Microstructural Characteristics of 3Y-TZP Ceramics and Their Effects on the Flexural Strength
Abstract
:1. Introduction
- -
- The transformable metastable tetragonal phase, called t, is of great interest for structural applications as it presents a martensitic transformation (t→m) when subjected to stress, providing excellent mechanical strength results due to the phase transformation toughening mechanism [3].
- -
- The metastable tetragonal phase, called t′, which, due to its high concentration of stabilizer in solution, has lower tetragonality, being extremely stable at room temperature, and does not undergo the martensitic transformation (t→m) under mechanical stress.
- -
- The metastable tetragonal phase, called t″. This third and particular form of the tetragonal phase has been identified by Raman spectroscopy or neutron diffraction, taking into account that X-ray diffraction cannot distinguish the small variations between the lattice parameters of this phase and the ZrO2-cubic phase since the tetragonality relation points to a c/a√2 ratio close to unity. Based on available literature data, Viazzi et al. [11] proposed limits for the stability domains of the different forms of the ZrO2-tetragonal phase as a function of their lattice parameters, as shown in Figure 1.
2. Materials and Methods
2.1. Processing
2.2. Sample Characterizations
2.3. Mechanical Properties
2.4. Statistical Strength Analysis
3. Results and Discussion
3.1. Densification, X-ray Diffraction, and Microstructure
3.2. Mechanical Properties
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kelly, J.R.; Denry, I. Stabilized zirconia as a structural ceramic: An overview. Dent. Mater. 2008, 24, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Manicone, P.F.; Iommetti, P.R.; Raffaelli, L. An overview of zirconia ceramics: Basic properties and clinical applications. J. Dent. 2007, 35, 819–826. [Google Scholar] [CrossRef]
- Stevens, R. An Introduction to Zirconia: Zirconia and Zirconia Ceramics, 2nd ed.; Magnesium Electrum: Twickenham, UK, 1986. [Google Scholar]
- Basu, B. Toughening of yttria-stabilized tetragonal zirconia ceramics. Int. Mater. Rev. 2005, 50, 239–256. [Google Scholar] [CrossRef]
- Kelly, P.M.; Rose, L.F. The martensitic transformation in ceramics—Its role in transformation toughening. Prog. Mater. Sci. 2002, 47, 463–557. [Google Scholar] [CrossRef]
- Lange, F.F. Transformation toughening. J. Mater. Sci. 1982, 17, 225–234. [Google Scholar] [CrossRef]
- Matsui, K.; Yoshida, H.; Ikuhara, Y. microstructure-development mechanism during sintering in polycrystalline zirconia. Int. Mater. Rev. 2018, 63, 375–406. [Google Scholar] [CrossRef]
- Ruhle, M.; Claussen, N.; Heuer, A.H. Microstructural studies of Y2O3-containing tetragonal ZrO2 polycrystals (Y-TZP). In Science and Technology of Zirconia II; American Ceramic Society, Inc.: Columbus, OH, USA, 1983. [Google Scholar]
- Basu, B.; Vleugels, J.; Van Der Biest, O. Transformation behavior of tetragonal zirconia: Role of dopant content and distribution. Mater. Sci. Eng. A 2004, 366, 338–347. [Google Scholar] [CrossRef]
- Yashima, M.; Kakihana, M.; Yoshimura, M. Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application. Solid State Ion. 1996, 86, 1131–1149. [Google Scholar] [CrossRef]
- Viazzi, C.; Bonino, J.P.; Ansart, F.; Barnabé, A. Structural study of metastable tetragonal YSZ powders produced via a sol–gel route. J. Alloys Compd. 2008, 452, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Seal, S. Phase Stabilization in Nanocrystalline Zirconia. Rev. Adv. Mater. Sci. 2003, 5, 117–120. [Google Scholar]
- Shahmiri, R.; Standard, O.C.; Hart, J.N.; Sorrell, C.C. Optical properties of zirconia ceramics for esthetic dental restorations: A systematic review. J. Prosthet. Dent. 2018, 119, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent. Mater. 2016, 32, e327–e337. [Google Scholar] [CrossRef] [PubMed]
- Egilmez, F.; Ergun, G.; Cekic-Nagas, I.; Vallittu, P.K.; Lassila, L.V. Factors affecting the mechanical behavior of Y-TZP. J. Mech. Behav. Biomed. Mater. 2014, 37, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, T.; Yoshizawa, Y. The grain growth of zirconia during annealing in the cubic/tetragonal two-phase region. Mater. Sci. Forum 1992, 94, 865–870. [Google Scholar] [CrossRef]
- Ramesh, S.; Lee, K.S.; Tan, C.Y. A review on the hydrothermal ageing behavior of Y-TZP ceramics. Ceram. Int. 2018, 44, 20620–20634. [Google Scholar] [CrossRef]
- Theunissen, G.S.A.M.; Bouma, J.S.; Winnubst, A.J.A.; Burggraaf, A.J. Mechanical properties of ultra-fine grained zirconia ceramics. J. Mater. Sci. 1992, 27, 4429–4438. [Google Scholar] [CrossRef] [Green Version]
- ISO 6872; Dentistry Ceramic Materials. 4th ed. International Organization for Standardization: Geneva, Switzerland, 2015; pp. 1–14.
- Hill, R.J. Expanded use of the Rietveld method in studies of phase abundance in multiphase mixtures. Powder Diffr. 1991, 6, 74–77. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. Computer Program FullProf, Version 3.51; Laboratoire Leon Brillouin, CEA-CNRS: Grenoble, France, 1998. [Google Scholar]
- Krogstad, J.A.; Lepple, M.; Gao, Y.; Lipkin, D.M.; Levi, C.G. Effect of yttria content on the zirconia unit cell parameters. J. Am. Ceram. Soc. 2011, 94, 4548–4555. [Google Scholar] [CrossRef]
- Yashima, M.; Ishizawa, N.; Yoshimura, M. High-Temperature X-ray Study of the Cubic-Tetragonal Diffusionless Phase Transition in the ZrO2-ErO1.5 System: I, Phase Change between Two Forms of a Tetragonal Phase, t′-ZrO2, and t″-ZrO2, in the Compositionally Homogeneous 14 mol% ErO1.5-ZrO2. J. Am. Ceram. Soc. 1993, 76, 641–648. [Google Scholar] [CrossRef]
- Yashima, M.; Sasaki, S.; Kakihana, M.; Yamaguchi, Y.; Arashi, H.; Yoshimura, M. Oxygen-induced structural change of the tetragonal phase around the tetragonal–cubic phase boundary in ZrO2–YO1.5 solid solutions. Acta Crystallogr. Sect. B Struct. Sci. 1994, 50, 663–672. [Google Scholar] [CrossRef]
- Jue, J.F.; Chen, J.; Virkar, A.V. Low-temperature aging of t′-zirconia: The role of microstructure on phase stability. J. Am. Ceram. Soc. 1991, 74, 1811–1820. [Google Scholar] [CrossRef]
- Fabregas, I.O.; Reinoso, M.; Otal, E.; Kim, M. Grain-size/(t ″or c)-phase relationship in dense ZrO2 ceramics. J. Eur. Ceram. Soc. 2016, 36, 2043–2049. [Google Scholar] [CrossRef]
- Bučevac, D.; Kosmač, T.; Kocjan, A. The influence of yttrium-segregation-dependent phase partitioning and residual stresses on the aging and fracture behaviour of 3Y-TZP ceramics. Acta Biomater. 2017, 62, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Matsui, K.; Nakamura, K.; Kumamoto, A.; Yoshida, H.; Ikuhara, Y. Low-temperature degradation in yttria-stabilized tetragonal zirconia polycrystal doped with small amounts of alumina: Effect of grain-boundary energy. J. Eur. Ceram. Soc. 2016, 36, 155–162. [Google Scholar] [CrossRef]
- Wei, C.; Gremillard, L. Towards the prediction of hydrothermal ageing of 3Y-TZP bioceramics from processing parameters. Acta Mater. 2018, 144, 245–256. [Google Scholar] [CrossRef]
- Camposilvan, E.; Leone, R.; Gremillard, L.; Sorrentino, R.; Zarone, F.; Ferrari, M.; Chevalier, J. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dent. Mater. 2018, 34, 879–890. [Google Scholar] [CrossRef]
- ASTM E1876-15; Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration. ASTM International: West Conshohocken, PA, USA, 2015; pp. 1–17.
- Niihara, K.; Morena, R.; Hasselman, D.P.H. Evaluation of KIC of brittle solids by the indentation method with low crack-to-indent ratios. J. Mater. Sci. Lett. 1982, 1, 13–16. [Google Scholar] [CrossRef]
- Shetty, D.K.; Rosenfield, A.R.; Duckworth, W. Analysis of indentation crack as a wedge-loaded half-penny crack. J. Am. Ceram. Soc. 1985, 68, C-65–C-67. [Google Scholar] [CrossRef]
- Ćorić, D.; Renjo, M.M.; Ćurković, L. Vickers indentation fracture toughness of Y-TZP dental ceramics. Int. J. Refract. Met. Hard Mater. 2017, 64, 14–19. [Google Scholar] [CrossRef]
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 290–293. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Mohr, D.L.; Wilson, W.J.; Freund, R.J. Statistical Methods, 4th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2022; 767p. [Google Scholar]
- Chevalier, J.; Gremillard, L.; Virkar, A.V.; Clarke, D.R. The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. J. Am. Ceram. Soc. 2009, 92, 1901–1920. [Google Scholar] [CrossRef]
- Krogstad, J.A.; Gao, Y.; Bai, J.; Wang, J.; Lipkin, D.M.; Levi, C.G. In situ diffraction study of the high-temperature decomposition of t′-zirconia. J. Am. Ceram. Soc. 2015, 98, 247–254. [Google Scholar] [CrossRef]
- Djurado, E.; Bouvier, P.; Lucazeau, G. Crystallite size effect on the tetragonal-monoclinic transition of undoped nanocrystalline zirconia studied by XRD and Raman spectrometry. J. Solid State Chem. 2000, 149, 399–407. [Google Scholar] [CrossRef]
- Gibson, I.R.; Irvine, J.T. Qualitative X-ray Diffraction Analysis of Metastable Tetragonal (t′) Zirconia. J. Am. Ceram. Soc. 2001, 84, 615–618. [Google Scholar] [CrossRef]
- Ruiz, L.; Readey, M.J. Effect of heat treatment on grain size, phase assemblage, and mechanical properties of 3 mol% Y-TZP. J. Am. Ceram. Soc. 1996, 79, 2331–2340. [Google Scholar] [CrossRef]
- Von Steyern, P.V.; Bruzell, E.; Vos, L.; Andersen, F.S.; Ruud, A. Sintering temperature accuracy and its effect on translucent yttria-stabilized zirconia: Flexural strength, crystal structure, tetragonality and light transmission. Dent. Mater. 2022, 38, 1099–1107. [Google Scholar] [CrossRef]
Lattice Parameters | 1475 °C, 2 h | 1600 °C, 2 h | 1600 °C, 12 h | 1600 °C, 24 h |
---|---|---|---|---|
ZrO2-tetragonal (ZrO2-t) Space groups P42/nmc | a = 3.605(2) Å c = 5.178(8) Å V = 67.3113 A³ | a = 3.604(2) Å c = 5.179(5) Å V = 67.283 A³ | a = 3.603(1) Å c = 5.179(6) Å V = 67.243 A ³ | a = 3.603(1) Å c = 5.179(6) Å V = 67.255 ų |
Relation between the lattice (c/a√2) | 1.015(7) | 1.016(2) | 1.016(5) | 1.016(7) |
Y2O3 in t-phase (mol.%) | 2.45 | 2.32 | 2.21 | 2.15 |
ZrO2-tetragonal’ (ZrO2-t’) (rich in yttria) Space groups P42/nmc | a = 3.622(7) Å c = 5.161(9) Å V = 67.7445 A³ | a = 3.623(0) Å c = 5.157(7) Å V = 67.701 A³ | a = 3.621(5) Å c = 5.154(0) Å V = 67.59 A³ | a = 3.624(0) Å c = 5.156(0) Å V = 67.716 ų |
Relation between the lattice (c/a√2) | 1.007 (5) | 1.006 (6) | 1.006 (3) | 1.006 (0) |
Y2O3 in t’-phase (mol.%) | 5.20 | 5.50 | 5.60 | 5.70 |
Sintering Conditions | Young’s Modulus E (GPa) | Flexural Strength * σf (MPa) | Fracture Toughness KIC (MPa.m1/2) ** | Fracture Toughness KIC (MPa.m1/2) *** |
---|---|---|---|---|
1475 °C, 2 h | 189.2 ± 3.5 | 1208 ± 93 | 8.18 ± 0.18 | 7.58 ± 0.47 |
1600 °C, 2 h | 193.1 ± 2.8 | 1015 ± 136 | 7.48 ± 0.47 | 8.32 ± 0.52 |
1600 °C, 12 h | 194.3 ± 2.4 | 947 ± 70 | 7.17 ± 0.44 | 7.47 ± 0.45 |
1600 °C, 24 h | 198.8 ± 3.6 | 922 ± 116 | 6.89 ± 0.33 | 7.23 ± 0.51 |
Sintering Parameter | 1475 °C, 2 h | 1600 °C, 2 h | 1600 °C, 12 h | 1600 °C, 24 h |
---|---|---|---|---|
Control Group/1475 °C, 2 h | O | O | O | |
1600 °C, 2 h | X | O | ||
1600 °C, 12 h | X | |||
1600 °C, 24 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, M.F.R.P.; de Campos, L.Q.B.; Simba, B.G.; da Silva, C.R.M.; Strecker, K.; dos Santos, C. Microstructural Characteristics of 3Y-TZP Ceramics and Their Effects on the Flexural Strength. Ceramics 2022, 5, 798-813. https://doi.org/10.3390/ceramics5040058
Alves MFRP, de Campos LQB, Simba BG, da Silva CRM, Strecker K, dos Santos C. Microstructural Characteristics of 3Y-TZP Ceramics and Their Effects on the Flexural Strength. Ceramics. 2022; 5(4):798-813. https://doi.org/10.3390/ceramics5040058
Chicago/Turabian StyleAlves, Manuel Fellipe Rodrigues Pais, Leonardo Queiroz Bueno de Campos, Bruno Galvão Simba, Cosme Roberto Moreira da Silva, Kurt Strecker, and Claudinei dos Santos. 2022. "Microstructural Characteristics of 3Y-TZP Ceramics and Their Effects on the Flexural Strength" Ceramics 5, no. 4: 798-813. https://doi.org/10.3390/ceramics5040058
APA StyleAlves, M. F. R. P., de Campos, L. Q. B., Simba, B. G., da Silva, C. R. M., Strecker, K., & dos Santos, C. (2022). Microstructural Characteristics of 3Y-TZP Ceramics and Their Effects on the Flexural Strength. Ceramics, 5(4), 798-813. https://doi.org/10.3390/ceramics5040058