Bone Anomaly Detection by Extracting Regions of Interest and Convolutional Neural Networks
Abstract
:1. Introduction
2. Literature Review
- 1-
- Not extracting hand areas automatically or extracting limited areas
- 2-
- The use of single class models which actually reduces the comprehensiveness of the model
- 3-
- Failure to use approaches such as collective intelligence such as ensemble algorithms to detect bone age from different areas of the hand
3. The Proposed Method
3.1. Preprocessing
Algorithm 1. (Binary Image)—Pseudo code– |
A Image From DHA. Binary Image
|
3.2. Extraction of ROI Regions
3.3. Age Assessment
4. Results
4.1. Dataset
4.2. The Initial Values of the CNN Training Parameters
4.3. Evaluation Measures
4.4. Evaluation of the Proposed Method
4.5. Comparison of the Proposed Method with Other Advanced Methods
5. Conclusions and Future Scope
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martin, D.D.; Wit, J.M.; Hochberg, Z.; Sävendahl, L.; Van Rijn, R.R.; Fricke, O.; Cameron, N.; Caliebe, J.; Hertel, T.; Kiepe, D. The use of bone age in clinical practice–part 1. Horm. Res. Paediatr. 2011, 76, 1–9. [Google Scholar] [CrossRef]
- Gilsanz, V.; Ratib, O. Hand Bone Age: A Digital Atlas of Skeletal Maturity; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Olivares, L.A.L.; De León, L.G.; Fragoso, M.I. Skeletal age prediction model from percentage of adult height in children and adolescents. Sci. Rep. 2020, 10, 15768. [Google Scholar] [CrossRef] [PubMed]
- Crocker, M.K.; Stern, E.A.; Sedaka, N.M.; Shomaker, L.B.; Brady, S.M.; Ali, A.H.; Shawker, T.H.; Hubbard, V.S.; Yanovski, J.A. Sexual dimorphisms in the associations of BMI and body fat with indices of pubertal development in girls and boys. J. Clin. Endocrinol. Metab. 2014, 99, E1519–E1529. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.; Whitehouse, R.; Marshall, W.; Carter, B. Prediction of adult height from height, bone age, and occurrence of menarche, at ages 4 to 16 with allowance for midparent height. Arch. Dis. Child. 1975, 50, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.M. Assessement of Skeletal Maturity and Predicting of Adult Height (TW2 Method). Predict. Adult Height 1983, 131, 22–37. [Google Scholar]
- Carty, H. Assessment of Skeletal Maturity and Prediction of Adult Height (TW3 Method); Tanner, J., Healy, M., Goldstein, H., Cameron, N., Eds.; WB Saunders: London, UK, 2001; p. 110. ISBN 0-7020-2511-9. [Google Scholar]
- Lee, J.H.; Kim, Y.J.; Kim, K.G. Bone age estimation using deep learning and hand X-ray images. Biomed. Eng. Lett. 2020, 10, 323–331. [Google Scholar] [CrossRef]
- Lindsey, R.; Daluiski, A.; Chopra, S.; Lachapelle, A.; Mozer, M.; Sicular, S.; Hanel, D.; Gardner, M.; Gupta, A.; Hotchkiss, R. Deep neural network improves fracture detection by clinicians. Proc. Natl. Acad. Sci. USA 2018, 115, 11591–11596. [Google Scholar] [CrossRef]
- Cao, F.; Huang, H.; Pietka, E.; Gilsanz, V.; Dey, P.; Gertych, A.; Pospiech-Kurkowska, S. Image Database for Digital Hand Atlas. In Proceedings of the Medical Imaging 2003: PACS and Integrated Medical Information Systems: Design and Evaluation, San Diego, CA, USA, 18–20 February 2003. [Google Scholar] [CrossRef]
- van Rijn, R.R.; Lequin, M.H.; Thodberg, H.H. Automatic determination of Greulich and Pyle bone age in healthy Dutch children. Pediatr. Radiol. 2009, 39, 591–597. [Google Scholar] [CrossRef]
- Thodberg, H.H.; Kreiborg, S.; Juul, A.; Pedersen, K.D. The BoneXpert Method for Automated Determination of Skeletal Maturity. IEEE Trans. Med. Imaging 2009, 28, 52–66. [Google Scholar] [CrossRef]
- Mansourvar, M.; Raj, R.G.; Ismail, M.A.; Kareem, S.A.; Shanmugam, S.; Wahid, S.; Mahmud, R.; Abdullah, R.H.; Nasaruddin, F.H.F.; Idris, N. Automated web based system for bone age assessment using histogram technique. Malays. J. Comput. Sci. 2012, 25, 107–121. [Google Scholar]
- Mandal, M.K.; Aboulnasr, T.; Panchanathan, S. Fast wavelet histogram techniques for image indexing. Comput. Vis. Image Underst. 1999, 75, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Son, S.J.; Song, Y.; Kim, N.; Do, Y.; Kwak, N.; Lee, M.S.; Lee, B.-D. TW3-based fully automated bone age assessment system using deep neural networks. IEEE Access 2019, 7, 33346–33358. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Zhang, Y.; Lu, Y.; Liu, S. Automatic feature extraction in X-ray image based on deep learning approach for determination of bone age. Future Gener. Comput. Syst. 2020, 110, 795–801. [Google Scholar] [CrossRef]
- Lee, H.; Tajmir, S.; Lee, J.; Zissen, M.; Yeshiwas, B.A.; Alkasab, T.K.; Choy, G.; Do, S. Fully Automated Deep Learning System for Bone Age Assessment. J. Digit. Imaging 2017, 30, 427–441. [Google Scholar] [CrossRef]
- Spampinato, C.; Palazzo, S.; Giordano, D.; Aldinucci, M.; Leonardi, R. Deep learning for automated skeletal bone age assessment in X-ray images. Med. Image Anal. 2017, 36, 41–51. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, T.; Xu, X. Bone age assessment based on deep convolution neural network incorporated with segmentation. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1951–1962. [Google Scholar] [CrossRef]
- Ding, Y.A.; Mutz, F.; Côco, K.F.; Pinto, L.A.; Komati, K.S. Bone age estimation from carpal radiography images using deep learning. Expert Syst. 2020, 37, e12584. [Google Scholar] [CrossRef]
- Bui, T.D.; Lee, J.-J.; Shin, J. Incorporated region detection and classification using deep convolutional networks for bone age assessment. Artif. Intell. Med. 2019, 97, 1–8. [Google Scholar] [CrossRef]
- Li, S.; Liu, B.; Li, S.; Zhu, X.; Yan, Y.; Zhang, D. A deep learning-based computer-aided diagnosis method of X-ray images for bone age assessment. Complex Intell. Syst. 2022, 8, 1929–1939. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, X.; Jing, L.; Fu, X. Data Enhancement and Deep Learning for Bone Age Assessment using The Standards of Skeletal Maturity of Hand and Wrist for Chinese. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Online, 1–5 November 2021; pp. 2605–2609. [Google Scholar]
- Sepahvand, M.; Abdali-Mohammadi, F.; Mardukhi, F. Evolutionary metric-learning-based recognition algorithm for online isolated Persian/Arabic characters, reconstructed using inertial pen signals. IEEE Trans. Cybern. 2016, 47, 2872–2884. [Google Scholar] [CrossRef]
- Kashif, M.; Deserno, T.M.; Haak, D.; Jonas, S. Feature description with SIFT, SURF, BRIEF, BRISK, or FREAK? A general question answered for bone age assessment. Comput. Biol. Med. 2016, 68, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Gertych, A.; Zhang, A.; Sayre, J.; Pospiech-Kurkowska, S.; Huang, H.K. Bone age assessment of children using a digital hand atlas. Comput. Med. Imaging Graph. 2007, 31, 322–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 12 June 2015; pp. 1–9. [Google Scholar]
Layer | Kernel Sizes | Number of Filter | Parameters |
---|---|---|---|
Convolutional Layer1 | 3 × 3 | 32 | Stride = 1, Padding = 1, Activation = Relu Batch Normalization with € = 1.001 × |
Convolutional Layer2 | 3 × 3 | 64 | Stride = 1, Padding = 2, activation = ‘relu’ |
Pooling Layer1 | 2 × 2 | - | Stride = 2 |
Convolutional Layer3 | 3 × 3 | 64 | Stride = 1, Padding = 2, activation = ‘relu’ |
Pooling Layer2 | 2 × 2 | - | Stride = 2 |
Convolutional Layer4 | 3 × 3 | 64 | Stride = 1, Padding = 2, activation = ‘relu’ |
Pooling Layer3 | 2 × 2 | - | Stride = 2 |
Dense 1 | 128 | activation = ‘relu’ | |
Dense (output) | 19 | activation = ‘softmax’ |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Asian | 3 | 10 | 10 | 10 | 10 | 17 | 12 | 14 | 14 | 14 | 29 | 27 | 29 | 30 | 25 | 20 | 20 | 20 | 20 |
Black | 9 | 10 | 10 | 10 | 10 | 18 | 16 | 18 | 21 | 19 | 27 | 25 | 30 | 30 | 26 | 20 | 20 | 20 | 20 |
Caucasian | 6 | 10 | 10 | 10 | 10 | 17 | 15 | 17 | 19 | 15 | 23 | 27 | 28 | 25 | 21 | 20 | 20 | 20 | 20 |
Hispanic | 5 | 10 | 10 | 10 | 10 | 19 | 19 | 20 | 19 | 20 | 26 | 29 | 30 | 30 | 28 | 20 | 20 | 20 | 20 |
All | 1400 |
Method | Accuracy |
---|---|
With segmentation | 85.2% |
Without segmentation | 59.4% |
Age | %Asian | %Black | %Caucasian | %Hispanic |
---|---|---|---|---|
Age 0 | 81.1 | 82.6 | 82.4 | 81.5 |
Age 1 | 81.0 | 80.8 | 81.1 | 80.4 |
Age 2 | 81.2 | 84.0 | 83.6 | 82.6 |
Age 3 | 82.0 | 82.5 | 83.4 | 83.9 |
Age 4 | 82.7 | 83.9 | 83.7 | 84.8 |
Age 5 | 83.0 | 83.0 | 85.1 | 85.6 |
Age 6 | 82.9 | 82.9 | 85.5 | 83.5 |
Age 7 | 81.9 | 80.2 | 80.6 | 82.4 |
Age 8 | 81.9 | 80.7 | 81.4 | 81.8 |
Age 9 | 85.4 | 84.9 | 86.2 | 84.9 |
Age 10 | 83.5 | 83.6 | 82.5 | 84.7 |
Age 11 | 82.6 | 82.8 | 81.2 | 83.3 |
Age 12 | 80.9 | 80.1 | 81.9 | 81.2 |
Age 13 | 84.3 | 84.9 | 83.2 | 83.1 |
Age 14 | 83.6 | 83.5 | 85.4 | 81.9 |
Age 15 | 84.9 | 83.9 | 84.6 | 81.8 |
Age 16 | 85.4 | 86.9 | 84.2 | 84.3 |
Age 17 | 80.9 | 80.4 | 82.5 | 81.6 |
Age 18 | 80.6 | 80.2 | 81.7 | 82.4 |
AVG | 82.0 | 83.5 | 83.1 | 82.9 |
Age | %Accuracy | %Recall | %Precision | %F1 |
---|---|---|---|---|
Age 0 | 82.1 | 83.3 | 83.4 | 83.3 |
Age 1 | 81.0 | 81.8 | 82.3 | 82.04 |
Age 2 | 83.3 | 82.6 | 82.5 | 82.5 |
Age 3 | 82.9 | 83.8 | 83.3 | 82.5 |
Age 4 | 83.5 | 83.4 | 82.4 | 82.4 |
Age 5 | 83.9 | 83.6 | 83.8 | 83.1 |
Age 6 | 83.4 | 84.8 | 85.6 | 85.1 |
Age 7 | 82.2 | 80.9 | 81.9 | 81.3 |
Age 8 | 80.9 | 81.5 | 82.5 | 81.9 |
Age 9 | 85.3 | 84.2 | 84.1 | 84.1 |
Age 10 | 83.3 | 82.1 | 83.7 | 82.8 |
Age 11 | 82.4 | 83.6 | 82.3 | 82.9 |
Age 12 | 81.2 | 83.7 | 83.8 | 82.7 |
Age 13 | 83.8 | 84.9 | 83.2 | 83.5 |
Age 14 | 83.3 | 84.6 | 83.4 | 83.9 |
Age 15 | 83.5 | 84.5 | 84.5 | 84.5 |
Age 16 | 84.9 | 83.6 | 85.3 | 84.4 |
Age 17 | 82.3 | 90.2 | 80.4 | 85.4 |
Age 18 | 80.9 | 81.7 | 82.2 | 82.9 |
AVG | 82.79 | 83.8 | 83.1 | 83.2 |
Reference | Method | No.Image | Age | MAE (%) | Accuracy (%) |
---|---|---|---|---|---|
M. Kashif et al. [25] | SVM | 1100-DHA | 0–18 | 0.605 | - |
A. Gertych et al. [26] | Fuzzy classifiers | 1400-DHA | 0–18 | - | 79 |
M. Mansourvar et al. [13] | HistogramTechnique | 1100-DHA | 0–18 | 0.170 | - |
C. Spampinato et al. [18] | CNN | 1391-DHA | 0–18 | - | 79 |
A. Ding et al. [20] | CNN | 1400-DHA | 0–18 | 0.59 | - |
D. Bui et al. [21] | CNN+SVR | 1400-DHA | 0–18 | - | 67 |
Alexnet [27] | Alexnet | 1400-DHA | 0–18 | - | 80.03 |
GoogLeNet [28] | GoogLeNet | 1400-DHA | 0–18 | - | 79.2 |
Proposed method | Ensemble CNNs | 1400-DHA | 0–18 | 0.1 | 83.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meqdad, M.N.; Rauf, H.T.; Kadry, S. Bone Anomaly Detection by Extracting Regions of Interest and Convolutional Neural Networks. Appl. Syst. Innov. 2023, 6, 21. https://doi.org/10.3390/asi6010021
Meqdad MN, Rauf HT, Kadry S. Bone Anomaly Detection by Extracting Regions of Interest and Convolutional Neural Networks. Applied System Innovation. 2023; 6(1):21. https://doi.org/10.3390/asi6010021
Chicago/Turabian StyleMeqdad, Maytham N., Hafiz Tayyab Rauf, and Seifedine Kadry. 2023. "Bone Anomaly Detection by Extracting Regions of Interest and Convolutional Neural Networks" Applied System Innovation 6, no. 1: 21. https://doi.org/10.3390/asi6010021
APA StyleMeqdad, M. N., Rauf, H. T., & Kadry, S. (2023). Bone Anomaly Detection by Extracting Regions of Interest and Convolutional Neural Networks. Applied System Innovation, 6(1), 21. https://doi.org/10.3390/asi6010021