Characterisation of a Complex CaZr0.9Ce0.1Ti2O7 Glass–Ceramic Produced by Hot Isostatic Pressing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. Material Characterisation
3. Results
3.1. Cold-Pressed and Sintered Materials
3.2. HIPed Material
3.2.1. X-ray Diffraction
Lower Bulk and Upper Bulk Regions
Lower and Upper Regions
Lower Side and Upper Side Regions
3.2.2. Scanning Electron Microscopy
Lower Bulk and Upper Bulk Regions
Lower and Upper Regions
Lower Side and Upper Side Regions
3.2.3. Ce L3-Edge XANES
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- 2020 Annual Figures for Holdings of Civil Unirradiated Plutonium. Available online: https://www.onr.org.uk/safeguards/civilplut20.htm (accessed on 27 July 2022).
- Hyatt, N.C. Safe management of the UK separated plutonium inventory: A challenge of materials degradation. NPJ Mater. Degrad. 2020, 4, 28. [Google Scholar] [CrossRef]
- Hyatt, N.C. Plutonium management policy in the United Kingdom: The need for a dual track strategy. Energy Policy 2017, 101, 303–309. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, L.R.; Bailey, D.J.; Sun, S.-K.; Gardner, L.J.; Stennett, M.C.; Corkhill, C.L.; Hyatt, N.C. Review of zirconolite crystal chemistry and aqueous durability. Adv. Appl. Ceram. 2021, 120, 69–83. [Google Scholar] [CrossRef]
- McGlinn, P.J.; Hart, K.P.; Loi, E.H.; Vance, E.R. pH Dependence of the Aqueous Dissolution Rates of Perovskite and Zirconolite at 90 °C. MRS Proc. 1994, 353, 847. [Google Scholar] [CrossRef]
- Hart, K.P.; Vance, E.R.; Stewart, M.W.A.; Weir, J.; Carter, M.L.; Hambley, M.; Brownscombe, A.; Day, R.A.; Leung, S.; Ball, C.J.; et al. Leaching Behavior of Zirconolite-Rich Synroc Used to Immobilize High-Fired Plutonium Oxide. MRS Proc. 1997, 506, 161. [Google Scholar] [CrossRef]
- Strachan, D.; Scheele, R.; Buck, E.; Kozelisky, A.; Sell, R.; Elovich, R.; Buchmiller, W. Radiation damage effects in candidate titanates for Pu disposition: Zirconolite. J. Nucl. Mater. 2008, 372, 16–31. [Google Scholar] [CrossRef]
- Smith, K.L.; Zhang, Z.; McGlinn, P.; Attard, D.; Li, H.; Lumpkin, G.R.; Colella, M.; McLeod, T.; Aly, Z.; Loi, E.; et al. The Effect of Radiation Damage on Zirconolite Dissolution. MRS Proc. 2002, 757, II6.12. [Google Scholar] [CrossRef]
- Smith, K.L.; Zaluzec, N.J.; Lumpkin, G.R. In situ studies of ion irradiated zirconolite, pyrochlore and perovskite. J. Nucl. Mater. 1997, 250, 36–52. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, L.; Ionescu, M.; Gregg, D.J. Current advances on titanate glass-ceramic composite materials as waste forms for actinide immobilization: A technical review. J. Eur. Ceram. Soc. 2022, 42, 1852–1876. [Google Scholar] [CrossRef]
- Thornber, S.M.; Stennett, M.C.; Vance, E.R.; Chavara, D.T.; Watson, I.; Jovanovic, M.; Davis, J.; Gregg, D.; Hyatt, N.C. A preliminary validation study of PuO2 incorporation into zirconolite glass-ceramics. MRS Adv. 2018, 3, 1065–1071. [Google Scholar] [CrossRef]
- Stewart, M.W.A.; Moricca, S.A.; Eddowes, T.; Zhang, Y.; Vance, E.R.; Lumpkin, G.R.; Carter, M.L.; Dowson, M.; James, M. The Use of Hot-Isostatic Pressing to Process Nuclear Waste Forms. In Proceedings of the 12th International Conference on Environmental Remediation and Radioactive Waste Management, Liverpool, UK, 11–15 December 2009; pp. 611–616. [Google Scholar]
- Maddrell, E. Hot isostatically pressed wasteforms for future nuclear fuel cycles. Chem. Eng. Res. Des. 2013, 91, 735–741. [Google Scholar] [CrossRef]
- Bingham, P.; Hand, R.J.; Stennett, M.; Hyatt, N.; Harrison, M.T. The Use of Surrogates in Waste Immobilization Studies: A Case Study of Plutonium. MRS Proc. 2008, 1107, 421. [Google Scholar] [CrossRef]
- Kong, L.; Karatchevtseva, I.; Zhang, Y.; Wei, T. The incorporation of Nd or Ce in CaZrTi2O7 zirconolite: Ceramic versus glass-ceramic. J. Nucl. Mater. 2020, 543, 152583. [Google Scholar] [CrossRef]
- Thornber, S.M.; Stennett, M.C.; Hyatt, N.C. Investigation of Ce incorporation in zirconolite glass-ceramics for UK plutonium disposition. MRS Adv. 2017, 2, 699–704. [Google Scholar] [CrossRef]
- Blackburn, L.R.; Gardner, L.J.; Sun, S.K.; Maddrell, E.R.; Stennett, M.C.; Corkhill, C.L.; Hyatt, N.C. Hot Isostatically Pressed Zirconolite Wasteforms for Actinide Immobilisation. IOP Conf. Series Mater. Sci. Eng. 2020, 818, 012010. [Google Scholar] [CrossRef]
- Dayal, P.; Farzana, R.; Zhang, Y.; Lumpkin, G.R.; Holmes, R.; Triani, G.; Gregg, D.J. Profiling hot isostatically pressed canister–wasteform interaction for Pu-bearing zirconolite-rich wasteforms. J. Am. Ceram. Soc. 2022, 105, 5359–5372. [Google Scholar] [CrossRef]
- Zhang, Y.; Stewart, M.; Li, H.; Carter, M.; Vance, E.; Moricca, S. Zirconolite-rich titanate ceramics for immobilisation of actinides—Waste form/HIP can interactions and chemical durability. J. Nucl. Mater. 2009, 395, 69–74. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; McGlinn, P.; Moricca, S.; Begg, B.; Vance, E. Characterisation of stainless steel–synroc interactions under hot isostatic pressing (HIPing) conditions. J. Nucl. Mater. 2006, 355, 136–141. [Google Scholar] [CrossRef]
- Gates-Rector, S.; Blanton, T. The Powder Diffraction File: A quality materials characterization database. Powder Diffr. 2019, 34, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Coelho, A.A. TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 2018, 51, 210–218. [Google Scholar] [CrossRef]
- Evans, J.S. Advanced Input Files & Parametric Quantitative Analysis Using Topas. Mater. Sci. Forum 2010, 651, 1–9. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, L.R.; Sun, S.; Gardner, L.J.; Maddrell, E.R.; Stennett, M.C.; Hyatt, N.C. A systematic investigation of the phase assemblage and microstructure of the zirconolite CaZr1-xCexTi2O7 system. J. Nucl. Mater. 2020, 535, 152137. [Google Scholar] [CrossRef]
- Huynh, L.T.; Eger, S.B.; Walker, J.D.; Hayes, J.R.; Gaultois, M.W.; Grosvenor, A.P. How temperature influences the stoichiometry of CeTi2O6. Solid State Sci. 2012, 14, 761–767. [Google Scholar] [CrossRef]
- Otsuka-Yao-Matsuo, S.; Omata, T.; Yoshimura, M. Photocatalytic behavior of cerium titanates, CeTiO4 and CeTi2O6 and their composite powders with SrTiO3. J. Alloys Compd. 2004, 376, 262–267. [Google Scholar] [CrossRef]
- Maddrell, E.R.; Paterson, H.C.; May, S.E.; Burns, K.M. Phase evolution in zirconolite glass-ceramic wasteforms. J. Nucl. Mater. 2017, 493, 380–387. [Google Scholar] [CrossRef]
- Hyatt, N.C.; Corkhill, C.L.; Stennett, M.C.; Hand, R.J.; Gardner, L.J.; Thorpe, C.L. The HADES Facility for High Activity Decommissioning Engineering & Science: Part of the UK National Nuclear User Facility. IOP Conf. Series Mater. Sci. Eng. 2020, 818, 012022. [Google Scholar] [CrossRef]
Material | Zirconolite-2M (wt. %) | Perovskite (wt. %) | Rutile (wt. %) | Baddeleyite (wt. %) | Sphene (wt. %) | Zircon (wt. %) | Rwp | GOF |
---|---|---|---|---|---|---|---|---|
CPS Ar | 68.6(3) | 1.7(2) | 4.0(2) | 3.1(2) | 20.1(2) | 2.5(1) | 7.85 | 1.53 |
CPS 5% H2/95% N2 | 69.4 (3) | 0.9 (1) | 5.3 (2) | 3.2 (1) | 18.5 (2) | 2.7 (1) | 6.85 | 1.41 |
Lower (A) | 90.4 (4) | - | 1.8 (2) | 3.8 (2) | 4.0 (3) | - | 7.36 | 1.25 |
Lower bulk (B) | 90.3 (4) | - | 2.9 (2) | 3.8 (2) | 3.0 (4) | - | 7.16 | 1.24 |
Upper bulk (C) | 68.2 (4) | - | 6.1 (2) | 9.1 (2) | 16.6 (4) | - | 7.00 | 1.23 |
Upper (D) | 52.9 (3) | 7.1 (2) | 7.7 (2) | 13.0 (2) | 19.3 (4) | - | 7.19 | 1.26 |
Upper side (E) | 55.5 (3) | 7.9 (2) | 6.7 (2) | 10.2 (2) | 19.7 (3) | - | 7.36 | 1.28 |
Lower side (F) | 82.8 (5) | - | 1.3 (2) | 3.7 (2) | 12.2 (4) | - | 7.01 | 1.17 |
Material | f(CeO2) | f(CePO4) | Sum | Ce ox. State | Fit R Factor |
---|---|---|---|---|---|
Lower (A) | 0.808 (14) | 0.326 (12) | 1.134 | 3.7 (1)+ | 0.0187 |
Lower bulk (B) | 1.140 (14) | 0.025 (12) | 1.165 | 4.0 (1)+ | 0.0149 |
Upper bulk (C) | 1.121 (14) | 0.024 (13) | 1.145 | 4.0 (1)+ | 0.0154 |
Upper (D) | 0.385 (13) | 0.751 (11) | 1.136 | 3.3 (1)+ | 0.0127 |
Upper side (E) | 0.137 (13) | 0.937 (11) | 1.074 | 3.1 (1)+ | 0.0095 |
Lower side (F) | 0.401 (15) | 0.708 (13) | 1.109 | 3.4 (1)+ | 0.0182 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dixon Wilkins, M.C.J.; Gausse, C.; Townsend, L.T.; Gardner, L.J.; Corkhill, C.L. Characterisation of a Complex CaZr0.9Ce0.1Ti2O7 Glass–Ceramic Produced by Hot Isostatic Pressing. Ceramics 2022, 5, 1035-1050. https://doi.org/10.3390/ceramics5040074
Dixon Wilkins MCJ, Gausse C, Townsend LT, Gardner LJ, Corkhill CL. Characterisation of a Complex CaZr0.9Ce0.1Ti2O7 Glass–Ceramic Produced by Hot Isostatic Pressing. Ceramics. 2022; 5(4):1035-1050. https://doi.org/10.3390/ceramics5040074
Chicago/Turabian StyleDixon Wilkins, Malin C. J., Clémence Gausse, Luke T. Townsend, Laura J. Gardner, and Claire L. Corkhill. 2022. "Characterisation of a Complex CaZr0.9Ce0.1Ti2O7 Glass–Ceramic Produced by Hot Isostatic Pressing" Ceramics 5, no. 4: 1035-1050. https://doi.org/10.3390/ceramics5040074
APA StyleDixon Wilkins, M. C. J., Gausse, C., Townsend, L. T., Gardner, L. J., & Corkhill, C. L. (2022). Characterisation of a Complex CaZr0.9Ce0.1Ti2O7 Glass–Ceramic Produced by Hot Isostatic Pressing. Ceramics, 5(4), 1035-1050. https://doi.org/10.3390/ceramics5040074