Structural and Luminescence Properties of (Gd1−xYx)2O3 Powders Doped with Nd3+ Ions for Temperature Measurements
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. XRD Studies
3.2. Morphology Studies
3.3. Spectral Properties
3.4. Thermometry Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, M.M.; Giry, A.; Mastiani, M.; Rodrigues, G.O.; Reis, A.; Mandin, P. Microscale thermometry: A review. Microelectron. Eng. 2015, 148, 129–142. [Google Scholar] [CrossRef]
- Quintanilla, M.; Liz-Marzán, L.M. Guiding Rules for Selecting a Nanothermometer. Nano Today 2018, 19, 126–145. [Google Scholar] [CrossRef]
- Nexha, A.; Carvajal, J.J.; Pujol, M.C.; Díaz, F.; Aguiló, M. Lanthanide doped luminescence nanothermometers in the biological windows: Strategies and applications. Nanoscale 2021, 13, 7913–7987. [Google Scholar] [CrossRef] [PubMed]
- Soga, K.; Tokuzen, K.; Tsuji, K.; Yamano, T.; Hyodo, H.; Kishimoto, H. NIR bioimaging: Development of liposome-encapsulated, rare-earth-doped Y2O3 nanoparticles as fluorescent probes. Eur. J. Inorg. Chem. 2010, 2010, 2673–2677. [Google Scholar] [CrossRef]
- Sukul, P.P.; Kumar, K. Near-infrared (808 and 980 nm) excited photoluminescence study in Nd-doped Y2O3 phosphor for bio-imaging. Methods Appl. Fluoresc. 2016, 4, 044005. [Google Scholar] [CrossRef] [PubMed]
- Bashkatov, A.N.; Genina, E.A.; Kochubey, V.I.; Tuchin, V.V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 2005, 38, 2543–2555. [Google Scholar] [CrossRef]
- Shang, F.; Hu, C.; Xu, W.; Zhu, X.; Zhao, D.; Zhang, W.; Zhang, Z.; Cao, W. Near-infrared emitting Nd3+-Yb3+ codoped Y2O3 nanocrystals for highly sensitive optical thermometry. J. Alloys Compd. 2021, 858, 157637. [Google Scholar] [CrossRef]
- Hirosaki, N.; Ogata, S.; Kocer, C. Ab initio calculation of the crystal structure of the lanthanide Ln2O3 sesquioxides. J. Alloys Compd. 2003, 351, 31–34. [Google Scholar] [CrossRef]
- Lonappan, D.; Shekar, N.V.C.; Sahu, P.C.; Kumarasamy, B.V.; Bandyopadhyay, A.K.; Rajagopalan, M. Cubic to hexagonal structural transformation in Gd2O3 at high pressure. Philos. Mag. Lett. 2008, 88, 473–479. [Google Scholar] [CrossRef]
- Lojpur, V.; Nikolic, M.; Mancic, L.; Milosevic, O.; Dramicanin, M.D. Y2O3:Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence. Ceram. Int. 2013, 39, 1129–1134. [Google Scholar] [CrossRef]
- Balabhadra, S.; Debasu, M.L.; Brites, C.D.S.; Nunes, L.A.O.; Malta, O.L.; Rocha, J.; Bettinelli, M.; Carlos, L.D. Boosting the sensitivity of Nd3+-based luminescent nanothermometers. Nanoscale 2015, 7, 17261–17267. [Google Scholar] [CrossRef] [PubMed]
- Adachi, G.Y.; Imanaka, N. The binary rare earth oxides. Chem. Rev. 1998, 98, 1479–1514. [Google Scholar] [CrossRef]
- Dargis, R.; Williams, D.; Smith, R.; Arkun, E.; Roucka, R.; Clark, A.; Lebby, M. Structural and Thermal Properties of Single Crystalline Epitaxial Gd2O3 and Er2O3 Grown on Si(111). ECS J. Solid State Sci. Technol. 2012, 1, N24–N28. [Google Scholar] [CrossRef]
- Barad, C.; Kimmel, G.; Rosen, B.A.; Sahartov, A.; Hayun, H.; Zabicky, J.; Gelbstein, Y. Lattice variation of cubic Y2O3 in three dimensions: Temperature, pressure and crystal size. J. Alloys Compd. 2021, 885, 161199. [Google Scholar] [CrossRef]
- Kruk, A. Structural and magneto-optical characterization of la, nd: Y2O3 powders obtained via a modified edta sol–gel process and hip-treated ceramics. Materials 2020, 13, 4928. [Google Scholar] [CrossRef] [PubMed]
- Gaboriaud, R.J.; Paumier, F.; Lacroix, B. Disorder-order phase transformation in a fluorite-related oxide thin film: In-situ X-ray diffraction and modelling of the residual stress effects. Thin Solid Films. 2016, 601, 84–88. [Google Scholar] [CrossRef]
- Schneider, S.J.; Roth, R.S. Phase equilibria in systems involving the rare-earth oxides. Part II. Solid state reactions in trivalent rare-earth oxide systems. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 1960, 64A, 317. [Google Scholar] [CrossRef]
- Melnikov, P.; Nascimento, V.A.; Consolo, L.Z.Z.; Silva, A.F. Mechanism of thermal decomposition of yttrium nitrate hexahydrate, Y(NO3)3·6H2O and modeling of intermediate oxynitrates. J. Therm. Anal. Calorim. 2013, 111, 115–119. [Google Scholar] [CrossRef]
- Fukuda, T.; Nakano, Y.; Takeshita, K. Non-isothermal kinetics of the thermal decomposition of gadolinium nitrate. J. Nucl. Sci. Technol. 2018, 55, 1193–1197. [Google Scholar] [CrossRef]
- Melnikov, P.P.; Nascimento, V.A.; Zanoni Consolo, L.Z. Computerized modeling of intermediate compounds formed during thermal decomposition of gadolinium nitrate hydrate. Russ. J. Phys. Chem. A. 2012, 86, 1659–1663. [Google Scholar] [CrossRef]
- Leavitt, R.P.; Gruber, J.B.; Chang, N.C.; Morrison, C.A. Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. I. Kramers ions in C2 sites. J. Chem. Phys. 1981, 76, 4775–4788. [Google Scholar] [CrossRef]
- Gruber, J.B.; Sardar, D.K.; Nash, K.L.; Yow, R.M. Comparative study of the crystal-field splitting of trivalent neodymium energy levels in polycrystalline ceramic and nanocrystalline yttrium oxide. J. Appl. Phys. 2007, 102, 023103. [Google Scholar] [CrossRef]
- Gomes, M.A.; Carvalho, I.S.; Domingos, L.F.A.; Brandão-Silva, A.C.; Avila, J.F.M.; Rodrigues, J.J.; Alencar, M.A.R.C.; Valerio, M.E.G.; Macedo, Z.S. Temperature-sensitive luminescence of Y2O3:Nd3+ nanocrystals produced by an eco-friendly route. Opt. Mater. 2019, 89, 536–542. [Google Scholar] [CrossRef]
- Kolesnikov, I.E.; Kalinichev, A.A.; Kurochkin, M.A.; Mamonova, D.V.; Kolesnikov, E.Y.; Kurochkin, A.V.; Lähderanta, E.; Mikhailov, M.D. Y2O3:Nd3+ nanocrystals as ratiometric luminescence thermal sensors operating in the optical windows of biological tissues. J. Lumin. 2018, 204, 506–512. [Google Scholar] [CrossRef]
- Collins, S.F.; Baxter, G.W.; Wade, S.A.; Sun, T.; Grattan, K.T.V.; Zhang, Z.Y.; Palmer, A.W. Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation. J. Appl. Phys. 1998, 84, 4649–4654. [Google Scholar] [CrossRef]
- Khodasevich, M.A.; Aseev, V.A. Selection of Spectral Variables and Improvement of the Accuracy of Calibration of Temperature by Projection onto Latent Structures Using the Fluorescence Spectra of Yb3+:CaF2. Opt. Spectrosc. 2018, 124, 748–752. [Google Scholar] [CrossRef]
- Kolesnikov, I.E.; Kalinichev, A.A.; Kurochkin, M.A.; Mamonova, D.V.; Kolesnikov, E.Y.; Kurochkin, A.V.; Lähderanta, E.; Mikhailov, M.D. New strategy for thermal sensitivity enhancement of Nd3+-based ratiometric luminescence thermometers. J. Lumin. 2017, 192, 40–46. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta. 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Khodasevich, M.A.; Borisevich, D.A.; Aseev, V.A.; Kuzmenko, N.K.; Sevastianova, I.M. Uni- and multivariate calibration of temperature from the neodymium fluorescence spectra in nanocrystals (YxGd1−x)2O3 and (YxGd1−x)3Al5O12. J. Belarusian State Univ. Phys. 2022; in press. [Google Scholar] [CrossRef]
- Wawrzynczyk, D.; Bednarkiewicz, A.; Nyk, M.; Strek, W.; Samoc, M. Neodymium (iii) doped fluoride nanoparticles as non-contact optical temperature sensors. Nanoscale 2012, 4, 6959–6961. [Google Scholar] [CrossRef]
- Marciniak, L.; Pilch, A.; Arabasz, S.; Jin, D.; Bednarkiewicz, A. Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry. Nanoscale 2017, 9, 8288–8297. [Google Scholar] [CrossRef] [PubMed]
- Benayas, A.; Del Rosal, B.; Pérez-Delgado, A.; Santacruz-Gómez, K.; Jaque, D.; Hirata, G.A.; Vetrone, F. Nd:YAG Near-Infrared Luminescent Nanothermometers. Adv. Opt. Mater. 2015, 3, 687–694. [Google Scholar] [CrossRef]
- Đačanin Far, L.; Lukić-Petrović, S.R.; Đorđević, V.; Vuković, K.; Glais, E.; Viana, B.; Dramićanin, M.D. Luminescence temperature sensing in visible and NIR spectral range using Dy3+ and Nd3+ doped YNbO4. Sens. Actuators A Phys. 2018, 270, 89–96. [Google Scholar] [CrossRef]
- Carrasco, E.; Del Rosal, B.; Sanz-Rodríguez, F.; De La Fuente, Á.J.; Gonzalez, P.H.; Rocha, U.; Kumar, K.U.; Jacinto, C.; Solé, J.G.; Jaque, D. Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles. Adv. Funct. Mater. 2015, 25, 615–626. [Google Scholar] [CrossRef]
- Rocha, U.; Jacinto, C.; Kumar, K.U.; López, F.J.; Bravo, D.; Solé, J.G.; Jaque, D. Real-time deep-tissue thermal sensing with sub-degree resolution by thermally improved Nd3+:LaF3 multifunctional nanoparticles. J. Lumin. 2016, 175, 149–157. [Google Scholar] [CrossRef]
- Kolesnikov, I.E.; Golyeva, E.V.; Kurochkin, M.A.; Lähderanta, E.; Mikhailov, M.D. Nd3+-doped YVO4 nanoparticles for luminescence nanothermometry in the first and second biological windows. Sens. Actuators B Chem. 2016, 235, 287–293. [Google Scholar] [CrossRef]
- Savchuk, O.; Carvajal, J.J.; De La Cruz, L.G.; Haro-González, P.; Aguiló, M.; Díaz, F. Luminescence thermometry and imaging in the second biological window at high penetration depth with Nd:KGd(WO4)2 nanoparticles. J. Mater. Chem. C. 2016, 4, 7397–7405. [Google Scholar] [CrossRef]
- Marciniak, Ł.; Bednarkiewicz, A.; Hreniak, D.; Strek, W. The influence of Nd3+ concentration and alkali ions on the sensitivity of non-contact temperature measurements in ALaP4O12:Nd3+ (A = Li, K, Na, Rb) nanocrystalline luminescent thermometers. J. Mater. Chem. C. 2016, 4, 11284–11290. [Google Scholar] [CrossRef]
Sample Composition | Crystal Phase/Card No. ICDD PDF-2 | Lattice Constant Calculated, Å | Cristal’s Size, nm | Crystal System |
---|---|---|---|---|
Gd1.98Nd0.02O3 | Gd2O3/00-012-0797 | 10.816 | 35 ± 1 | Cubic Ia-3 |
Gd1.49Y0.49Nd0.02O3 | Gd6Y4O15/00-055-1055 | 10.733 | 28 ± 3 | |
Gd0.99Y0.99Nd0.02O3 | GdYO3/00-055-1053 | 10.702 | 28 ± 3 | |
Gd0.49Y1.49Nd0.02O3 | GdY9O15/00-055-1049 | 10.625 | 24 ± 3 | |
Y1.98Nd0.02O3 | Y2O3/01-071-5970 | 10.607 | 23 ± 3 |
Atom | Gd2O3 | Gd1.5Y0.5O3 | Gd1Y1O3 | Gd0.5Y1.5O3 | Y2O3 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Calc | Analysis | Calc | Analysis | Calc | Analysis | Calc | Analysis | Calc | Analysis | |
O | 13.25 | 13.25 | 14.61 | 14.45 | 16.29 | 15.90 | 18.41 | 18.49 | 21.15 | 21.13 |
Gd | 85.95 | 85.74 | 71.11 | 72.83 | 52.85 | 57.43 | 29.85 | 29.13 | 0 | 0 |
Y | 0 | 0 | 13.4 | 11.51 | 29.88 | 25.53 | 50.63 | 51.41 | 77.57 | 77.3 |
Nd | 0.8 | 1.01 | 0.88 | 1.2 | 0.98 | 1.14 | 1.11 | 0.97 | 1.27 | 1.58 |
Characteristics | (Gd1−xYx)2O3 Nanopowder Composition | ||||
---|---|---|---|---|---|
x = 0 | x = 0.25 | x = 0.5 | x = 0.75 | x = 1 | |
4F3/2(1) → 4I9/2(3) band location, nm (±0.5) | 911.7 | 912.5 | 913.1 | 913.8 | 914.5 |
4F3/2(1) → 4I9/2(4) band location, nm (±0.5) | 927.1 | 928.2 | 928.8 | 929.1 | 929.5 |
4F3/2(1) → 4I9/2(5) band location, nm (±0.5) | 943 | 944 | 945 | 946 | 947 |
Energy gap between R1 and R2 sublevels, cm−1 (±5) | 177 | 183 | 186 | 190 | 194 |
Lattice constant, Å (±0.015) | 10.816 | 10.733 | 10.702 | 10.625 | 10.607 |
Host | Excitation Wavelength, nm | Transitions Used | Temperature Range, °C | Sensitivity S, % °C−1 | Ref. |
---|---|---|---|---|---|
Gd2O3 | 808 | R2 → Z2 to R1 → Z2 | 10–70 | 0.18 | This work |
Gd6Y4O15 | 808 | R2 → Z2 to R1 → Z2 | 10–70 | 0.19 | |
GdYO3 | 808 | R2 → Z2 to R1 → Z2 | 10–70 | 0.22 | |
GdY9O15 | 808 | R2 → Z2 to R1 → Z2 | 10–70 | 0.21 | |
Y2O3 | 808 | R2 → Z2 to R1 → Z2 | 10–70 | 0.21 | |
NaYF4 | 830 | I863/I870 | 0–150 | 0.12 | [30] |
NaYF4 | 808 | R2 → Z1 to R1 → Z1 | 20–45 | 0.11 | [31] |
YAG | 808 | R2 → Z5 to R1 → Z5 | 15–70 | 0.15 | [32] |
YNbO4 | 808 | R2 → Z2 to R1 → Z2 | 30–200 | 0.28 | [33] |
LaF3 | 808 | I885/I865 | 30–75 | 0.26 | [34] |
LaF3 | 808 | I885/I863 | 20–60 | 0.2 | [35] |
YVO4 | 808 | R1 → Z1 to R2 → Z2 | 25–60 | 0.19 | [36] |
KGd(WO4)2 | 808 | I895.8/I883.8 | 20–65 | 0.12 | [37] |
LiLaP4O12 | 808 | R2 → Z1 to R1 → Z1 | −190–20 | 0.31 | [38] |
Gd2O3 | 580 | 4F5/2 → 4I9/2 to 4F3/2 → 4I9/2 | 15–50 | 1.75 | [11] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aseev, V.; Babkina, A.; Evstropiev, S.; Kuzmenko, N.; Sevastianova, I.; Prokuratov, D.; Khodasevich, M. Structural and Luminescence Properties of (Gd1−xYx)2O3 Powders Doped with Nd3+ Ions for Temperature Measurements. Ceramics 2022, 5, 1185-1197. https://doi.org/10.3390/ceramics5040084
Aseev V, Babkina A, Evstropiev S, Kuzmenko N, Sevastianova I, Prokuratov D, Khodasevich M. Structural and Luminescence Properties of (Gd1−xYx)2O3 Powders Doped with Nd3+ Ions for Temperature Measurements. Ceramics. 2022; 5(4):1185-1197. https://doi.org/10.3390/ceramics5040084
Chicago/Turabian StyleAseev, Vladimir, Anastasiia Babkina, Sergey Evstropiev, Natalia Kuzmenko, Irina Sevastianova, Denis Prokuratov, and Mikhail Khodasevich. 2022. "Structural and Luminescence Properties of (Gd1−xYx)2O3 Powders Doped with Nd3+ Ions for Temperature Measurements" Ceramics 5, no. 4: 1185-1197. https://doi.org/10.3390/ceramics5040084
APA StyleAseev, V., Babkina, A., Evstropiev, S., Kuzmenko, N., Sevastianova, I., Prokuratov, D., & Khodasevich, M. (2022). Structural and Luminescence Properties of (Gd1−xYx)2O3 Powders Doped with Nd3+ Ions for Temperature Measurements. Ceramics, 5(4), 1185-1197. https://doi.org/10.3390/ceramics5040084