The Effect of Titanium Oxide Additions on the Phase Chemistry and Properties of Chromite-Magnesia Refractories
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Brick Samples
2.2. Mineralogical Analysis of the Bricks
2.2.1. Bulk Chemical Analysis
2.2.2. XRD Analysis
2.2.3. SEM Analysis
2.3. Bulk Density and Apparent Porosity Measurements
2.4. Thermal Expansion Coefficient
3. Results
3.1. Bulk Chemical Analysis
3.2. Microscopy
3.3. Phase Chemistry
3.4. Mass and Volume Percentages of the Phases
3.5. Bulk Density and Porosity
3.6. Thermal Expansion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McEwan, N.; Courtney, T.; Parry, R.A.; Knupfer, P. Chromite—A cost-effective refractory raw material for refractories in various metallurgical applications. In Southern African Pyrometallurgy 2011, Proceeding of the International Conference, Johannesburg, South Africa, 6–9 March 2011; Jones, R.T., Den Hoed, P., Eds.; Southern African Institute of Mining and Metallurgy: Johannesburg, South Africa, 2001; pp. 359–372. [Google Scholar]
- Gregurek, D.; Reinharter, K.; Majcenovic, C.; Wenzl, C.; Spanring, A. Overview of wear phenomena in lead processing furnaces. J. Eur. Cer. Soc. 2015, 35, 1683–1698. [Google Scholar] [CrossRef]
- Gregurek, D.; Reiter, V.; Franzkowiak, A.; Spanring, A.; Drew, B.; Pichler, C.; Flynn, D.R. The benefits and knowledge gained in refractory testing with slag and nickel matte. J. Saimm. 2017, 117, 829–839. [Google Scholar] [CrossRef]
- Nelson, L.R.; Stober, F.; Ndlovu, J.; De Villiers, L.P.S.; Wanblad, D. Role of technical innovation on production delivery at the Polokwane Smelter. In Nickel and Cobalt 2005: Challenges in Extraction and Production, Proceeding of the 44th Annual Conference of Metallurgists, Calgary, Alberta, Canada, 21–24 August 2005; The Metallurgy and Materials Society (MetSoc) of the Canadian Institute of Mining, Metallurgy and Petroleum: Quebec, QC, Canada, 2005; pp. 91–116. [Google Scholar]
- Azhari, A.; Golestani-Fard, F.; Sarpoolaky, H. Effect of nano iron oxide as an additive on phase and microstructural evolution of Mag-Chrome refractory matrix. J. Eur. Cer. Soc. 2009, 29, 2679–2684. [Google Scholar] [CrossRef]
- Chesters, J.H. Refractories: Production and Properties; The Institute of Materials: London, UK, 1973; pp. 236–237. [Google Scholar]
- Javadpour, J.; Hosseinzadeh, M.; Marghussian, V. Effect of Particle Size Distribution and Chemical Composition on Properties of Magnesia Chromite Bricks. I.J.E. Trans. B Appl. 2002, 15, 183–190. [Google Scholar]
- Goto, K.; Lee, W.E. The “Direct Bond” in Magnesia Chromite and Magnesia Spinel Refractories. J. Am. Cer. Soc. 1995, 78, 1753–1760. [Google Scholar] [CrossRef]
- Nell, J.; Pollak, H. Cation to anion stoichiometry of chromite: A new perspective. Hyperfine Interact. 1998, 111, 309–312. [Google Scholar] [CrossRef]
- Shaw, A.; De Villiers, L.P.S.; Hundermark, R.J.; Ndlovu, J.; Nelson, L.R.; Pieterse, B.; Sullivan, R.; Voermann, N.; Walker, C.; Stober, F.; et al. Challenges and solutions in PGM furnace operation: High matte temperature and copper cooler corrosion. J. Saimm. 2013, 113, 251–261. [Google Scholar]
- Xinwei, Z.; Yonghe, L.; Wendong, Q.; Wei, Z.; Peng, Y.; Jianhua, N.; Renqu, C. Influence of fused zirconium corundum addition on properties of chrome-free castables for RH refining furnace. Ceram. Int. 2014, 40, 849–852. [Google Scholar] [CrossRef]
- Liu, L.; Chen, M.; Xu, L.; Yin, X.; Sun, W. Effect of BaO Addition on Densification and Mechanical Properties of Al2O3-MgO-CaO Refractories. Metals 2016, 6, 84. [Google Scholar] [CrossRef] [Green Version]
- Kusiorowski, R.; Wojsa, W.; Psiuk, B.; Wala, T. Influence of zirconia addition on the properties of magnesia refractories. Ceram. Int. 2016, 42, 11373–11386. [Google Scholar] [CrossRef]
- Lodha, R.; Oprea, G.; Troczynski, T. Role of Ti4+ and Sn4+ ions in spinel formation and reactive sintering of magnesia-rich ceramics. Ceram. Int. 2011, 37, 465–470. [Google Scholar] [CrossRef]
- Jingkun, Y.; Shuping, D.; Xinkui, G. Effect of Additives on the Densification of Magnesia-Chrome Refractory. In Proceedings of the UNITECR 2003, Osaka International Convention Center, Osaka, Japan, 19–22 October 2003. [Google Scholar]
- Chen, M.; Lu, C.; Yu, J. Improvement in performance of MgO–CaO refractories by addition of nano-sized ZrO2. J. Eur. Cer. Soc. 2007, 27, 4633–4638. [Google Scholar] [CrossRef]
- Sarkar, R.; Bannerjee, G. Effect of addition of TiO2 on reaction sintered MgO–Al2O3 spinels. J. Eur. Cer. Soc. 2000, 20, 2133–2141. [Google Scholar] [CrossRef]
- Schacht, C.A. Refractories Handbook; CRC Press, Taylor & Frances Group: Boca Raton, FL, USA, 2004; pp. 227–228. [Google Scholar]
- TOPAS V4.2, Bruker AXS GmbH. Available online: http://www.topas-academic.net/ (accessed on 15 June 2019).
- Dollase, W.A. Correction of intensities for preferred orientation in powder diffractometry: Application of the March model. J. Appl. Cryst. 1986, 19, 267–272. [Google Scholar] [CrossRef]
- Touloukian, Y.S.; Kirby, R.K.; Taylor, E.R.; Lee, T.Y.R. Thermophysical properties of m atter—The TPRC data series-Vol 13. Thermal Expansion—Nonmetallic Solids; Purdue University: Indiana, MI, USA, 1977. [Google Scholar]
- Quintiliani, M.; Andreozzi, G.B.; Graziani, G. Fe2+ and Fe3+ quantification by different approaches and fO2 estimation for Albanian Cr-spinels. Am. Mineral. 2006, 91, 907–916. [Google Scholar] [CrossRef]
- Ferracutti, G.; Gargiulo, M.F.; Ganuza, M.L.; Castro, S. Determination of the spinel group end-members based on electron microprobe analyses. Miner. Pet. 2014, 109, 153–160. [Google Scholar] [CrossRef]
- Turner, P.S. Thermal expansion stresses in reinforced plastics. J. Res. Nat. Bur. Stand. Res. Pap. 1946, 37, 239–250. [Google Scholar] [CrossRef]
- Dealmeida, M.; Brook, R.J.; Carruthers, T.G. Thermal expansion of ceramics in the MgO-CaO system. J. Mat. Sci. 1979, 14, 2191–2194. [Google Scholar] [CrossRef]
- Karch, C. Micromechanical analysis of thermal expansion coefficients. Modeling Numerical Simul. Mat. Sci. 2014, 4, 104–118. [Google Scholar] [CrossRef] [Green Version]
- Zhongying, M.; Weigua, S.; Lifei, Z.; Sean, R.S.; Xi, L. Equation of state of a natural chromian spinel at ambient temperature. Minerals 2018, 8, 591. [Google Scholar]
- Mingda, L.; Xi, L.; Shieh, S.R.; Tianqi, X.; Fei, W.; Clemens, P.; Prakapenka, V.P. Equation of state of synthetic qandilite Mg2TiO4 at ambient temperature. Phys. Chem. Miner. 2016, 43, 301–306. [Google Scholar]
- Shanker, J.; Kushwah, S.S.; Kumar, P. Theory of thermal expansivity and bulk modulus for MgO and other minerals at high temperatures. Physica B 1997, 233, 78–83. [Google Scholar] [CrossRef]
- Sharp, Z.D.; Hazen, R.M.; Finger, L.W. High pressure crystal chemistry of monticellite, CaMgSiO4. Am. Mineral 1987, 72, 748–755. [Google Scholar]
Material | Screen Size (mm) | CMD0 | CMD1 | CMD3 | CMD5 | CMD7 |
---|---|---|---|---|---|---|
wt% | wt% | wt% | wt% | wt% | ||
Fused grain | −4 + 2 | 30 | 30 | 30 | 30 | 30 |
Fused grain | −2 + 0 | 18 | 18 | 18 | 18 | 18 |
Chromite ore | −2 + 0 | 14 | 14 | 14 | 14 | 14 |
Chromite ore | Ball mill | 5 | 4.5 | 3.5 | 2.5 | 1.5 |
DBM X1 | −2 + 0 | 10 | 10 | 10 | 10 | 10 |
DBM X2 | Ball mill | 20 | 19.5 | 18.5 | 17.5 | 16.5 |
TiO2 | <150 µm | 0 | 1 | 3 | 5 | 7 |
Molasses | 3 | 3 | 3 | 3 | 3 | |
Dextrin | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
SiO2 | Al2O3 | Fe2O3 | TiO2 | CaO | MgO | Cr2O3 | Total | |
---|---|---|---|---|---|---|---|---|
CMD0 | 2.34 | 9.65 | 12.60 | 0.28 | 0.77 | 44.65 | 26.40 | 96.69 |
CMD1 | 2.31 | 8.72 | 12.11 | 1.21 | 0.89 | 45.55 | 25.79 | 96.58 |
CMD3 | 1.81 | 8.03 | 12.35 | 3.88 | 0.65 | 45.35 | 23.45 | 95.52 |
CMD5 | 2.05 | 8.40 | 11.67 | 4.88 | 0.79 | 45.25 | 23.89 | 96.91 |
CMD7 | 2.93 | 8.48 | 12.03 | 6.87 | 0.99 | 44.00 | 22.33 | 97.63 |
Titania | 0.13 | 1.22 | 0.06 | 97.46 | 0.09 | - | - | 98.96 |
CMD0 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spinel A | Spinel B | Spinel C | Periclase | |||||||||||
Analysis | Average | SD | Average | SD | Average | SD | Average | SD | ||||||
TiO2 | 0.45 | 0.14 | 0.50 | 0.30 | 0.00 | 0.00 | ||||||||
Al2O3 | 21.74 | 5.68 | 22.19 | 0.72 | 6.33 | 1.06 | ||||||||
Cr2O3 | 48.21 | 6.56 | 47.11 | 1.10 | 22.08 | 4.39 | 1.98 | 0.69 | ||||||
FexO 1 | 6.54 | 0.96 | 6.18 | 0.39 | 42.59 | 2.99 | 5.25 | 1.81 | ||||||
MgO | 23.05 | 1.44 | 24.01 | 0.88 | 28.99 | 5.21 | 92.77 | 2.50 | ||||||
SUM | 100.00 | 100.00 | 100.00 | 100.00 | ||||||||||
N 2 | 4 | 5 | 13 | 5 | ||||||||||
CMD1 | CMD3 | |||||||||||||
Spinel A | Spinel B | Periclase | Spinel A | Spinel B | Periclase | |||||||||
Analysis | Average | SD | Average | SD | Average | SD | Analysis | Average | SD | Average | SD | Average | SD | |
TiO2 | 2.97 | 1.93 | 4.69 | 0.27 | TiO2 | 1.06 | 0.79 | 10.61 | 1.93 | |||||
Al2O3 | 13.67 | 0.79 | 12.07 | 0.32 | Al2O3 | 15.05 | 1.78 | 10.34 | 1.14 | |||||
Cr2O3 | 44.47 | 8.30 | 30.85 | 3.88 | 2.66 | 0.11 | Cr2O3 | 52.48 | 3.86 | 22.77 | 3.58 | 2.15 | 0.73 | |
FexO 1 | 15.55 | 2.57 | 26.28 | 3.85 | 5.41 | 1.28 | FexO 1 | 8.32 | 4.43 | 27.22 | 2.28 | 4.74 | 1.11 | |
MgO | 23.34 | 3.63 | 26.11 | 0.25 | 91.93 | 1.37 | MgO | 23.09 | 0.59 | 29.07 | 1.27 | 93.10 | 1.71 | |
SUM | 100.00 | 100.00 | 100.00 | SUM | 100.00 | 100.01 | 99.99 | |||||||
N 2 | 4 | 8 | 5 | N 2 | 5 | 9 | 7 | |||||||
CMD5 | CMD7 | |||||||||||||
Spinel A | Spinel B | Periclase | Spinel A | Spinel B | Periclase | |||||||||
Analysis | Average | SD | Average | SD | Average | SD | Analysis | Average | SD | Average | SD | Average | SD | |
TiO2 | 0.49 | 0.49 | 13.34 | 1.69 | TiO2 | 0.18 | 0.36 | 16.75 | 2.98 | |||||
Al2O3 | 18.18 | 3.29 | 11.11 | 1.09 | Al2O3 | 18.83 | 3.57 | 9.98 | 1.61 | |||||
Cr2O3 | 50.88 | 2.07 | 22.10 | 4.01 | 2.14 | 0.19 | Cr2O3 | 52.92 | 1.76 | 22.72 | 7.75 | 2.16 | 0.39 | |
FexO 1 | 7.89 | 3.11 | 23.29 | 2.55 | 5.80 | 0.89 | FexO 1 | 5.87 | 3.39 | 19.26 | 6.67 | 2.61 | 0.51 | |
MgO | 22.57 | 1.40 | 29.98 | 0.95 | 92.06 | 1.04 | MgO | 22.21 | 1.24 | 31.26 | 1.74 | 95.23 | 0.36 | |
SUM | 100.00 | 99.82 | 100.00 | SUM | 100.00 | 99.97 | 100.00 | |||||||
N 2 | 4 | 9 | 3 | N 2 | 4 | 5 | 2 |
CMD0 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spinel A | Spinel B | Spinel C | Periclase | |||||||||||
Analysis | Average | SD | Average | SD | Average | SD | Average | SD | ||||||
Ti | 0.010 | 0.003 | 0.011 | 0.007 | 0.002 | 0.005 | ||||||||
Al | 0.740 | 0.168 | 0.753 | 0.020 | 0.280 | 0.158 | ||||||||
Cr | 1.110 | 0.179 | 1.072 | 0.033 | 0.599 | 0.238 | 0.022 | 0.008 | ||||||
Σ Fe | 0.143 | 0.023 | 0.134 | 0.009 | 0.850 | 0.303 | 0.066 | 0.022 | ||||||
Mg | 0.997 | 0.037 | 1.030 | 0.030 | 1.270 | 0.188 | 0.912 | 0.017 | ||||||
SUM | 3.000 | 3.000 | 3.000 | 1.000 | 3 | |||||||||
N | 4 | 5 | 13 | 5 | ||||||||||
CMD1 | CMD3 | |||||||||||||
Spinel A | Spinel B | Periclase | Spinel A | Spinel B | Periclase | |||||||||
Analysis | Average | SD | Average | SD | Average | SD | Analysis | Average | SD | Average | SD | Average | SD | |
Ti | 0.062 | 0.049 | 0.105 | 0.007 | Ti | 0.024 | 0.018 | 0.220 | 0.066 | |||||
Al | 0.524 | 0.069 | 0.423 | 0.010 | Al | 0.528 | 0.060 | 0.349 | 0.036 | |||||
Cr | 1.027 | 0.170 | 0.726 | 0.078 | 0.030 | 0.001 | Cr | 1.236 | 0.085 | 0.565 | 0.163 | 0.030 | 0.008 | |
Σ Fe | 0.301 | 0.135 | 0.592 | 0.076 | 0.068 | 0.016 | Σ Fe | 0.187 | 0.101 | 0.601 | 0.048 | 0.059 | 0.016 | |
Mg | 1.086 | 0.053 | 1.154 | 0.015 | 0.902 | 0.017 | Mg | 1.026 | 0.030 | 1.265 | 0.065 | 0.911 | 0.023 | |
SUM | 3.000 | 3.000 | 1.000 | SUM | 3.000 | 3.000 | 1.000 | |||||||
N | 4 | 8 | 5 | N | 5 | 9 | 7 | |||||||
CMD5 | CMD7 | |||||||||||||
Spinel A | Spinel B | Periclase | Spinel A | Spinel B | Periclase | |||||||||
Analysis | Average | SD | Average | SD | Average | SD | Analysis | Average | SD | Average | SD | Average | SD | |
Ti | 0.014 | 0.010 | 0.293 | 0.037 | Ti | 0.004 | 0.008 | 0.365 | 0.063 | |||||
Al | 0.653 | 0.104 | 0.389 | 0.038 | Al | 0.654 | 0.115 | 0.341 | 0.052 | |||||
Cr | 1.174 | 0.063 | 0.503 | 0.098 | 0.025 | 0.002 | Cr | 1.235 | 0.053 | 0.521 | 0.178 | 0.021 | 0.005 | |
Σ Fe | 0.169 | 0.081 | 0.514 | 0.058 | 0.074 | 0.013 | Σ Fe | 0.131 | 0.079 | 0.421 | 0.148 | 0.040 | 0.009 | |
Mg | 0.991 | 0.054 | 1.301 | 0.039 | 0.901 | 0.015 | Mg | 0.977 | 0.047 | 1.351 | 0.060 | 0.940 | 0.004 | |
SUM | 3.000 | 3.000 | 1.000 | SUM | 3.000 | 3.000 | 1.000 | |||||||
N | 4 | 9 | 3 | N | 4 | 5 | 2 |
Spinel A | Spinel B | MgO | Monticellite | Forsterite | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mass% | Vol (Å3) | Mass% | Vol (Å3) | Mass% | Vol (Å3) | Mass% | Vol (Å3) | Mass% | Vol (Å3) | |
CMD0 | 40(3) | 565.1 | 27(5) | 581.3 | 24(8) | 74.8 | 4(1) | 336.0 | 6(1) | 294.0 |
CMD1 | 21(1) | 569.2 | 42(1) | 576.0 | 28(2) | 74.7 | 4(1) | 336.3 | 4(1) | 293.1 |
CMD3 | 24(1) | 568.6 | 46(1) | 581.2 | 25(2) | 74.7 | 2(1) | 337.1 | 3(1) | 293.2 |
CMD5 | 24(1) | 568.8 | 48(3) | 582.6 | 21(4) | 74.8 | 3(1) | 337.1 | 4(1) | 293.2 |
CMD7 | 28(2) | 568.4 | 40(1) | 588.2 | 22(1) | 74.8 | 3(1) | 337.4 | 7(1) | 293.1 |
CMD0 | ||||||
---|---|---|---|---|---|---|
Spinel A | Spinel B | Periclase | Monticellite | Forsterite | Sum | |
Density | 4.08 | 4.00 | 3.72 | 3.17 | 3.18 | |
Vol fract | 9.798 | 6.667 | 6.377 | 1.217 | 1.825 | 25.885 |
Vol% | 37.85 | 25.76 | 24.63 | 4.70 | 7.05 | 100.000 |
CMD1 | ||||||
Spinel A | Spinel B | Periclase | Monticellite | Forsterite | Sum | |
Density | 4.16 | 4.13 | 3.84 | 3.16 | 3.19 | |
Vol fract | 5.14 | 10.28 | 7.37 | 1.21 | 1.27 | 25.27 |
Vol% | 20.35 | 40.70 | 29.15 | 4.78 | 5.02 | 100.00 |
CMD3 | 3 | |||||
Spinel A | Spinel B | Periclase | Monticellite | Forsterite | Sum | |
Density | 4.20 | 4.05 | 3.81 | 3.16 | 3.19 | |
Vol fract | 5.79 | 11.29 | 6.49 | 0.66 | 1.00 | 25.23 |
Vol% | 22.93 | 44.74 | 25.74 | 2.62 | 3.97 | 100.00 |
CMD5 | 5 | |||||
Spinel A | Spinel B | Periclase | Monticellite | Forsterite | Sum | |
Density | 4.14 | 3.99 | 3.85 | 3.16 | 3.19 | |
Vol fract | 5.89 | 12.05 | 5.56 | 0.80 | 1.13 | 25.44 |
Vol% | 23.16 | 47.39 | 21.86 | 3.14 | 4.45 | 100.00 |
CMD7 | 7 | |||||
Spinel A | Spinel B | Periclase | Monticellite | Forsterite | Sum | |
Density | 4.15 | 3.93 | 3.75 | 3.15 | 3.19 | |
Vol fract | 6.81 | 10.20 | 5.88 | 0.84 | 2.19 | 25.91 |
Vol% | 26.28 | 39.37 | 22.68 | 3.23 | 8.44 | 100.00 |
Bulk Density (g/cm3) | Porosity (%) | |||
---|---|---|---|---|
Sample | Theoretical | Measured | Calculated | Measured |
CMD0 | 3.89 | 3.29 | 15.3 | 16.4 |
CMD1 | 3.87 | 3.19 | 17.6 | 18.4 |
CMD3 | 3.91 | 3.07 | 21.4 | 20.7 |
CMD5 | 3.91 | 2.91 | 25.5 | 25.1 |
CMD7 | 3.88 | 2.81 | 27.6 | 27.2 |
Spinel | MgAl2O4 | MgFe2O4 | MgCr2O4 | Mg2TiO4 | Kss |
---|---|---|---|---|---|
CMD0-A | 2.971 | 0.571 | 4.419 | 0.039 | 187.2 |
CMD1-A | 1.977 | 1.436 | 4.314 | 0.274 | 185.0 |
CMD3-A | 2.141 | 0.756 | 5.008 | 0.096 | 185.7 |
CMD5-A | 2.867 | 0.589 | 4.447 | 0.097 | 187.0 |
CMD7-A | 2.589 | 0.515 | 4.88 | 0.016 | 186.6 |
CMD0-B | 3.058 | 0.544 | 4.355 | 0.044 | 187.4 |
CMD1-B | 1.838 | 2.555 | 3.151 | 0.456 | 184.1 |
CMD3-B | 1.662 | 2.794 | 2.456 | 1.088 | 183.1 |
CMD5-B | 1.802 | 2.412 | 2.405 | 1.381 | 183.2 |
CMD7-B | 1.656 | 2.041 | 2.529 | 1.774 | 182.7 |
CMD0 | CMD1 | CMD3 | CMD5 | CMD7 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Phase | αi (1392) | αi (1840) | αi (1392) | αi (1840) | αi (1392) | αi (1840) | αi (1392) | αi (1840) | αi (1392) | αi (1840) |
Spinel A | 9.15 × 10−6 | 1.09 × 10−5 | 8.86 × 10−6 | 1.16 × 10−5 | 1.01 × 10−5 | 1.47 × 10−5 | 8.15 × 10−6 | 1.29 × 10−5 | 7.86 × 10−6 | 1.01 × 10−5 |
Spinel B | 1.43 × 10−7 | −2.2 × 10−5 | 8.81 × 10−6 | 3.44 × 10−6 | 8.46 × 10−6 | 2.65 × 10−7 | 8.19 × 10−6 | −1.5 × 10−7 | 8.61 × 10−6 | −6.1 × 10−6 |
Periclase | 1.33 × 10−5 | 7.22 × 10−6 | 1.33 × 10−5 | 9.67 × 10−6 | 1.4 × 10−5 | 7.74 × 10−6 | 1.3 × 10−5 | 1.13 × 10−5 | 1.29 × 10−5 | 1.19 × 10−5 |
Monticellite | 1.54 × 10−5 | −2.9 × 10−5 | 4.89 × 10−6 | −1.01 × 10−4 | 1.6 × 10−6 | 1.72 × 10−5 | 1.18 × 10−5 | 1.55 × 10−5 | 5.22 × 10−6 | −2 × 10−6 |
Forsterite | 3.37 × 10−6 | 8.28 × 10−6 | 5.46 × 10−6 | 8.07 × 10−7 | 1.58 × 10−5 | 1.53 × 10−5 | 5.53 × 10−6 | 3.32 × 10−6 | 3.79 × 10−6 | 2.19 × 10−5 |
αcomp | 7.47 × 10−6 | −4.8 × 10−7 | 9.8 × 10−6 | 3.54 × 10−6 | 1.03 × 10−5 | 6.31 × 10−6 | 9.14 × 10−6 | 5.83 × 10−6 | 8.93 × 10−6 | 4.23 × 10−6 |
CMDO | CMD1 | CMD3 | CMD5 | CMD7 | |
---|---|---|---|---|---|
Ti occupancy | 0.011 | 0.105 | 0.220 | 0.293 | 0.365 |
Excess Mg | 0.030 | 0.154 | 0.265 | 0.301 | 0.351 |
Spinel A Vol(Å3) | Spinel B Vol(Å3) | % Difference | |
---|---|---|---|
CMD0 | 565.1 | 581.3 | 2.87 |
CMD1 | 569.2 | 576.0 | 1.19 |
CMD3 | 568.6 | 581.2 | 2.22 |
CMD5 | 568.8 | 582.6 | 2.43 |
CMD7 | 568.4 | 588.2 | 3.48 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Villiers, J.P.; Mulange, D.; Garbers-Craig, A.M. The Effect of Titanium Oxide Additions on the Phase Chemistry and Properties of Chromite-Magnesia Refractories. Ceramics 2020, 3, 127-143. https://doi.org/10.3390/ceramics3010013
De Villiers JP, Mulange D, Garbers-Craig AM. The Effect of Titanium Oxide Additions on the Phase Chemistry and Properties of Chromite-Magnesia Refractories. Ceramics. 2020; 3(1):127-143. https://doi.org/10.3390/ceramics3010013
Chicago/Turabian StyleDe Villiers, Johan PR, Delphin Mulange, and Andrie Mariana Garbers-Craig. 2020. "The Effect of Titanium Oxide Additions on the Phase Chemistry and Properties of Chromite-Magnesia Refractories" Ceramics 3, no. 1: 127-143. https://doi.org/10.3390/ceramics3010013
APA StyleDe Villiers, J. P., Mulange, D., & Garbers-Craig, A. M. (2020). The Effect of Titanium Oxide Additions on the Phase Chemistry and Properties of Chromite-Magnesia Refractories. Ceramics, 3(1), 127-143. https://doi.org/10.3390/ceramics3010013