An Overview of Biogas Production from Anaerobic Digestion and the Possibility of Using Sugarcane Wastewater and Municipal Solid Waste in a South African Context
Abstract
:1. Introduction
2. Possibility of Generating Renewable Energy from Biogas Using Sugarcane Processing Wastewater
3. Municipal Solid Waste
4. Anaerobic Digestion Process
4.1. Hydrolysis
4.2. Acidogenesis
4.3. Acetogenesis
4.4. Methanogenesis
5. Factors Affecting the Anaerobic Digestion Process and Biogas Production
5.1. Substrate Type
5.2. Anaerobic Digestion pH
5.3. Temperature
5.4. Organic Loading Rate
5.5. Hydraulic Retention Time (HRT)
5.6. Effect of Inoculation on AD Process Parameters
5.7. Co-Digestion of Two Substrates
6. Microorganism Selection, Culturing, and Inhibition
7. Types of Digesters Used
8. Discussion
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hafner, M.; Tagliapietra, S.; De Strasser, L. Energy in Africa: Challenges and Opportunities; Springer Nature: Berlin, Germany, 2018. [Google Scholar]
- You, V.; Kakinaka, M. Modern and traditional renewable energy sources and CO2 emissions in emerging countries. Environ. Sci. Pollut. Res. 2022, 29, 17695–17708. [Google Scholar] [CrossRef]
- Mbungu, N.T.; Naidoo, R.M.; Bansal, R.C.; Siti, M.W.; Tungadio, D.H. An overview of renewable energy resources and grid integration for commercial building applications. J. Energy Storage 2020, 29, 101385. [Google Scholar] [CrossRef]
- Carreño, I.L.; Craig, M.T.; Rossol, M.; Ashfaq, M.; Batibeniz, F.; Haupt, S.E.; Draxl, C.; Hodge, B.-M.; Brancucci, C. Potential impacts of climate change on wind and solar electricity generation in Texas. Clim. Chang. 2020, 163, 745–766. [Google Scholar] [CrossRef]
- Kapoor, R.; Ghosh, P.; Kumar, M.; Sengupta, S.; Gupta, A.; Kumar, S.S.; Vijay, V.; Kumar, V.; Vijay, V.K.; Pant, D. Valorization of agricultural waste for biogas based circular economy in India: A research outlook. Bioresour. Technol. 2020, 304, 123036. [Google Scholar] [CrossRef]
- Luo, T.; Pan, J.; Li, S.; Xue, J.; Mei, Z.; Liu, H. Agricultural wastes co-densification: A solution for seasonal feedstock storage and anaerobic digestion performance improvement. Bioresour. Technol. 2022, 346, 126345. [Google Scholar] [CrossRef] [PubMed]
- Hanum, F.; Yuan, L.C.; Kamahara, H.; Aziz, H.A.; Atsuta, Y.; Yamada, T.; Daimon, H. Treatment of sewage sludge using anaerobic digestion in Malaysia: Current state and challenges. Front. Energy Res. 2019, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.E.; Finnerty, G.L.; Camargo-Valero, M.A.; Ross, A.B. Valorisation of macroalgae via the integration of hydrothermal carbonisation and anaerobic digestion. Bioresour. Technol. 2020, 312, 123539. [Google Scholar] [CrossRef]
- Lohani, S.P. Anaerobic co-digestion of food waste, goat and chicken manure for sustainable biogas production. Int. J. Energy Appl. Technol. 2020, 7, 120–125. [Google Scholar] [CrossRef]
- Mathew, S. Wind Energy: Fundamentals, Resource Analysis and Economics; Springer: Berlin/Heidelberg, Germany, 2006; Volume 1. [Google Scholar]
- Østergaard, P.A.; Duic, N.; Noorollahi, Y.; Kalogirou, S. Renewable energy for sustainable development. Renew. Energy 2022, 199, 1145–1152. [Google Scholar] [CrossRef]
- Li, W.; Achal, V. Environmental and health impacts due to e-waste disposal in China—A review. Sci. Total Environ. 2020, 737, 139745. [Google Scholar] [CrossRef]
- Singh, A. Managing the uncertainty problems of municipal solid waste disposal. J. Environ. Manag. 2019, 240, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Bharathiraja, B.; Sudharsana, T.; Jayamuthunagai, J.; Praveenkumar, R.; Chozhavendhan, S.; Iyyappan, J. Biogas production—A review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renew. Sustain. Energy Rev. 2018, 90, 570–582. [Google Scholar] [CrossRef]
- Lisowyj, M.; Wright, M.M. A review of biogas and an assessment of its economic impact and future role as a renewable energy source. Rev. Chem. Eng. 2020, 36, 401–421. [Google Scholar] [CrossRef]
- Sarker, S.; Lamb, J.J.; Hjelme, D.R.; Lien, K.M. A review of the role of critical parameters in the design and operation of biogas production plants. Appl. Sci. 2019, 9, 1915. [Google Scholar] [CrossRef] [Green Version]
- Sogn, T.A.; Dragicevic, I.; Linjordet, R.; Krogstad, T.; Eijsink, V.G.; Eich-Greatorex, S. Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. Int. J. Recycl. Org. Waste Agric. 2018, 7, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Hénault-Ethier, L.; Martin, J.-P.; Housset, J. A dynamic model for organic waste management in Quebec (D-MOWIQ) as a tool to review environmental, societal and economic perspectives of a waste management policy. Waste Manag. 2017, 66, 196–209. [Google Scholar] [CrossRef]
- Parsaee, M.; Kiani, M.K.D.; Karimi, K. A review of biogas production from sugarcane vinasse. Biomass Bioenergy 2019, 122, 117–125. [Google Scholar] [CrossRef]
- Singh, P.K.; Tripathi, M.; Singh, R.P.; Singh, P. Treatment and recycling of wastewater from sugar mill. In Advances in Biological Treatment of Industrial Waste Water and Their Recycling for a Sustainable Future; Springer: Berlin/Heidelberg, Germany, 2019; pp. 199–223. [Google Scholar]
- Yu, M.; He, X.; Liu, J.; Wang, Y.; Xi, B.; Li, D.; Zhang, H.; Yang, C. Characterization of isolated fractions of dissolved organic matter derived from municipal solid waste compost. Sci. Total Environ. 2018, 635, 275–283. [Google Scholar] [CrossRef]
- Botha, T.; Von Blottnitz, H. A comparison of the environmental benefits of bagasse-derived electricity and fuel ethanol on a life-cycle basis. Energy Policy 2006, 34, 2654–2661. [Google Scholar] [CrossRef]
- Wang, F.; Chen, J.; Zhang, C.; Gao, B. Resourceful treatment of cane sugar industry wastewater by Tribonema minus towards the production of valuable biomass. Bioresour. Technol. 2020, 316, 123902. [Google Scholar] [CrossRef]
- Olivier, F.C.; Singels, A. Increasing water use efficiency of irrigated sugarcane production in South Africa through better agronomic practices. Field Crops Res. 2015, 176, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, A.L.; Mahessar, A.A.; Leghari, M.E.-U.-H.; Lashari, B.K.; Mari, F.M. Impact of releasing wastewater of sugar industries into drainage system of LBOD, Sindh, Pakistan. Int. J. Environ. Sci. Dev. 2015, 6, 381. [Google Scholar] [CrossRef] [Green Version]
- Saejung, C.; Salasook, P. Recycling of sugar industry wastewater for single-cell protein production with supplemental carotenoids. Environ. Technol. 2018, 41, 59–70. [Google Scholar] [CrossRef]
- Fernández, F.; Castro, M.; Villasenor, J.; Rodríguez, L. Agro-food wastewaters as external carbon source to enhance biological phosphorus removal. Chem. Eng. J. 2011, 166, 559–567. [Google Scholar] [CrossRef]
- Li, S.; Zhao, S.; Yan, S.; Qiu, Y.; Song, C.; Li, Y.; Kitamura, Y. Food processing wastewater purification by microalgae cultivation associated with high value-added compounds production—A review. Chin. J. Chem. Eng. 2019, 27, 2845–2856. [Google Scholar] [CrossRef]
- Nitayavardhana, S.; Issarapayup, K.; Pavasant, P.; Khanal, S.K. Production of protein-rich fungal biomass in an airlift bioreactor using vinasse as substrate. Bioresour. Technol. 2013, 133, 301–306. [Google Scholar] [CrossRef]
- Singh, B.; Szamosi, Z.; Siménfalvi, Z.; Rosas-Casals, M. Decentralized biomass for biogas production. Evaluation and potential assessment in Punjab (India). Energy Rep. 2020, 6, 1702–1714. [Google Scholar] [CrossRef]
- Freitas, F.; De Souza, S.; Ferreira, L.; Otto, R.; Alessio, F.; De Souza, S.; Venturini, O.; Junior, O.A. The Brazilian market of distributed biogas generation: Overview, technological development and case study. Renew. Sustain. Energy Rev. 2019, 101, 146–157. [Google Scholar] [CrossRef]
- Baldinelli, A.; Barelli, L.; Bidini, G. Upgrading versus reforming: An energy and exergy analysis of two Solid Oxide Fuel Cell-based systems for a convenient biogas-to-electricity conversion. Energy Convers. Manag. 2017, 138, 360–374. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Sui, P.; Gao, W.; Qin, F.; Wu, X.; Xiong, J. Efficiency and sustainability analysis of biogas and electricity production from a large-scale biogas project in China: An emergy evaluation based on LCA. J. Clean. Prod. 2014, 65, 234–245. [Google Scholar] [CrossRef]
- Troschinetz, A.M.; Mihelcic, J.R. Sustainable recycling of municipal solid waste in developing countries. Waste Manag. 2009, 29, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Sharholy, M.; Ahmad, K.; Mahmood, G.; Trivedi, R. Municipal solid waste management in Indian cities—A review. Waste Manag. 2008, 28, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Ogwueleka, T. Municipal solid waste characteristics and management in Nigeria. J. Environ. Health Sci. Eng. 2009, 6, 173–180. [Google Scholar]
- Luttenberger, L.R. Waste management challenges in transition to circular economy–case of Croatia. J. Clean. Prod. 2020, 256, 120495. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Ogunmakinde, O.E. A review of circular economy development models in China, Germany and Japan. Recycling 2019, 4, 27. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Li, Y. The effect of reinforcing the concept of circular economy in west China environmental protection and economic development. Procedia Environ. Sci. 2012, 12, 785–792. [Google Scholar]
- Adeleke, O.; Akinlabi, S.; Jen, T.-C.; Dunmade, I. Towards sustainability in municipal solid waste management in South Africa: A survey of challenges and prospects. Trans. R. Soc. S. Afr. 2021, 76, 53–66. [Google Scholar] [CrossRef]
- Sewchurran, S.; Davidson, I.E. Optimisation and financial viability of landfill gas to electricity projects in South Africa. In Proceedings of the 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), Birmingham, UK, 20–23 November 2016; pp. 518–527. [Google Scholar]
- Kwapinska, M.; Agar, D.A.; Bonsall, B.; Leahy, J.J. Valorisation of Composted Organic Fines and Sewage Sludge Using Pyrolysis (OF-PYR). EPA Research, Research Report Number 340. Available online: www.epa.ie (accessed on 6 June 2022).
- Eriksson, O.; Reich, M.C.; Frostell, B.; Björklund, A.; Assefa, G.; Sundqvist, J.-O.; Granath, J.; Baky, A.; Thyselius, L. Municipal solid waste management from a systems perspective. J. Clean. Prod. 2005, 13, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Consonni, S.; Giugliano, M.; Grosso, M. Alternative strategies for energy recovery from municipal solid waste: Part A: Mass and energy balances. Waste Manag. 2005, 25, 123–135. [Google Scholar] [CrossRef]
- McKay, G. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration. Chem. Eng. J. 2002, 86, 343–368. [Google Scholar] [CrossRef]
- Psomopoulos, C.S.; Bourka, A.; Themelis, N.J. Waste-to-energy: A review of the status and benefits in USA. Waste Manag. 2009, 29, 1718–1724. [Google Scholar] [CrossRef] [PubMed]
- Arena, U. Process and technological aspects of municipal solid waste gasification. A review. Waste Manag. 2012, 32, 625–639. [Google Scholar] [CrossRef] [PubMed]
- Nwokolo, N.; Mukumba, P.; Obileke, K.; Enebe, M. Waste to Energy: A Focus on the Impact of Substrate Type in Biogas Production. Processes 2020, 8, 1224. [Google Scholar] [CrossRef]
- Bajpai, P. Basics of anaerobic digestion process. In Anaerobic Technology in Pulp and Paper Industry; Springer: Berlin/Heidelberg, Germany, 2017; pp. 7–12. [Google Scholar]
- Khanal, S.K. Anaerobic Biotechnology for Bioenergy Production: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef]
- Anukam, A.; Mohammadi, A.; Naqvi, M.; Granström, K. A review of the chemistry of anaerobic digestion: Methods of accelerating and optimizing process efficiency. Processes 2019, 7, 504. [Google Scholar] [CrossRef] [Green Version]
- Sawyerr, N.; Trois, C.; Workneh, T.; Okudoh, V. An overview of biogas production: Fundamentals, applications and future research. Int. J. Energy Econ. Policy 2019, 9, 105. [Google Scholar]
- Deepanraj, B.; Sivasubramanian, V.; Jayaraj, S. Biogas generation through anaerobic digestion process—An overview. Res. J. Chem. Environ. 2014, 18, 5. [Google Scholar]
- Zupančič, G.D.; Grilc, V. Anaerobic treatment and biogas production from organic waste. In Management of Organic Waste; Intech: London, UK, 2012; pp. 1–28. [Google Scholar]
- Schink, B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 1997, 61, 262–280. [Google Scholar]
- Yilmaz, A.; Ünvar, S.; Koçer, A.; Aygün, B. Factors affecting the production of biogas. Int. J. Sci. Eng. Res. 2018, 9, 59–62. [Google Scholar]
- Amon, T.; Amon, B.; Kryvoruchko, V.; Zollitsch, W.; Mayer, K.; Gruber, L. Biogas production from maize and dairy cattle manure—Influence of biomass composition on the methane yield. Agric. Ecosyst. Environ. 2007, 118, 173–182. [Google Scholar] [CrossRef]
- Atelge, M.R.; Krisa, D.; Kumar, G.; Eskicioglu, C.; Nguyen, D.D.; Chang, S.W.; Atabani, A.E.; Al-Muhtaseb, A.H.; Unalan, S. Biogas production from organic waste: Recent progress and perspectives. Waste Biomass Valorization 2018, 11, 1019–1040. [Google Scholar] [CrossRef]
- Westerholm, M.; Moestedt, J.; Schnürer, A. Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance. Appl. Energy 2016, 179, 124–135. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, R.; Masse, D.I.; Singh, G. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour. Technol. 2013, 143, 632–641. [Google Scholar] [CrossRef]
- Diamantis, V.; Eftaxias, A.; Stamatelatou, K.; Noutsopoulos, C.; Vlachokostas, C.; Aivasidis, A. Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes. Renew. Energy 2021, 168, 438–447. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Dosta, J.; Romero-Güiza, M.S.; Fonoll, X.; Peces, M.; Astals, S. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 2014, 36, 412–427. [Google Scholar] [CrossRef]
- Chen, J.L.; Ortiz, R.; Steele, T.W.J.; Stuckey, D.C. Toxicants inhibiting anaerobic digestion: A review. Biotechnol. Adv. 2014, 32, 1523–1534. [Google Scholar] [CrossRef]
- Rasit, N.; Idris, A.; Harun, R.; Wan Ab Karim Ghani, W.A. Effects of lipid inhibition on biogas production of anaerobic digestion from oily effluents and sludges: An overview. Renew. Sustain. Energy Rev. 2015, 45, 351–358. [Google Scholar] [CrossRef]
- Xu, N.; Liu, S.; Xin, F.; Zhou, J.; Jia, H.; Xu, J.; Jiang, M.; Dong, W. Biomethane production from lignocellulose: Biomass recalcitrance and its impacts on anaerobic digestion. Front. Bioeng. Biotechnol. 2019, 7, 191. [Google Scholar] [CrossRef]
- Dong, L.; Cao, G.; Tian, Y.; Wu, J.; Zhou, C.; Liu, B.; Zhao, L.; Fan, J.; Ren, N. Improvement of biogas production in plug flow reactor using biogas slurry pretreated cornstalk. Bioresour. Technol. Rep. 2020, 9, 100378. [Google Scholar] [CrossRef]
- Salehian, P.; Karimi, K.; Zilouei, H.; Jeihanipour, A. Improvement of biogas production from pine wood by alkali pretreatment. Fuel 2013, 106, 484–489. [Google Scholar] [CrossRef]
- Tan, C.; Saritpongteeraka, K.; Kungsanant, S.; Charnnok, B.; Chaiprapat, S. Low temperature hydrothermal treatment of palm fiber fuel for simultaneous potassium removal, enhanced oil recovery and biogas production. Fuel 2018, 234, 1055–1063. [Google Scholar] [CrossRef]
- Matheri, A.N.; Belaid, M.; Seodigeng, T.; Ngila, C.J. The kinetic of biogas rate from cow dung and grass clippings. In Proceedings of the 7th IIENG International Conference of Latest Trends in Engineering and Technology (ICLTET’2015), Pretoria, South Africa, 26–27 November 2015. [Google Scholar]
- Cerón-Vivas, A.; Cáceres, K.; Rincón, A.; Cajigas, Á. Influence of pH and the C/N ratio on the biogas production of wastewater. Rev. Fac. Ing. Univ. Antioq. 2019, 92, 70–79. [Google Scholar] [CrossRef]
- Sambor, A.; Szymanek, A. Analysis of the distribution of chemical compounds from fly ash exposed to weather conditions. Chem. Process Eng. 2014, 35, 265–275. [Google Scholar] [CrossRef]
- Chotovinský, O.; Altmann, V.; Přikryl, M. Influence of weather conditions on waste biomass production in the vysočina region of the Czech Republic. Res. Agric. Eng. 2016, 62, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Kleerebezem, R.; Joosse, B.; Rozendal, R.; Van Loosdrecht, M.C. Anaerobic digestion without biogas? Rev. Environ. Sci. Bio/Technol. 2015, 14, 787–801. [Google Scholar] [CrossRef]
- Schnürer, A. Biogas production: Microbiology and technology. Anaerobes Biotechnol. 2016, 156, 195–234. [Google Scholar]
- Appels, L.; Van Assche, A.; Willems, K.; Degreve, J.; Van Impe, J.; Dewil, R. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge. Bioresour. Technol. 2011, 102, 4124–4130. [Google Scholar] [CrossRef]
- Ramirez-Saenz, D.; Zarate-Segura, P.B.; Guerrero-Barajas, C.; Garcia-Pena, E.I. H2S and volatile fatty acids elimination by biofiltration: Clean-up process for biogas potential use. J. Hazard. Mater. 2009, 163, 1272–1281. [Google Scholar] [CrossRef]
- Fang, H.H.; Liu, H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 2002, 82, 87–93. [Google Scholar] [CrossRef]
- Horiuchi, J.; Shimizu, T.; Kanno, T.; Kobayashi, M. Dynamic behavior in response to pH shift during anaerobic acidogenesis with a chemostat culture. Biotechnol. Tech. 1999, 13, 155–157. [Google Scholar] [CrossRef]
- Akyol, Ç. In search of the optimal inoculum to substrate ratio during anaerobic co-digestion of spent coffee grounds and cow manure. Waste Manag. Res. 2020, 38, 1278–1283. [Google Scholar] [CrossRef] [PubMed]
- Lattieff, F.A. A study of biogas production from date palm fruit wastes. J. Clean. Prod. 2016, 139, 1191–1195. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ellegaard, L.; Ahring, B.K. Applications of the anaerobic digestion process. Adv. Biochem. Eng. Biotechnol. 2003, 82, 1–33. [Google Scholar] [PubMed]
- Vu, M.T.; Nguyen, L.N.; Johir, M.A.H.; Zhang, X.; Nghiem, L.D.; Elimelech, M. Biogas sparging to control fouling and enhance resource recovery from anaerobically digested sludge centrate by forward osmosis. J. Membr. Sci. 2021, 625, 119176. [Google Scholar] [CrossRef]
- Sanchez, E.; Borja, R.; Weiland, P.; Travieso, L.; Martın, A. Effect of substrate concentration and temperature on the anaerobic digestion of piggery waste in a tropical climate. Process Biochem. 2001, 37, 483–489. [Google Scholar] [CrossRef]
- El-Mashad, H.M.; Zeeman, G.; Van Loon, W.K.; Bot, G.P.; Lettinga, G. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresour. Technol. 2004, 95, 191–201. [Google Scholar] [CrossRef]
- Kim, J.K.; Oh, B.R.; Chun, Y.N.; Kim, S.W. Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. J. Biosci. Bioeng. 2006, 102, 328–332. [Google Scholar] [CrossRef]
- Wei, Y.; Gao, J.; Shi, Z.; Li, X.; Ma, W.; Yuan, H. Effect of hydrothermal pretreatment on two-stage anaerobic digestion of food waste and Enteromorpha: Digestion performance, bioenergy efficiency, and microbial community dynamics. Fuel 2022, 318, 123639. [Google Scholar] [CrossRef]
- Gallert, C.; Winter, J. Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: Effect of ammonia on glucose degradation and methane production. Appl. Microbiol. Biotechnol. 1997, 48, 405–410. [Google Scholar] [CrossRef]
- Wei, R.; Cheng, G.; Luo, J. Biogas and bio-energy production from anaerobic digestion of piggery manure at different temperatures. J. Agric. Mech. Res. 2010, 4, 170–174. [Google Scholar]
- Kaparaju, P.; Angelidaki, I. Effect of temperature and active biogas process on passive separation of digested manure. Bioresour. Technol. 2008, 99, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
- Gallert, C.; Bauer, S.; Winter, J. Effect of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population. Appl. Microbiol. Biotechnol. 1998, 50, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.-H.; Forster, C. A comparison of mesophilic and thermophilic anaerobic upflow filters treating paper–pulp–liquors. Process Biochem. 2002, 38, 256–261. [Google Scholar] [CrossRef]
- Lindmark, J.; Thorin, E.; Fdhila, R.B.; Dahlquist, E. Effects of mixing on the result of anaerobic digestion. Renew. Sustain. Energy Rev. 2014, 40, 1030–1047. [Google Scholar] [CrossRef]
- Tay, J.-H.; Pan, S.; He, Y.; Tay, S.T.L. Effect of organic loading rate on aerobic granulation. I: Reactor performance. J. Environ. Eng. 2004, 130, 1094–1101. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Y.; Li, K.; Wang, Q.; Gong, C.; Li, M. Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate. Bioresour. Technol. 2013, 143, 525–530. [Google Scholar] [CrossRef]
- Lim, S.-J.; Kim, B.J.; Jeong, C.-M.; Ahn, Y.H.; Chang, H.N. Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor. Bioresour. Technol. 2008, 99, 7866–7874. [Google Scholar] [CrossRef]
- Dinopoulou, G.; Rudd, T.; Lester, J.N. Anaerobic acidogenesis of a complex wastewater: I. The influence of operational parameters on reactor performance. Biotechnol. Bioeng. 1988, 31, 958–968. [Google Scholar] [CrossRef]
- Demirel, B.; Yenigun, O. Anaerobic acidogenesis of dairy wastewater: The effects of variations in hydraulic retention time with no pH control. J. Chem. Technol. Biotechnol. 2004, 79, 755–760. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, B.; Frear, C.; Zhao, Q.; Yu, L.; Li, X.; Chen, S. Methanosarcina domination in anaerobic sequencing batch reactor at short hydraulic retention time. Bioresour. Technol. 2013, 137, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.O.; Lackner, N.; Mutschlechner, M.; Prem, E.M.; Markt, R.; Illmer, P. Biological pretreatment strategies for second-generation lignocellulosic resources to enhance biogas production. Energies 2018, 11, 1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiumenti, A.; Boscaro, D.; Da Borso, F.; Sartori, L.; Pezzuolo, A. Biogas from fresh spring and summer grass: Effect of the harvesting period. Energies 2018, 11, 1466. [Google Scholar] [CrossRef] [Green Version]
- Ismail, Z.Z.; Talib, A.R. Recycled medical cotton industry waste as a source of biogas recovery. J. Clean. Prod. 2016, 112, 4413–4418. [Google Scholar] [CrossRef]
- Liu, T.; Sun, L.; Müller, B.; Schnürer, A. Importance of inoculum source and initial community structure for biogas production from agricultural substrates. Bioresour. Technol. 2017, 245, 768–777. [Google Scholar] [CrossRef]
- Han, S.; Liu, Y.; Zhang, S.; Luo, G. Reactor performances and microbial communities of biogas reactors: Effects of inoculum sources. Appl. Microbiol. Biotechnol. 2016, 100, 987–995. [Google Scholar] [CrossRef]
- Saidu, M.; Yuzir, A.; Salim, M.R.; Azman, S.; Abdullah, N. Influence of palm oil mill effluent as inoculum on anaerobic digestion of cattle manure for biogas production. Bioresour. Technol. 2013, 141, 174–176. [Google Scholar] [CrossRef]
- Fabbri, A.; Serranti, S.; Bonifazi, G. Biochemical methane potential (BMP) of artichoke waste: The inoculum effect. Waste Manag. Res. 2014, 32, 207–214. [Google Scholar] [CrossRef]
- Wang, K.; Yin, J.; Shen, D.; Li, N. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH. Bioresour. Technol. 2014, 161, 395–401. [Google Scholar] [CrossRef]
- Achinas, S.; Euverink, G.J.W. Effect of combined inoculation on biogas production from hardly degradable material. Energies 2019, 12, 217. [Google Scholar] [CrossRef] [Green Version]
- Karray, R.; Karray, F.; Loukil, S.; Mhiri, N.; Sayadi, S. Anaerobic co-digestion of Tunisian green macroalgae Ulva rigida with sugar industry wastewater for biogas and methane production enhancement. Waste Manag. 2017, 61, 171–178. [Google Scholar] [CrossRef]
- Matheri, A.; Ndiweni, S.; Belaid, M.; Muzenda, E.; Hubert, R. Optimising biogas production from anaerobic co-digestion of chicken manure and organic fraction of municipal solid waste. Renew. Sustain. Energy Rev. 2017, 80, 756–764. [Google Scholar] [CrossRef]
- Rizk, M.C.; Bergamasco, R.; Tavares, C.R.G. Anaerobic co-digestion of fruit and vegetable waste and sewage sludge. Int. J. Chem. React. Eng. 2007, 5, CP6-U148. [Google Scholar] [CrossRef]
- Shanmugam, P.; Horan, N. Optimising the biogas production from leather fleshing waste by co-digestion with MSW. Bioresour. Technol. 2009, 100, 4117–4120. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.-X.; Ruan, W.-Q. Biogas performance from co-digestion of Taihu algae and kitchen wastes. Energy Convers. Manag. 2013, 75, 21–24. [Google Scholar] [CrossRef]
- Yusuf, M.; Debora, A.; Ogheneruona, D. Ambient temperature kinetic assessment of biogas production from co-digestion of horse and cow dung. Res. Agric. Eng. 2011, 57, 97–104. [Google Scholar] [CrossRef] [Green Version]
- El-Mashad, H.M.; Zhang, R. Biogas production from co-digestion of dairy manure and food waste. Bioresour. Technol. 2010, 101, 4021–4028. [Google Scholar] [CrossRef]
- Westerholm, M.; Hansson, M.; Schnürer, A. Improved biogas production from whole stillage by co-digestion with cattle manure. Bioresour. Technol. 2012, 114, 314–319. [Google Scholar] [CrossRef]
- Corro, G.; Paniagua, L.; Pal, U.; Bañuelos, F.; Rosas, M. Generation of biogas from coffee-pulp and cow-dung co-digestion: Infrared studies of postcombustion emissions. Energy Convers. Manag. 2013, 74, 471–481. [Google Scholar] [CrossRef]
- Yong, Z.; Dong, Y.; Zhang, X.; Tan, T. Anaerobic co-digestion of food waste and straw for biogas production. Renew. Energy 2015, 78, 527–530. [Google Scholar] [CrossRef]
- Budych-Gorzna, M.; Smoczynski, M.; Oleskowicz-Popiel, P. Enhancement of biogas production at the municipal wastewater treatment plant by co-digestion with poultry industry waste. Appl. Energy 2016, 161, 387–394. [Google Scholar] [CrossRef]
- Vats, N.; Khan, A.A.; Ahmad, K. Effect of substrate ratio on biogas yield for anaerobic co-digestion of fruit vegetable waste & sugarcane bagasse. Environ. Technol. Innov. 2019, 13, 331–339. [Google Scholar]
- Kumar, V.; Singh, J.; Nadeem, M.; Kumar, P.; Pathak, V. Experimental and kinetics studies for biogas production using water hyacinth (Eichhornia crassipes [Mart.] Solms) and sugar mill effluent. Waste Biomass Valorization 2020, 11, 109–119. [Google Scholar] [CrossRef]
- Ferdeș, M.; Dincă, M.N.; Moiceanu, G.; Zăbavă, B.Ș.; Paraschiv, G. Microorganisms and enzymes used in the biological pretreatment of the substrate to enhance biogas production: A review. Sustainability 2020, 12, 7205. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Liu, X.; Hiligsmann, S.; Gourdon, R.; Bayard, R. Anaerobic digestion of lignocellulosic biomasses pretreated with Ceriporiopsis subvermispora. J. Environ. Manag. 2017, 193, 154–162. [Google Scholar] [CrossRef]
- Soccol, C.R.; Faraco, V.; Karp, S.G.; Vandenberghe, L.P.; Thomaz-Soccol, V.; Woiciechowski, A.L.; Pandey, A. Lignocellulosic bioethanol: Current status and future perspectives. In Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels; Academic Press: Cambridge, UK, 2019; pp. 331–354. [Google Scholar]
- Lukehurst, C.T.; Frost, P.; Al Seadi, T. Utilisation of digestate from biogas plants as biofertiliser. IEA Bioenergy 2010, 2010, 1–36. [Google Scholar]
- Igoni, A.H.; Ayotamuno, M.; Eze, C.; Ogaji, S.; Probert, S. Designs of anaerobic digesters for producing biogas from municipal solid-waste. Appl. Energy 2008, 85, 430–438. [Google Scholar] [CrossRef]
- Bakraoui, M.; Karouach, F.; Ouhammou, B.; Aggour, M.; Essamri, A.; El Bari, H. Biogas production from recycled paper mill wastewater by UASB digester: Optimal and mesophilic conditions. Biotechnol. Rep. 2020, 25, e00402. [Google Scholar] [CrossRef]
- Kumari, K.; Suresh, S.; Arisutha, S.; Sudhakar, K. Anaerobic co-digestion of different wastes in a UASB reactor. Waste Manag. 2018, 77, 545–554. [Google Scholar] [CrossRef]
- Pomberger, A.; Mo, Y.; Nandiwale, K.Y.; Schultz, V.L.; Duvadie, R.; Robinson, R.I.; Altinoglu, E.I.; Jensen, K.F. A continuous stirred-tank reactor (CSTR) Cascade for handling solid-containing photochemical reactions. Org. Process Res. Dev. 2019, 23, 2699–2706. [Google Scholar] [CrossRef]
- Jung, H.; Baek, G.; Lee, C. Magnetite-assisted in situ microbial oxidation of H2S to S0 during anaerobic digestion: A new potential for sulfide control. Chem. Eng. J. 2020, 397, 124982. [Google Scholar] [CrossRef]
- Ge, H.; Zhang, L.; Batstone, D.J.; Keller, J.; Yuan, Z. Impact of iron salt dosage to sewers on downstream anaerobic sludge digesters: Sulfide control and methane production. J. Environ. Eng. 2013, 139, 594–601. [Google Scholar] [CrossRef]
- Jagaba, A.; Kutty, S.; Lawal, I.; Abubakar, S.; Hassan, I.; Zubairu, I.; Umaru, I.; Abdurrasheed, A.; Adam, A.; Ghaleb, A. Sequencing batch reactor technology for landfill leachate treatment: A state-of-the-art review. J. Environ. Manag. 2021, 282, 111946. [Google Scholar] [CrossRef]
- Vallero, M.V.; Camarero, E.; Lettinga, G.; Lens, P.N. Thermophilic (55–65 °C) and extreme thermophilic (70–80 °C) sulfate reduction in methanol and formate-fed UASB reactors. Biotechnol. Progress 2004, 20, 1382–1392. [Google Scholar] [CrossRef]
- Lomte, A.T.; Bobade, V. Suitability of UASB reactor system in tropical developing countries like India. Int. J. Sci. Res. 2015, 4, 801–807. [Google Scholar]
- Batstone, D.J.; Torrijos, M.; Ruiz, C.; Schmidt, J.E. Use of an anaerobic sequencing batch reactor for parameter estimation in modelling of anaerobic digestion. Water Sci. Technol. 2004, 50, 295–303. [Google Scholar] [CrossRef]
- Siregar, Y.; Romaito, E. Study of Comparison between Covered Lagoon Method and Anaerobic Digester for POME Processing in Biogas Renewable Energy: A Review. In Proceedings of the 2020 4rd International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM), Medan, Indonesia, 3–4 September 2020; pp. 233–237. [Google Scholar]
- Mukumba, P.; Makaka, G.; Mamphweli, S. Biogas technology in South Africa, problems, challenges and solutions. Int. J. Sustain. Energy Environ. Res. 2016, 5, 58–69. [Google Scholar] [CrossRef]
Feedstock 1 | Feedstock 2 | Temperature () | Optimal pH | HRT (Days) | Biogas/Methane Yield (L) | Reference |
---|---|---|---|---|---|---|
Fruit and vegetable waste | Sewage sludge | 20–30 | 4.1 | 105 | 331 | [112] |
Leather flashing (LF) | MSW | - | 6.5 | 30–35 | 6.518 | [113] |
Taihu algea | Kitchen waste | 35 | - | 1 | 0.388.6 | [114] |
Horse dung | Cow dung | 28–33 | - | 30 | 0.360 | [115] |
Dairy manure | Food waste | 35 | - | 20–30 | 0.311 | [116] |
Whole stillage | Cattle manure | 37 | 5.9–6.6 | 640 | 0.310 | [117] |
Coffee-pulp | Cow dung | 35 | 7.0 | 240 | - | [118] |
Food waste | Straw | 35 | 7.0–7.5 | - | 0.580 | [119] |
Municipal wastewater | Poultry waste | 35 | 7.3 | 34 | 0.88 | [120] |
Fruit vegetable waste | Sugarcane bagasse | - | 3.9–7.0 | 30 | 2.600 | [121] |
Water hyacinth | Sugar mill effluent | 30, 40 | 6.4–8.8 | 15 | 6.771 | [122] |
Biodigester Type | Feedstocks | Advantages | Shortcomings | Ref |
---|---|---|---|---|
Continuous Stirred-Tank Reactor (CSTR) | Ulva slurry + whey | Enhanced mass transfer, improved temperature control, facile reaction optimization, easy automation | usage or generation of solids during the reaction, plugging problems | [131,132] |
Batch | Thickened sludge | simple and flexible in configuration and operation, low installation and operation cost, higher biomass retention | long run times, and difficulty in defining initial conditions | [133,134] |
Upflow Anaerobic Sludge Blanket (UASB) | Recycled and synthetic wastewater containing methanol | no need for temperature control as heat is released during methanogenesis | delay in start-up and granule formation, inability to remove pathogens and coloring agents from the wastewater | [129,135,136] |
Anaerobic Sequencing Batch Reactor (ASBR) | Synthetic wastewater | relatively cheap, their stepwise nature allows observation of dynamic, repeatable behavior | heavy computational requirements for multiple cycles, difficulty in establishing the correct biomass concentration in the reactor | [137] |
Covered lagoon | Palm Oil Mill Effluent | easy to build, operate, and maintain | needs hydraulic maintenance from 20 to 90 days and wide areas, easy to leak out | [138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tshemese, Z.; Deenadayalu, N.; Linganiso, L.Z.; Chetty, M. An Overview of Biogas Production from Anaerobic Digestion and the Possibility of Using Sugarcane Wastewater and Municipal Solid Waste in a South African Context. Appl. Syst. Innov. 2023, 6, 13. https://doi.org/10.3390/asi6010013
Tshemese Z, Deenadayalu N, Linganiso LZ, Chetty M. An Overview of Biogas Production from Anaerobic Digestion and the Possibility of Using Sugarcane Wastewater and Municipal Solid Waste in a South African Context. Applied System Innovation. 2023; 6(1):13. https://doi.org/10.3390/asi6010013
Chicago/Turabian StyleTshemese, Zikhona, Nirmala Deenadayalu, Linda Zikhona Linganiso, and Maggie Chetty. 2023. "An Overview of Biogas Production from Anaerobic Digestion and the Possibility of Using Sugarcane Wastewater and Municipal Solid Waste in a South African Context" Applied System Innovation 6, no. 1: 13. https://doi.org/10.3390/asi6010013
APA StyleTshemese, Z., Deenadayalu, N., Linganiso, L. Z., & Chetty, M. (2023). An Overview of Biogas Production from Anaerobic Digestion and the Possibility of Using Sugarcane Wastewater and Municipal Solid Waste in a South African Context. Applied System Innovation, 6(1), 13. https://doi.org/10.3390/asi6010013