Properties and Durability Performance of Lightweight Fly Ash Based Geopolymer Composites Incorporating Expanded Polystyrene and Expanded Perlite
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Lightweight Geopolymers
- Products for structural applications (UCS > 17 MPa, d > 1.35 g/cm3) when the EPS addition is lower than 2% wt.
- Products for nonstructural applications (UCS < 17 MPa, d < 1.35 g/cm3) when the EPS addition is higher than 2% wt.
3.2. Matrix Fiber Reinforcement
3.3. Microstructure Analysis
3.4. Thermal Performance
3.5. Durability Performance
3.5.1. Sorptivity Tests
3.5.2. Wet–Dry and Freeze–Thaw Performance
4. Conclusions
- EPS and ExP can efficiently be introduced to a geopolymer matrix and reduce the total weight of the geopolymer products. Among the two lightweight aggregates, EPS achieves a better combination of physical, mechanical, and thermal properties, mainly because of its stability and better distribution inside the geopolymer matrix. The incorporation of 3% wt. EPS led to the enhancement of the thermal performance of the samples (40% reduction in thermal conductivity) but at the same time deteriorated their mechanical performance (77 and 37% reduction in UCS and FS, respectively).
- The aggregate incorporation rate controls the final product’s properties and subsequently its applications in the building sector. Indeed, EPS content lower than 2% wt. gives lightweight building materials for structural applications (USC > 17 MPa, d > 1.35 g/cm3), while EPS content higher than 2% wt. gives lightweight building materials for nonstructural applications (USC < 17 MPa, d < 1.35 g/cm3).
- The moderate flexural behavior of the EPS-based composites is substantially improved by the addition of 0.5% v/v PP fibers (61%). The incorporation of EPS and fibers transformed the post-cracking behavior from fragile to ductile, considerably increasing the materials’ toughness.
- A comparison between the reference and reinforced composite samples showed that the incorporation of both lightweight aggregates and plastic fibers led to a beneficiary effect on the long-term performance. The capillary water absorption was reduced while the behavior after repeated freezing and thawing was greatly improved.
Author Contributions
Funding
Conflicts of Interest
References
- Castañeda, D.; Silva, G.; Salirrosas, J.; Kim, S.; Bertolotti, B.; Nakamatsu, J.; Aguilar, R. Production of a Lightweight Masonry Block Using Alkaline Activated Natural Pozzolana and Natural Fibers. Constr. Build. Mater. 2020, 253, 119143. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Q.; Deng, Y.; Lin, J. Reinforcement Effects of Multi-Scale Hybrid Fiber on Flexural and Fracture Behaviors of Ultra-Low-Weight Foamed Cement-Based Composites. Cem. Concr. Compos. 2020, 108, 103509. [Google Scholar] [CrossRef]
- Gallego-Schmid, A.; Chen, H.-M.; Sharmina, M.; Mendoza, J.M.F. Links between Circular Economy and Climate Change Mitigation in the Built Environment. J. Clean. Prod. 2020, 260, 121115. [Google Scholar] [CrossRef]
- Colangelo, F.; Roviello, G.; Ricciotti, L.; Ferrándiz-Mas, V.; Messina, F.; Ferone, C.; Tarallo, O.; Cioffi, R.; Cheeseman, C.R. Mechanical and Thermal Properties of Lightweight Geopolymer Composites. Cem. Concr. Compos. 2018, 86, 266–272. [Google Scholar] [CrossRef]
- Tale Masoule, M.S.; Bahrami, N.; Karimzadeh, M.; Mohasanati, B.; Shoaei, P.; Ameri, F.; Ozbakkaloglu, T. Lightweight Geopolymer Concrete: A Critical Review on the Feasibility, Mixture Design, Durability Properties, and Microstructure. Ceram. Int. 2022, 48, 10347–10371. [Google Scholar] [CrossRef]
- Amran, Y.H.M.; Alyousef, R.; Alabduljabbar, H.; El-Zeadani, M. Clean Production and Properties of Geopolymer Concrete: A Review. J. Clean. Prod. 2020, 251, 119679. [Google Scholar] [CrossRef]
- Gartner, E. Industrially Interesting Approaches to “Low-CO2” Cements. Cem. Concr. Res. 2004, 34, 1489–1498. [Google Scholar] [CrossRef]
- Andrew, R.M. Global CO2 Emissions from Cement Production, 1928–2018. Earth Syst. Sci. Data 2019, 11, 1675–1710. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Ishwarya, G.; Gupta, M.; Bhattacharyya, S.K. Geopolymer Concrete: A Review of Some Recent Developments. Constr. Build. Mater. 2015, 85, 78–90. [Google Scholar] [CrossRef]
- Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Kinnunen, P.; Illikainen, M. One-Part Alkali-Activated Materials: A Review. Cem. Concr. Res. 2018, 103, 21–34. [Google Scholar] [CrossRef]
- Panitsa, O.A.; Kioupis, D.; Kakali, G. Thermal and Microwave Synthesis of Silica Fume-Based Solid Activator for the One-Part Geopolymerization of Fly Ash. Environ. Sci. Pollut. Res. 2022, 29, 59513–59523. [Google Scholar] [CrossRef]
- Tee, K.F.; Mostofizadeh, S. An Experimental Study of the Effects of Low-Calcium Fly Ash on Type II Concrete. Ceramics 2021, 4, 600–617. [Google Scholar] [CrossRef]
- Turner, L.K.; Collins, F.G. Carbon Dioxide Equivalent (CO2-e) Emissions: A Comparison between Geopolymer and OPC Cement Concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- McLellan, B.C.; Williams, R.P.; Lay, J.; van Riessen, A.; Corder, G.D. Costs and Carbon Emissions for Geopolymer Pastes in Comparison to Ordinary Portland Cement. J. Clean. Prod. 2011, 19, 1080–1090. [Google Scholar] [CrossRef] [Green Version]
- Kioupis, D.; Skaropoulou, A.; Tsivilis, S.; Kakali, G. Alkali Leaching Control of Construction and Demolition Waste Based. MATEC Web Conf. 2018, 149, 01064. [Google Scholar] [CrossRef]
- Peng, Y.; Unluer, C. Analyzing the Mechanical Performance of Fly Ash-Based Geopolymer Concrete with Different Machine Learning Techniques. Constr. Build. Mater. 2022, 316, 125785. [Google Scholar] [CrossRef]
- Li, Y.; Min, X.; Ke, Y.; Liu, D.; Tang, C. Preparation of Red Mud-Based Geopolymer Materials from MSWI Fly Ash and Red Mud by Mechanical Activation. Waste Manag. 2019, 83, 202–208. [Google Scholar] [CrossRef]
- Provis, J.L. Geopolymers and Other Alkali Activated Materials: Why, How, and What? Mater. Struct. 2014, 47, 11–25. [Google Scholar] [CrossRef]
- Rasaki, S.A.; Bingxue, Z.; Guarecuco, R.; Thomas, T.; Minghui, Y. Geopolymer for Use in Heavy Metals Adsorption, and Advanced Oxidative Processes: A Critical Review. J. Clean. Prod. 2019, 213, 42–58. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Lao-un, J.; Zaetang, Y.; Wongkvanklom, A.; Phoo-ngernkham, T.; Wongsa, A.; Sata, V. Thermal Insulating and Fire Resistance Performances of Geopolymer Mortar Containing Auto Glass Waste as Fine Aggregate. J. Build. Eng. 2022, 60, 105178. [Google Scholar] [CrossRef]
- Bai, C.; Colombo, P. Processing, Properties and Applications of Highly Porous Geopolymers: A Review. Ceram. Int. 2018, 44, 16103–16118. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, C.; Qiao, Y.; Wang, X.; Jia, D.; Li, H.; Colombo, P. Porous Geopolymer Composites: A Review. Compos. Part A Appl. Sci. Manuf. 2021, 150, 106629. [Google Scholar] [CrossRef]
- Kioupis, D.; Zisimopoulou, A.; Tsivilis, S.; Kakali, G. Development of Porous Geopolymers Foamed by Aluminum and Zinc Powders. Ceram. Int. 2021, 47, 26280–26292. [Google Scholar] [CrossRef]
- Novais, R.M.; Pullar, R.C.; Labrincha, J.A. Geopolymer Foams: An Overview of Recent Advancements. Prog. Mater. Sci. 2020, 109, 100621. [Google Scholar] [CrossRef]
- Liu, M.Y.J.; Alengaram, U.J.; Jumaat, M.Z.; Mo, K.H. Evaluation of Thermal Conductivity, Mechanical and Transport Properties of Lightweight Aggregate Foamed Geopolymer Concrete. Energy Build. 2014, 72, 238–245. [Google Scholar] [CrossRef]
- Humur, G.; Çevik, A. Mechanical Characterization of Lightweight Engineered Geopolymer Composites Exposed to Elevated Temperatures. Ceram. Int. 2022, 48, 13634–13650. [Google Scholar] [CrossRef]
- Top, S.; Vapur, H.; Altiner, M.; Kaya, D.; Ekicibil, A. Properties of Fly Ash-Based Lightweight Geopolymer Concrete Prepared Using Pumice and Expanded Perlite as Aggregates. J. Mol. Struct. 2020, 1202, 127236. [Google Scholar] [CrossRef]
- Li, Z.; Chen, W.; Hao, H.; Khan, M.Z.N.; Pham, T.M. Dynamic Compressive Properties of Novel Lightweight Ambient-Cured EPS Geopolymer Composite. Constr. Build. Mater. 2021, 273, 122044. [Google Scholar] [CrossRef]
- Ouda, A.S.; Rashad, A.M. An Investigation on the Performance of Lightweight Mortar-Based Geopolymer Containing High-Volume LECA Aggregate against High Temperatures. Environ. Sci. Pollut. Res. 2022, 29, 26631–26647. [Google Scholar] [CrossRef] [PubMed]
- Medri, V.; Papa, E.; Mazzocchi, M.; Laghi, L.; Morganti, M.; Francisconi, J.; Landi, E. Production and Characterization of Lightweight Vermiculite/Geopolymer-Based Panels. Mater. Des. 2015, 85, 266–274. [Google Scholar] [CrossRef]
- Doroudiani, S.; Omidian, H. Environmental, Health and Safety Concerns of Decorative Mouldings Made of Expanded Polystyrene in Buildings. Build. Environ. 2010, 45, 647–654. [Google Scholar] [CrossRef]
- Poletto, M.; Dettenborn, J.; Zeni, M.; Zattera, A.J. Characterization of Composites Based on Expanded Polystyrene Wastes and Wood Flour. Waste Manag. 2011, 31, 779–784. [Google Scholar] [CrossRef]
- Shin, C. Filtration Application from Recycled Expanded Polystyrene. J. Colloid Interface Sci. 2006, 302, 267–271. [Google Scholar] [CrossRef]
- Amianti, M.; Botaro, V.R. Recycling of EPS: A New Methodology for Production of Concrete Impregnated with Polystyrene (CIP). Cem. Concr. Compos. 2008, 30, 23–28. [Google Scholar] [CrossRef]
- Sayadi, A.A.; Tapia, J.V.; Neitzert, T.R.; Clifton, G.C. Effects of Expanded Polystyrene (EPS) Particles on Fire Resistance, Thermal Conductivity and Compressive Strength of Foamed Concrete. Constr. Build. Mater. 2016, 112, 716–724. [Google Scholar] [CrossRef]
- Babu, K.G.; Babu, D.S. Behaviour of Lightweight Expanded Polystyrene Concrete Containing Silica Fume. Cem. Concr. Res. 2003, 33, 755–762. [Google Scholar] [CrossRef]
- Vaou, V.; Panias, D. Thermal Insulating Foamy Geopolymers from Perlite. Miner. Eng. 2010, 23, 1146–1151. [Google Scholar] [CrossRef]
- Kotwica, Ł.; Pichór, W.; Kapeluszna, E.; Różycka, A. Utilization of Waste Expanded Perlite as New Effective Supplementary Cementitious Material. J. Clean. Prod. 2017, 140, 1344–1352. [Google Scholar] [CrossRef]
- Yılmazer Polat, B. Self Healing of Alkali Active Mortars with Expanded Perlite Aggregate. Case Stud. Constr. Mater. 2022, 17, e01225. [Google Scholar] [CrossRef]
- Posi, P.; Ridtirud, C.; Ekvong, C.; Chammanee, D.; Janthowong, K.; Chindaprasirt, P. Properties of Lightweight High Calcium Fly Ash Geopolymer Concretes Containing Recycled Packaging Foam. Constr. Build. Mater. 2015, 94, 408–413. [Google Scholar] [CrossRef]
- Shi, J.; Liu, B.; Liu, Y.; Wang, E.; He, Z.; Xu, H.; Ren, X. Preparation and Characterization of Lightweight Aggregate Foamed Geopolymer Concretes Aerated Using Hydrogen Peroxide. Constr. Build. Mater. 2020, 256, 119442. [Google Scholar] [CrossRef]
- Dueramae, S.; Sanboonsiri, S.; Suntadyon, T.; Aoudta, B.; Tangchirapat, W.; Jongpradist, P.; Pulngern, T.; Jitsangiam, P.; Jaturapitakkul, C. Properties of Lightweight Alkali Activated Controlled Low-Strength Material Using Calcium Carbide Residue—Fly Ash Mixture and Containing EPS Beads. Constr. Build. Mater. 2021, 297, 123769. [Google Scholar] [CrossRef]
- Souza, T.B.; Lima, V.M.E.; Araújo, F.W.C.; Miranda, L.F.R.; Melo Neto, A.A. Alkali-Activated Slag Cellular Concrete with Expanded Polystyrene (EPS)—Physical, Mechanical, and Mineralogical Properties. J. Build. Eng. 2021, 44, 103387. [Google Scholar] [CrossRef]
- Farhad, A.; Ayoub, D.; Zohaib, A. Development of Lightweight Rubberized Geopolymer Concrete by Using Polystyrene and Recycled Crumb-Rubber Aggregates. J. Mater. Civ. Eng. 2020, 32, 04019345. [Google Scholar] [CrossRef]
- Qadir, G.; Rashid, Y.; Hassan, A.; Vall, E.; Saleh, S.; Salim, K. Development and Mechanical Testing of Porous-Lightweight Geopolymer Mortar. Building 2021, 11, 1. [Google Scholar] [CrossRef]
- Rashid, Y.; Alnaimat, F.; Mathew, B. Energy Performance Assessment of Waste Materials for Buildings in Extreme Cold and Hot Conditions. Energies 2018, 11, 3131. [Google Scholar] [CrossRef] [Green Version]
- Long, W.-J.; Lin, C.; Tan, X.-W.; Tao, J.-L.; Ye, T.-H.; Luo, Q.-L. Structural Applications of Thermal Insulation Alkali Activated Materials with Reduced Graphene Oxide. Materials 2020, 13, 1052. [Google Scholar] [CrossRef] [Green Version]
- Traven, K.; Wisniewski, W.; Češnovar, M.; Ducman, V. Microstructural Characterization of Alkali-Activated Composites of Lightweight Aggregates (LWAs) Embedded in Alkali-Activated Foam (AAF) Matrices. Polymers 2022, 14, 1729. [Google Scholar] [CrossRef] [PubMed]
- Kakali, G.; Kioupis, D.; Skaropoulou, A.; Tsivilis, S. Lightweight Geopolymer Composites as Structural Elements with Improved Insulation Capacity. MATEC Web Conf. 2018, 149, 01042. [Google Scholar] [CrossRef]
- Szabó, R.; Dolgos, F.; Debreczeni, Á.; Mucsi, G. Characterization of Mechanically Activated Fly Ash-Based Lightweight Geopolymer Composite Prepared with Ultrahigh Expanded Perlite Content. Ceram. Int. 2022, 48, 4261–4269. [Google Scholar] [CrossRef]
- Zhong, W.L.; Fan, L.F.; Zhang, Y.H. Experimental Research on the Dynamic Compressive Properties of Lightweight Slag Based Geopolymer. Ceram. Int. 2022, 48, 20426–20437. [Google Scholar] [CrossRef]
- Wang, Z.; Su, H.; Zhao, S.; Zhao, N. Influence of Phase Change Material on Mechanical and Thermal Properties of Clay Geopolymer Mortar. Constr. Build. Mater. 2016, 120, 329–334. [Google Scholar] [CrossRef]
- Angelopoulos, P.M.; Maliachova, C.; Papakonstantinou, K.; Taxiarchou, M.; Diplas, S. Structural and Physical Characteristics of Fine Perlite Expanded with a Novel Method in a Vertical Electric Furnace. Miner. Process. Extr. Metall. 2016, 125, 71–80. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Akeed, M.H.; Qaidi, S.; Bakar, B.H.A. Influence of Microsilica and Polypropylene Fibers on the Fresh and Mechanical Properties of Ultra-High Performance Geopolymer Concrete (UHP-GPC). Case Stud. Constr. Mater. 2022, 17, e01367. [Google Scholar] [CrossRef]
- Al-mashhadani, M.M.; Canpolat, O.; Aygörmez, Y.; Uysal, M.; Erdem, S. Mechanical and Microstructural Characterization of Fiber Reinforced Fly Ash Based Geopolymer Composites. Constr. Build. Mater. 2018, 167, 505–513. [Google Scholar] [CrossRef]
- Panagiotopoulou, C.; Tsivilis, S.; Kakali, G. Application of the Taguchi Approach for the Composition Optimization of Alkali Activated Fly Ash Binders. Constr. Build. Mater. 2015, 91, 17–22. [Google Scholar] [CrossRef]
- Neville, A.M. Properties of Concrete, 5th ed.; Pearson Education Limited: Essex, UK, 2011. [Google Scholar]
- Shaikh, F.U.A. Deflection Hardening Behaviour of Short Fibre Reinforced Fly Ash Based Geopolymer Composites. Mater. Des. 2013, 50, 674–682. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.j.; Naaman, A.E.; El-Tawil, S. Comparative Flexural Behavior of Four Fiber Reinforced Cementitious Composites. Cem. Concr. Compos. 2008, 30, 917–928. [Google Scholar] [CrossRef]
- Barr, B.I.G.; Liu, K.; Dowers, R.C. A Toughness Index to Measure the Energy Absorption of Fibre Reinforced Concrete. Int. J. Cem. Compos. Lightweight Concr. 1982, 4, 221–227. [Google Scholar] [CrossRef]
- Alberti, M.G.; Enfedaque, A.; Gálvez, J.C.; Picazo, A. Recent Advances in Structural Fibre-Reinforced Concrete Focused on Polyolefin-Based Macro-Synthetic Fibres. Mater. Construcción 2020, 70, e206. [Google Scholar] [CrossRef]
- Ranjbar, N.; Talebian, S.; Mehrali, M.; Kuenzel, C.; Cornelis Metselaar, H.S.; Jumaat, M.Z. Mechanisms of Interfacial Bond in Steel and Polypropylene Fiber Reinforced Geopolymer Composites. Compos. Sci. Technol. 2016, 122, 73–81. [Google Scholar] [CrossRef]
- Hall, C. Water Sorptivity of Mortars and Concretes: A Review. Mag. Concr. Res. 2015, 41, 51–61. [Google Scholar] [CrossRef]
Composition | FA | ExP |
---|---|---|
SiO2 | 44.15 | 72.51 |
Al2O3 | 16.99 | 13.73 |
Fe2O3 | 9.39 | 1.28 |
CaO | 15.15 | 1.39 |
MgO | 2.89 | 0.37 |
K2O | 2.00 | 3.67 |
Na2O | 0.57 | 3.98 |
SO3 | 4.60 | - |
TiO2 | 0.75 | 0.15 |
P2O5 | 0.25 | - |
LOI * | 2.76 | 2.92 |
Aggregate | Density (g/cm3) | Water Absorption (%) | UCS (MPa) | λ (W/mK) | Particles with | |
---|---|---|---|---|---|---|
d < 2 mm (%) | d > 2 mm (%) | |||||
EPS | 0.038 | 1.0 | 0.46 | 0.035 | 2.3 | 97.7 |
ExP | 0.090 | 4.5 | 0.30 | 0.039 | 85.1 | 14.9 |
Samples | FA (% wt.) | Waterglass (% wt.) | NaOH (% wt.) | H2O (% wt.) | EPS * (% wt.) | ExP * (% wt.) | PP Fibers (% v/v) |
---|---|---|---|---|---|---|---|
GEO_REF | 56.1 | 37.5 | 5.2 | 1.2 | - | - | - |
GEO_0.5EPS | 56.1 | 37.5 | 5.2 | 1.2 | 0.5 | - | - |
GEO_1.0EPS | 56.1 | 37.5 | 5.2 | 1.2 | 1.0 | - | - |
GEO_1.5EPS | 56.1 | 37.5 | 5.2 | 1.2 | 1.5 | - | - |
GEO_2.0EPS | 56.1 | 37.5 | 5.2 | 1.2 | 2.0 | - | - |
GEO_2.5EPS | 56.1 | 37.5 | 5.2 | 1.2 | 2.5 | - | - |
GEO_3.0EPS | 56.1 | 37.5 | 5.2 | 1.2 | 3.0 | - | - |
GEO_3.0ExP | 56.1 | 37.5 | 5.2 | 1.2 | - | 3.0 | - |
GEO_6.0ExP | 56.1 | 37.5 | 5.2 | 1.2 | - | 6.0 | - |
GEO_9.0ExP | 56.1 | 37.5 | 5.2 | 1.2 | - | 9.0 | - |
GEO_12.0ExP | 56.1 | 37.5 | 5.2 | 1.2 | - | 12.0 | - |
GEO_15.0ExP | 56.1 | 37.5 | 5.2 | 1.2 | - | 15.0 | - |
GEO_3.0EPS_0.25PP | 56.1 | 37.5 | 5.2 | 1.2 | 3.0 | - | 0.25 |
GEO_3.0EPS_0.50PP | 56.1 | 37.5 | 5.2 | 1.2 | 3.0 | - | 0.50 |
GEO_3.0EPS_0.75PP | 56.1 | 37.5 | 5.2 | 1.2 | 3.0 | - | 0.75 |
GEO_3.0EPS_1.00PP | 56.1 | 37.5 | 5.2 | 1.2 | 3.0 | - | 1.00 |
Quantities | Unit | GEO_REF | GEO_3EPS_0.5PP | |
---|---|---|---|---|
First crack | Load | N | 0.808 | 0.684 |
deflection | mm | 0.027 | 0.028 | |
Toughness | Nm | 0.020 | 0.020 | |
d5 | Load | N | - | 0.960 |
deflection | Mm | - | 0.085 | |
Toughness | Nm | - | 0.080 | |
I5 | - | 4.8 | ||
R5,10 | - | 115.8 | ||
d10 | Load | N | - | 1.091 |
deflection | mm | - | 0.156 | |
Toughness | Nm | - | 0.170 | |
I10 | - | 10.6 | ||
R10,20 | - | 129.3 | ||
d20 | Load | N | - | 1.160 |
deflection | mm | - | 0.297 | |
Toughness | Nm | - | 0.34 | |
I20 | - | 23.5 | ||
Ultimate crack | Load | N | - | 1.197 |
deflection | mm | - | 325.3 | |
Toughness | Nm | - | 0.390 | |
Elastic modulus | GPa | 8.0 | 1.0 |
Sample | Density | Measured Temperatures | Thermal Conductivity | |
---|---|---|---|---|
Mean | Delta | |||
g/cm3 | °C | K | W/(m∙K) | |
GEO_REF | 1.72 | 9.0 | 5.1 | 0.538 |
GEO_1.5EPS | 1.28 | 8.9 | 5.6 | 0.418 |
GEO_3EPS | 1.03 | 9.5 | 6.8 | 0.321 |
GEO_6ExP | 1.51 | 9.9 | 6.3 | 0.481 |
GEO_15ExP | 1.20 | 9.7 | 6.4 | 0.441 |
GEO_3EPS_0.5PP | 0.98 | 10.2 | 7.9 | 0.291 |
Samples | Sorptivity (mm/min0.5) | R2 (%) | Average S (mm/min0.5) |
---|---|---|---|
GEO_REF | 0.0586 | 99.8 | 0.0555 |
0.0551 | 99.3 | ||
0.0527 | 98.9 | ||
GEO_3EPS_0.5PP | 0.0311 | 99.6 | 0.0314 |
0.0319 | 99.0 | ||
0.0312 | 98.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kioupis, D.; Skaropoulou, A.; Tsivilis, S.; Kakali, G. Properties and Durability Performance of Lightweight Fly Ash Based Geopolymer Composites Incorporating Expanded Polystyrene and Expanded Perlite. Ceramics 2022, 5, 821-836. https://doi.org/10.3390/ceramics5040060
Kioupis D, Skaropoulou A, Tsivilis S, Kakali G. Properties and Durability Performance of Lightweight Fly Ash Based Geopolymer Composites Incorporating Expanded Polystyrene and Expanded Perlite. Ceramics. 2022; 5(4):821-836. https://doi.org/10.3390/ceramics5040060
Chicago/Turabian StyleKioupis, Dimitrios, Aggeliki Skaropoulou, Sotirios Tsivilis, and Glikeria Kakali. 2022. "Properties and Durability Performance of Lightweight Fly Ash Based Geopolymer Composites Incorporating Expanded Polystyrene and Expanded Perlite" Ceramics 5, no. 4: 821-836. https://doi.org/10.3390/ceramics5040060
APA StyleKioupis, D., Skaropoulou, A., Tsivilis, S., & Kakali, G. (2022). Properties and Durability Performance of Lightweight Fly Ash Based Geopolymer Composites Incorporating Expanded Polystyrene and Expanded Perlite. Ceramics, 5(4), 821-836. https://doi.org/10.3390/ceramics5040060