Synthesis of Boron Carbide Powder via Rapid Carbothermal Reduction Using Boric Acid and Carbonizing Binder
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Thermal Analysis
3.2. Effect of Heat Treatment on Synthesis of Boron Carbide Powder
3.3. Effects of Heat Temperature on Morphology of Synthesized Boron Carbide Powder
3.4. Effect of Starting Composition on Stoichiometry of Synthesized Boron Carbide Powder
3.5. Effect of Starting Composition on Morphology of Synthesized Boron Carbide Powder
3.6. Formation Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thevenot, F. Boron carbide-A comprehensive review. J. Eur. Ceram. Soc. 1990, 6, 205–225. [Google Scholar] [CrossRef]
- Suri, A.K.; Subramanian, C.; Sonber, J.K.; Murthy, T.C. Synthesis and consolidation of boron carbide: A review. Int. Mater. Rev. 2010, 55, 4–40. [Google Scholar] [CrossRef]
- Domnich, V.; Reynaud, S.; Haber, R.A.; Chhowalla, M. Boron carbide: Structure, properties, and stability under stress. J. Am. Ceram. Soc. 2011, 94, 3605–3628. [Google Scholar] [CrossRef]
- Walley, S.M. Historical review of high strain rate and shock properties of ceramics relevant to their application in armour. Adv. Appl. Ceram. 2010, 109, 446–466. [Google Scholar] [CrossRef]
- Seiler, N.; Bertrand, F.; Marchand, O.; Repetto, G.; Ederli, S. Investigations on boron carbide oxidation for nuclear reactors safety—General modelling for ICARE/CATHARE code applications. Nucl. Eng. Des. 2008, 238, 820–836. [Google Scholar] [CrossRef]
- Feng, B.; Martin, H.P.; Michaelis, A. In Situ Preparation and Thermoelectric Properties of B4C1−x –TiB2 Composites. J. Electron. Mater. 2013, 42, 2314–2319. [Google Scholar] [CrossRef]
- Feng, B.; Martin, H.-P.; Michaelis, A. Preparation and Characterization of B4C-HfB2 Composites as Material for High-Temperature Thermocouples. Crystals 2022, 12, 621. [Google Scholar] [CrossRef]
- Karaman, M.; Sezgi, N.A.; Dogu, T.; Ozbelge, H.O. Kinetic investigation of chemical vapour deposition of B4C on Tungsten substrate. AIChE J. 2006, 52, 4161–4166. [Google Scholar] [CrossRef]
- Santos, M.J.; Silvestre, A.J.; Conde, O. Laser-assisted deposition of r-B4C coatings using ethylene as carbon precursor. Surf. Coat. Tech. 2002, 151, 160–164. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A.; Mahata, T.; Sharma, B.P. Carbothermal route for preparation of boron carbide powder from boric acid-citic acid gel precursor. J. Nucl. Mater. 2002, 301, 165–169. [Google Scholar] [CrossRef]
- Alizadeh, A.; Nassaj, E.T.; Ehsani, N.; Baharvandi, H.R. Production of boron carbide powder by carbothermic reduction from boron oxide and petroleum coke or carbon active. Adv. Appl. Ceram. 2006, 105, 291–296. [Google Scholar] [CrossRef]
- Yanase, I.; Ogawara, R.; Kobayashi, H. Synthesis of boron carbide powder from polyvinyl borate precursor. Mater. Lett. 2009, 63, 91–93. [Google Scholar] [CrossRef]
- Weimer, A.W.; Roach, R.P.; Haney, C.N.; Moore, W.G.; Rafaniello, W. Rapid carbothermal reduction of boron oxide in a graphite transport reactor. AIChE J. 1991, 37, 759–768. [Google Scholar] [CrossRef]
- Weimer, A.W.; Moore, W.G.; Roach, R.P.; Hitt, J.E.; Dixit, R.S. Kinetics of carbothermal reduction synthesis of boron carbide. J. Am. Ceram. Soc. 1992, 75, 2509–2514. [Google Scholar] [CrossRef]
- Tumanov, Y.N. The synthesis of boron carbide in a high frequency electromagnetic field. J. Less Common Met. 1979, 67, 521–529. [Google Scholar] [CrossRef]
- Khanra, A.K. Production of boron carbide powder by carbothermal synthesis of gel material. Bull. Mater. Sci. 2007, 30, 93–96. [Google Scholar] [CrossRef]
- Mohanty, R.M.; Balasubramanian, K.; Seshadri, S.K. Multiphase formation of boron carbide in B2O3-Mg-C based micropyretic process. J. Alloys Compd. 2007, 441, 85–93. [Google Scholar] [CrossRef]
- Alkan, M.; Seref Sonmez, M.; Derin, B.; Yücel, O. Effect of initial composition on boron carbide production by SHS process followed by acid leaching. Solid State Sci. 2012, 14, 1688–1691. [Google Scholar] [CrossRef]
- Aghili, S.; Panjepour, M.; Meratian, M.; Hadadzadeh, H. Effects of boron oxide composition, structure, and morphology on B4C formation via the SHS process in the B2O3-Mg-C ternary system. Ceram. Int. 2020, 46, 7223–7234. [Google Scholar] [CrossRef]
- Ramos, A.S.; Taguchi, S.P.; Ramos, E.C.T.; Arantes, V.L.; Ribeiro, S. High-energy ball milling of powder B-C mixtures. Mater. Sci. Eng. 2006, A422, 184–188. [Google Scholar] [CrossRef]
- Roszeitis, S.; Feng, B.; Martin, H.P.; Michaelis, A. Reactive sintering process and thermoelectric properties of boronrich boron carbides. J. Eur. Ceram. Soc. 2014, 34, 327–336. [Google Scholar] [CrossRef]
- Moshtaghioun, B.M.; Gomez-Garcia, D.; Dominguez-Rodriguez, A.; Todd, R.I. Grain size dependence of hardness and fracture toughness in pure near fully-dense boron carbide ceramics. J. Eur. Ceram. Soc. 2016, 36, 1829–1834. [Google Scholar] [CrossRef]
- Miller, S.; Toksoy, F.; Rafaniello, W.; Haber, R. Submicron boron carbide synthesis through rapid carbothermal reduction. In Advances in Ceramic Armor VIII; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2012; pp. 195–207. [Google Scholar]
- Toksoy, M.F.; Rafaniello, W.; Xie, K.Y.; Ma, L.; Hemker, K.J.; Haber, R.A. Densification and characterization of rapid carbothermal synthesized boron carbide. Int. J. Appl. Ceram. Technol. 2017, 14, 443–453. [Google Scholar] [CrossRef]
- Toksoy, M.F.; Haber, R.A. Modification of commercial boron carbide powder using Rapid Carbothermal Reduction. Int. J. Appl. Ceram. Technol. 2019, 16, 1120–1125. [Google Scholar] [CrossRef]
- Jung, C.H.; Lee, M.J.; Kim, C.J. Preparation of carbon-free B4C powder from B2O3 oxide by carbothermal reduction process. Mater. Lett. 2004, 58, 609–614. [Google Scholar] [CrossRef]
- Pankajavalli, R.; Anthonysamy, S.; Ananthasivan, K.; Vasudeva Rao, P.R. Vapour pressure and standard enthalpy of sublimation of H3BO3. J. Nucl. Mater. 2007, 362, 128–131. [Google Scholar] [CrossRef]
- Foroughi, P.; Cheng, Z. Understanding the morphological variation in the formation of B4C via carbothermal reduction reaction. Ceram. Int. 2016, 42, 15189–15198. [Google Scholar] [CrossRef]
- Xin, F.; Jun, J.; Chao, L.; Zhi-Yang, Y.; Lea, S.; Jun, Y. Re-entrant-groove-assisted VLS growth of boron carbide five-fold twinned nanowires. Chin. Phys. Lett. 2009, 26, 086110. [Google Scholar] [CrossRef]
- Aselage, T.L.; Tissot, R.G. Lattice constants of boron carbides. J. Am. Ceram. Soc. 1992, 75, 2207–2212. [Google Scholar] [CrossRef]
- Kwei, G.H.; Morosin, B. Structures of the boron-rich boron carbides from neutron powder diffraction: Implications for the nature of the inter-icosahedral chains. J. Phys. Chem. 1996, 100, 8031–8039. [Google Scholar] [CrossRef]
- Telle, R. Structure and Sintering Behaviour of Multiphase Ceramics in the Hard Material System B4C-Si. Ph.D. Thesis, Stuttgart University, Stuttgart, Germany, 1985. [Google Scholar]
- Rentzepis, P.; White, D.; Walsh, P.N. The reaction between B2O3(l) and C(s): Heat of formation of B2O2(g). J. Phys. Chem. 1960, 64, 1784–1787. [Google Scholar] [CrossRef]
Samples | H3BO3/Carbonizing Binder Weight Ratio | B2O3/C * Molar Ratio | Final Temperature (°C) | Dwell Time (min) | Phases after Heat Treatment | Hexagonal Lattice Parameters of Boron Carbide # | |
---|---|---|---|---|---|---|---|
a (Å) | c (Å) | ||||||
S1 | 1.54:1 | 0.75:1 | 1300 | 20 | B2O3, amorphous C | - | - |
S2 | 1.54:1 | 0.75:1 | 1400 | 20 | B2O3, graphite | - | - |
S3 | 1.54:1 | 0.75:1 | 1500 | 20 | B2O3, graphite | - | - |
S4 | 1.54:1 | 0.75:1 | 1600 | 20 | B4C, B2O3, graphite | - | - |
S5 | 1.54:1 | 0.75:1 | 1700 | 20 | B4C, few graphite | - | - |
S6 | 1.54:1 | 0.75:1 | 1800 | 20 | B4C | 5.6063 ± 0.0004 | 12.0877 ± 0.0013 |
S7 | 1.54:1 | 0.75:1 | 1900 | 20 | B4C | 5.6068 ± 0.0002 | 12.0898 ± 0.0008 |
S8 | 2.06:1 | 1:1 | 1900 | 20 | B4C | 5.5985 ± 0.0002 | 12.0819 ± 0.0007 |
S9 | 3.09:1 | 1.5:1 | 1900 | 20 | B4C | 5.6016 ± 0.0002 | 12.0823 ± 0.0006 |
S10 | 4.12:1 | 2:1 | 1900 | 20 | B4C | 5.5978 ± 0.0002 | 12.0693 ± 0.0006 |
S11 | 5.15:1 | 2.5:1 | 1900 | 20 | B4C | 5.6019 ± 0.0014 | 12.0825 ± 0.0030 |
S12 | 6.19:1 | 3:1 | 1900 | 20 | B4C | 5.6024 ± 0.0002 | 12.0841 ± 0.0005 |
S13 | 7.21:1 | 3.5:1 | 1900 | 20 | B4C | 5.6015 ± 0.0002 | 12.0796 ± 0.0006 |
S14 | 8.25:1 | 4:1 | 1900 | 20 | B4C | 5.6016 ± 0.0002 | 12.0783 ± 0.0006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, B.; Martin, H.-P.; Michaelis, A. Synthesis of Boron Carbide Powder via Rapid Carbothermal Reduction Using Boric Acid and Carbonizing Binder. Ceramics 2022, 5, 837-847. https://doi.org/10.3390/ceramics5040061
Feng B, Martin H-P, Michaelis A. Synthesis of Boron Carbide Powder via Rapid Carbothermal Reduction Using Boric Acid and Carbonizing Binder. Ceramics. 2022; 5(4):837-847. https://doi.org/10.3390/ceramics5040061
Chicago/Turabian StyleFeng, Bing, Hans-Peter Martin, and Alexander Michaelis. 2022. "Synthesis of Boron Carbide Powder via Rapid Carbothermal Reduction Using Boric Acid and Carbonizing Binder" Ceramics 5, no. 4: 837-847. https://doi.org/10.3390/ceramics5040061
APA StyleFeng, B., Martin, H. -P., & Michaelis, A. (2022). Synthesis of Boron Carbide Powder via Rapid Carbothermal Reduction Using Boric Acid and Carbonizing Binder. Ceramics, 5(4), 837-847. https://doi.org/10.3390/ceramics5040061