Gumbel (EVI)-Based Minimum Cross-Entropy Thresholding for the Segmentation of Images with Skewed Histograms
Abstract
:1. Introduction
- The introduction of the utilization of the maximum likelihood estimation of the Gumbel distribution in thresholding methods.
- The proposal of an improved entropy-based thresholding model for the precise segmentation of images with skewed histograms and the validation of the results through unsupervised and supervised evaluations.
- The provision of an extended approach for mean estimations for both right- and left-skewed histograms.
2. Related Work
2.1. Minimum Cross-Entropy Thresholding (MCET)
2.2. The Gumbel Distribution
2.3. Maximum Likelihood Estimation (MLE)
3. Materials and Methods
3.1. Materials
3.2. Proposed Method
3.3. Proposed Algorithm
Algorithm 1 Parallel Processing |
|
4. Performance Evaluation
4.1. Unsupervised Evaluation
4.2. Supervised Evaluation
5. Results and Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, H.; Jia, H.; Xing, Z.; Ma, J.; Peng, X. Modified grasshopper algorithm-based multilevel thresholding for color image segmentation. IEEE Access 2019, 7, 11258–11295. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Li, C.; Lee, C. Minimum cross entropy thresholding. Pattern Recognit. 1993, 26, 617–625. [Google Scholar] [CrossRef]
- Jumiawi, W.A.H.; El-Zaart, A. Otsu Thresholding Model Using Heterogeneous Mean Filters for Precise Images Segmentation. In Proceedings of the 2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE), M’sila, Algeria, 26–27 November 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Jiang, W.; Ni, Y.; Pang, Z.; Li, X.; Ju, H.; He, G.; Lv, J.; Yang, K.; Fu, J.; Qin, X. An Effective Water Body Extraction Method with New Water Index for Sentinel-2 Imagery. Water 2021, 13, 1647. [Google Scholar] [CrossRef]
- Yue, H.; Li, Y.; Qian, J.; Liu, Y. A new accuracy evaluation method for water body extraction. Int. J. Remote Sens. 2020, 41, 7311–7342. [Google Scholar] [CrossRef]
- Liu, X.; Hou, S.; Liu, S.; Ding, W.; Zhang, Y. Attention-based multimodal glioma segmentation with multi-attention layers for small-intensity dissimilarity. J. King Saud. Univ.-Comput. Inf. Sci. 2023, 35, 183–195. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Fu, W.; Liu, S. SCTV-UNet: A COVID-19 CT segmentation network based on attention mechanism. Soft Comput. 2023, 1–11. [Google Scholar] [CrossRef]
- Jumiawi, W.A.H.; El-Zaart, A. A Boosted Minimum Cross Entropy Thresholding for Medical Images Segmentation Based on Heterogeneous Mean Filters Approaches. J. Imaging 2022, 8, 43. [Google Scholar] [CrossRef]
- Jumiawi, W.A.H.; El-Zaart, A. Improvement in the Between-Class Variance Based on Lognormal Distribution for Accurate Image Segmentation. Entropy 2022, 24, 1204. [Google Scholar] [CrossRef]
- Gumbel, E.J. Statistics of Extremes; Columbia University Press: New York, NY, USA, 1958; p. 377. [Google Scholar]
- Liu, Q.; Huang, X.; Zhou, H. The flexible Gumbel distribution: A new model for inference about the mode. arXiv 2022, arXiv:2212.01832. [Google Scholar]
- Zhan, Y.; Zhang, G. An Improved OTSU Algorithm Using Histogram Accumulation Moment for Ore Segmentation. Symmetry 2019, 11, 431. [Google Scholar] [CrossRef]
- Jumiawi, W.A.H.; El-Zaart, A. Image Spectrum Segmentation for Lowpass and Highpass Filters. In Proceedings of the 2018 4th International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), Mangalore, India, 6–8 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 327–332. [Google Scholar]
- Kullback, S. Information Theory and Statistics; Wiley: New York, NY, USA, 1959. [Google Scholar]
- Fragoso, R.; Carvalho, M.L.d.S. Estimation of cost allocation coefficients at the farm level using an entropy approach. J. Appl. Stat. 2013, 40, 1893–1906. [Google Scholar] [CrossRef]
- Kalyani, R.; Sathya, P.D.; Sakthivel, V.P. Image segmentation with Kapur, Otsu and minimum cross entropy based multilevel thresholding aided with cuckoo search algorithm. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1119, 012019. [Google Scholar] [CrossRef]
- Zreika, N.; Zreika, A.; Aref, N.; El Zaart, A.; Al Shakik, A. An improvement of cross entropy thresholding for skin cancer. BAU J.-Sci. Technol. 2021, 2, 2. [Google Scholar]
- Xavier, A.; Fragoso, R.; De Belém Costa Freitas, M.; Do Socorro Rosário, M.; Valente, F. A Minimum Cross-Entropy Approach to Disaggregate Agricultural Data at the Field Level. Land 2018, 7, 62. [Google Scholar] [CrossRef]
- Babu, A.A.; Rajam, V.M.A. Water-body segmentation from satellite images using Kapur’s entropy-based thresholding method. Comput. Intell. 2020, 36, 1242–1260. [Google Scholar] [CrossRef]
- Chakraborty, R.; Sushil, R.; Garg, M.L. An Improved PSO-Based Multilevel Image Segmentation Technique Using Minimum Cross-Entropy Thresholding. Arab. J. Sci. Eng. 2019, 44, 3005–3020. [Google Scholar] [CrossRef]
- Al-Osaimi, G.; El-Zaart, A. Minimum Cross Entropy Thresholding for SAR Images. In Proceedings of the 3rd International Conference on Information and Communication Technologies: From Theory to Applications, Damascus, Syria, 7–11 April 2008; pp. 1–6. [Google Scholar]
- Esmaeili, L.; Mousavirad, S.J.; Shahidinejad, A. An efficient method to minimize cross-entropy for selecting multi-level threshold values using an improved human mental search algorithm. Expert Syst. Appl. 2021, 182, 115106. [Google Scholar] [CrossRef]
- Jumiawi, W.A.H.; El-Zaart, A. Improving Minimum Cross-Entropy Thresholding for Segmentation of Infected Foregrounds in Medical Images Based on Mean Filters Approaches. Contrast Media Mol. Imaging 2022, 2022, 1–14. [Google Scholar] [CrossRef]
- Rawas, S.; El-Zaart, A. Precise and parallel segmentation model (PPSM) via MCET using hybrid distributions. Appl. Comput. Inform. 2020. ahead-of-print. [Google Scholar] [CrossRef]
- Dawley, S.; Zhang, Y.; Liu, X.; Jiang, P.; Tick, G.R.; Sun, H.; Zheng, C.; Chen, L. Statistical analysis of extreme events in precipitation, stream discharge, and groundwater head fluctuation: Distribution, memory, and correlation. Water 2019, 11, 707. [Google Scholar] [CrossRef]
- Pratiwi, N.; Iswahyudi, C.; I Safitri, R. Generalized extreme value distribution for value at risk analysis on gold price. J. Phys. Conf. Ser. 2019, 1217, 012090. [Google Scholar] [CrossRef]
- Kotz, S.; Nadarajah, S. Extreme Value Distributions: Theory and Applications; World Scientific: Singapore, 2000. [Google Scholar] [CrossRef]
- El-Shanshoury, G.; Ramadan, A.A. Estimation of Extreme Value Analysis of Wind Speed in the North-Western Coast of Egypt. Arab. J. Soc. Sci. 2012, 45, 265–274. [Google Scholar]
- Gutman, D.; Codella, N.C.; Celebi, E.; Helba, B.; Marchetti, M.; Mishra, N.; Halpern, A. Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical Imaging. arXiv 2016, arXiv:1605.01397. [Google Scholar]
- Levine, M.D.; Nazif, A.M. Dynamic measurement of computer generated image segmentations. IEEE Trans. Pattern Anal. Mach. Intell. 1985, 2, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Chabrier, S.; Emile, B.; Rosenberger, C.; Laurent, H. Unsupervised Performance Evaluation of Image Segmentation. EURASIP J. Adv. Signal Process. 2006, 2006, 096306. [Google Scholar] [CrossRef]
- Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Alpert, S.; Galun, M.; Brandt, A.; Basri, R. Image segmentation by probabilistic bottom-up aggregation and cue integration. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 315–327. [Google Scholar] [CrossRef]
- Pont-Tuset, J.; Marques, F. Supervised Evaluation of Image Segmentation and Object Proposal Techniques. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 1465–1478. [Google Scholar] [CrossRef]
(a) | (b) | (c) | (d) | (e) | (f) |
---|---|---|---|---|---|
IMG 1 | 0.79471 | 0.79471 | 0.81531 | 0.80269 | 0.84069 |
IMG 2 | 0.78977 | 0.81086 | 0.81966 | 0.80571 | 0.85816 |
IMG 3 | 0.80253 | 0.80896 | 0.80719 | 0.85880 | 0.81705 |
IMG 4 | 0.75995 | 0.74663 | 0.75137 | 0.83207 | 0.76492 |
Sentinel-2 Waterbodies | ||
---|---|---|
Distributions | Avg. Evaluations | Improvement% |
Gaussian | 0.79126 | -- |
Gamma | 0.81586 | +3.10% |
Log-normal | 0.83740 | +5.83% |
Gumbel—min | 0.82989 | +4.88% |
Gumbel—max | 0.87041 | +10.0% |
Dermoscopic Skin Lesion | ||
---|---|---|
Distributions | Avg. Evaluations | Improvement% |
Gaussian | 0.78092 | -- |
Gamma | 0.79089 | +1.27% |
Log-normal | 0.79250 | +1.48% |
Gumbel—min | 0.85891 | +9.98% |
Gumbel—max | 0.80419 | +2.97% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jumiawi, W.A.H.; El-Zaart, A. Gumbel (EVI)-Based Minimum Cross-Entropy Thresholding for the Segmentation of Images with Skewed Histograms. Appl. Syst. Innov. 2023, 6, 87. https://doi.org/10.3390/asi6050087
Jumiawi WAH, El-Zaart A. Gumbel (EVI)-Based Minimum Cross-Entropy Thresholding for the Segmentation of Images with Skewed Histograms. Applied System Innovation. 2023; 6(5):87. https://doi.org/10.3390/asi6050087
Chicago/Turabian StyleJumiawi, Walaa Ali H., and Ali El-Zaart. 2023. "Gumbel (EVI)-Based Minimum Cross-Entropy Thresholding for the Segmentation of Images with Skewed Histograms" Applied System Innovation 6, no. 5: 87. https://doi.org/10.3390/asi6050087
APA StyleJumiawi, W. A. H., & El-Zaart, A. (2023). Gumbel (EVI)-Based Minimum Cross-Entropy Thresholding for the Segmentation of Images with Skewed Histograms. Applied System Innovation, 6(5), 87. https://doi.org/10.3390/asi6050087