S.; Abass, A.; Müller, J. Comparing characteristics of root, flour and starch of biofortified yellow-flesh and white-flesh cassava variants, and sustainability considerations: A review. Sustainability 2018, 10, 3089. [Google Scholar] [CrossRef] [Green Version]
- Candan, N.; Cakmak, I.; Ozturk, L. Zinc-biofortified seeds improved seedling growth under zinc deficiency and drought stress in durum wheat. J. Plant Nutr. Soil Sci. 2018, 181, 388–395. [Google Scholar] [CrossRef]
- Diplock, A.T.; Aggett, P.J.; Ashwell, M.; Bornet, F.; Fern, E.B.; Roberfroid, M.B. Scientific concepts of functional foods in Europe: Consensus document. Br. J. Nutr. 1999, 81, S1–S27. [Google Scholar]
- Bellia, C.; Pilato, M. Actuality and future prospects on GMO crops in agriculture: Some main aspects and problems. Qual. Access Success. 2011, 12, 280–288. [Google Scholar]
- Ashwell, M. Concepts of Functional Foods; ILSI—International LIfe Sciences Institute: Brussels, Swizerland, 2002. [Google Scholar]
- Verbeke, W. Consumer acceptance of functional foods: Socio-demographic, cognitive and attitudinal determinants. Food Qual. Prefer. 2005, 16, 45–57. [Google Scholar] [CrossRef]
- Johns, T.; Eyzaguirre, P.B. Biofortification, biodiversity and diet: A search for complementary applications against poverty and malnutrition. Food Policy 2007, 32, 1–24. [Google Scholar] [CrossRef]
- Scuderi, A.; Cammarata, M.; La Via, G.; Pecorino, B.; Timpanaro, G. Life-Cycle Assessment of Biofortified Productions: The Case of Selenium Potato. Appl. Syst. Innov. 2021, 4, 1. [Google Scholar]
- Wortmann, L.; Enneking, U.; Daum, D. German consumers’ attitude towards seleni-um-biofortified apples and acceptance of related nutrition and health claims. Nutrients 2018, 10, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Search term | Hits |
---|---|
Biofortification | 2,817 |
Biofortified | 914 |
Fortification | 13,894 |
Functional food | 70,033 |
Micronutrient | 32,461 |
Document Search | ||
---|---|---|
Title-Abs-Key | Biofortification | |
Biofortified | ||
Total papers | 3106 | |
Refine Results | Limit to | |
Pubyear | 2003–2020 | |
Subjarea | “AGRI” | “SOCI” |
“ECON” | “BUSI” | |
“MULT” | ||
Doctype | Article | |
Pubstage | Final | |
Countrys/Territory | >30 papers | |
Source Type | Journal | |
Language | English | |
Total papers | 1189 |
Countries | Frequency | Countries | Frequency | Countries | Frequency |
---|---|---|---|---|---|
India | 260 | Spain | 62 | Belgium | 30 |
United States | 244 | Mexico | 59 | Turkey | 30 |
China | 157 | Poland | 55 | ||
Brazil | 125 | Germany | 51 | ||
Australia | 81 | Kenya | 45 | ||
United Kingdom | 66 | Colombia | 38 | ||
Pakistan | 63 | Canada | 38 | ||
Italy | 62 | South Africa | 35 |
Types of Biofortificaton studied | Frequency | % |
---|---|---|
Agronomy, herbaceous cultivation | 375 | 31.5% |
Human health | 339 | 28.5% |
OGM | 201 | 16.9% |
Economy and market | 153 | 12.9% |
Reducing hunger in the world | 72 | 6.1% |
Mixed | 49 | 4.1% |
Total | 1189 | 100.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellia, C.; Timpanaro, G.; Scuderi, A.; Foti, V.T. Assessment of Several Approaches to Biofortified Products: A Literature Review. Appl. Syst. Innov. 2021, 4, 30. https://doi.org/10.3390/asi4020030
Bellia C, Timpanaro G, Scuderi A, Foti VT. Assessment of Several Approaches to Biofortified Products: A Literature Review. Applied System Innovation. 2021; 4(2):30. https://doi.org/10.3390/asi4020030
Chicago/Turabian StyleBellia, Claudio, Giuseppe Timpanaro, Alessandro Scuderi, and Vera Teresa Foti. 2021. "Assessment of Several Approaches to Biofortified Products: A Literature Review" Applied System Innovation 4, no. 2: 30. https://doi.org/10.3390/asi4020030
APA StyleBellia, C., Timpanaro, G., Scuderi, A., & Foti, V. T. (2021). Assessment of Several Approaches to Biofortified Products: A Literature Review. Applied System Innovation, 4(2), 30. https://doi.org/10.3390/asi4020030