Porous Alumina-Bentonite Ceramics: Effects of Fillers and Molding Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Porous Ceramics Processing
2.2.1. Semi-Dry Pressing
2.2.2. Direct Casting
2.2.3. Slip Casting
2.3. Characterization Methods
3. Results
3.1. Semi-Dry Pressing
3.2. Direct Casting
3.3. Slip Casting
4. Discussion
5. Conclusions
- (a)
- The detailed study of microstructure, integral structural, and mechanical properties of porous alumina ceramics with two different types of filler was performed for the materials prepared by pressing (semi-dry pressing) and casting (direct casting, slip casting) techniques.
- (b)
- The use of semi-dry pressing allowed us to obtain high flexural strength in porous alumina ceramics (up to 58 MPa with elecrocorumdum F240 as a filler). Meanwhile, casting techniques provided high values of porosity (up to 48% in the case of slip casting with electrocorundum F240).
- (c)
- Independent from the shaping technique, the ceramics containing hollow microspheres were inferior to those with electrocorundum F240 in terms of flexural strength but possessed close values of porosity.
- (d)
- The direct casting method was revealed to fit well for the production of porous ceramics with hollow alumina microspheres as a filler as it maintained the integrity of the filler particles and thus provided higher porosity compared with that of the pressing technique.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, P.; Chen, G.-F. Applications of porous ceramics. In Porous Materials Processing and Applications, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 303–344. [Google Scholar] [CrossRef]
- Sarkar, N.; Kim, I.J. Porous Ceramics. In Advanced Ceramic Processing; Mohamed, A., Ed.; IntechOpen: London, UK, 2015; pp. 55–84. [Google Scholar] [CrossRef] [Green Version]
- Krasnyi, B.L.; Tarasovskii, V.P.; Mosin, Y.M.; Krasnyi, A.B.; Omarov, A.Y. Porous permeable corundum ceramics formed out of aluminum hydroxide powders. Part I. The investigation of aluminum hydroxide powders of various brands. Novye Ogneup. New Refract. 2014, 1, 35–41. (In Russian) [Google Scholar]
- Xu, G.; Ma, Y.; Cui, H.; Ruan, G.; Zhang, Z.; Zhao, H. Preparation of porous mullite-corundum ceramics with controlled pore size using bioactive yeast as pore-forming agent. Mater. Lett. 2014, 116, 349–352. [Google Scholar] [CrossRef]
- Kiwerski, J.E.; Ogonowski, A.; Bieniek, J.; Krasuski, M. The use of porous corundum ceramics in spinal surgery. Int. Orthop. 1994, 18, 10–13. [Google Scholar] [CrossRef]
- Grigoriev, M.V.; Burlachenko, A.G.; Buyakova, S.P.; Kul’kov, S.N. Deformation and Fracture of Corundum Ceramics with a Multilevel Pore Structure. Tech. Phys. 2019, 64, 1803–1807. [Google Scholar] [CrossRef]
- Hua, K.; Shui, A.; Xu, L.; Zhao, K.; Zhou, Q.; Xi, X. Fabrication and characterization of anorthite-mullite-corundum porous ceramics from construction waste. Ceram. Int. 2016, 42, 6080–6087. [Google Scholar] [CrossRef]
- Miao, Z.; Li, N.; Yan, W. Effect of sintering temperature on the phase composition and microstructure of anorthite-mullite-corundum porous ceramics. Ceram. Int. 2014, 40, 15795–15799. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, Z.; Wang, X.; Liu, H.; Ma, Y. Enhancing the mechanical strength and air permeability of corundum porous materials using shape-modified coarse aggregates. Ceram. Int. 2019, 45, 11027–11031. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, W.; Li, N.; Li, Y.; Zhou, W.; Han, B. Influence of spherical porous aggregate content on microstructures and properties of gas-permeable mullite-corundum refractories. Ceram. Int. 2019, 45, 17268–17275. [Google Scholar] [CrossRef]
- Zhao, F.; Ge, T.; Gao, J.; Chen, L.; Liu, X. Transient liquid phase diffusion process for porous mullite ceramics with excellent mechanical properties. Ceram. Int. 2018, 44, 19123–19130. [Google Scholar] [CrossRef]
- Zhou, W.; Yan, W.; Li, N.; Li, Y.; Dai, Y.; Zhang, Z.; Ma, S. Fabrication of mullite-corundum foamed ceramics for thermal insulation and effect of micro-pore-foaming agent on their properties. J. Alloys Compd. 2019, 785, 1030–1037. [Google Scholar] [CrossRef]
- Dele-Afolabi, T.T.; Hanim, M.A.A.; Norkhairunnisa, M.; Sobri, S.; Calin, R. Investigating the effect of porosity level and pore former type on the mechanical and corrosion resistance properties of agro-waste shaped porous alumina ceramics. Ceram. Int. 2017, 43, 8743–8754. [Google Scholar] [CrossRef]
- Wang, S.; Yang, Z.; Luo, X.; Qi, X.; Zhang, L.; You, J. Preparation of calcium hexaluminate porous ceramics by gel-casting method with polymethyl methacrylate as pore-forming agent. Ceram. Int. 2022, 48, 30356–30366. [Google Scholar] [CrossRef]
- Meng, X.; Xu, J.; Yang, R.; Wei, R.; Zhu, J.; Yang, J.; Gao, F. Lanthanum zirconate porous ceramics with controllable secondary pores for high-temperature thermal insulation. Ceram. Int. 2022, 48, 33976–33983. [Google Scholar] [CrossRef]
- Sooksaen, P.; Karawatthanaworrakul, S. The properties of Southern Thailand clay-based porous ceramics fabricated from different pore size templates. Appl. Clay Sci. 2015, 104, 295–302. [Google Scholar] [CrossRef]
- Wu, Q.; Huang, Z. Preparation and performance of lightweight porous ceramics using metallurgical steel slag. Ceram. Int. 2021, 47, 25169–25176. [Google Scholar] [CrossRef]
- Zhou, W.; Yan, W.; Li, N.; Li, Y.; Dai, Y.; Zhang, Z. Effect of microsilica content on microstructure and properties of foamed ceramics with needle-like mullite. Process. Appl. Ceram. 2019, 13, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Li, N. Influences of composition of starting powders and sintering temperature on the pore size distribution of porous corundum-mullite ceramics. Sci. Sinter. 2005, 37, 173–180. [Google Scholar] [CrossRef]
- Zake-Tiluga, I.; Svinka, R.; Svinka, V. Highly porous corundum-mullite ceramics—Structure and properties. Ceram. Int. 2014, 40, 3071–3077. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Yin, Z.; Shi, W.; Tao, M.; Liu, W.; Gao, Z.; Ma, C. Foam-gelcasting preparation and properties of high-strength mullite porous ceramics. Ceram. Int. 2022; in press. [Google Scholar] [CrossRef]
- Li, X.; Yan, L.; Gou, A.; Du, H.; Huo, F.; Liu, J. Lightweight porous silica-alumina ceramics with ultra-low thermal conductivity. Ceram. Int. 2022; in press. [Google Scholar] [CrossRef]
- Liu, Y.F.; Liu, X.Q.; Li, G.; Meng, G.Y. Low cost porous mullite-corundum ceramics by gelcasting. J. Mater. Sci. 2001, 36, 3687–3692. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, W.; Han, B.; Li, Y.; Yan, W.; Xu, N.; Li, N.; Wei, J. Preparation and characterization of eco-friendly and low-cost mullite-corundum foamed ceramics with low thermal conductivity. Ceram. Int. 2019, 45, 13203–13209. [Google Scholar] [CrossRef]
- Zhang, X.; He, J.; Han, L.; Huang, Z.; Xu, K.; Cai, W.; Wu, S.; Jia, Q.; Zhang, H.; Zhang, S. Foam gel-casting preparation of SiC bonded ZrB2 porous ceramics for high-performance thermal insulation. J. Eur. Ceram. Soc. 2023, 43, 37–46. [Google Scholar] [CrossRef]
- Dong, X.; Chua, B.W.; Li, T.; Zhai, W. Multi-directional freeze casting of porous ceramics with bone-inspired microstructure. Mater. Des. 2022, 224, 111344. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Dong, X.; Zhang, Q.; Yan, L.; Liu, J.; Guo, A. Hierarchically porous Al2TiO5 ceramics via freeze-gel casting. Ceram. Int. 2022, 48, 22343–22351. [Google Scholar] [CrossRef]
- Liu, P.S.; Chen, G.F. Fabricating porous ceramics. In Porous Materials, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 221–302. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, D.; Zuo, K.; Xia, Y.; Yin, J.; Liang, H.; Zeng, Y.-P. Self-propagating high temperature synthesis (SHS) of porous Si3N4-based ceramics with considerable dimensions and study on mechanical properties and oxidation behavior. J. Eur. Ceram. Soc. 2021, 41, 4452–4461. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, D.; Zuo, K.; Xia, Y.; Yin, J.; Liang, H.; Zeng, Y.-P. The synthesis of single-phase β-Sialon porous ceramics using self-propagating high-temperature processing. Ceram. Int. 2022, 48, 4371–4375. [Google Scholar] [CrossRef]
- Yang, J.L.; Xu, X.X.; Wu, J.M.; Wang, X.H.; Su, Z.G.; Li, C.H. Preparation of Al2O3 poly-hollow microsphere (PHM) ceramics using Al2O3 PHMs coated with sintering additive via co-precipitation method. J. Eur. Ceram. Soc. 2015, 35, 2593–2598. [Google Scholar] [CrossRef]
- Qi, F.; Xu, X.; Xu, J.; Wang, Y.; Yang, J. A Novel Way to Prepare Hollow Sphere Ceramics. J. Am. Ceram. Soc. 2014, 97, 3341–3347. [Google Scholar] [CrossRef]
- Su, Z.; Xi, X.; Hu, Y.; Fei, Q.; Yu, S.; Li, H.; Yang, J. A new Al2O3 porous ceramic prepared by addition of hollow spheres. J. Porous Mater. 2014, 21, 601–609. [Google Scholar] [CrossRef]
- Geng, H.; Hu, X.; Zhou, J.; Xu, X.; Wang, M.; Guo, A.; Du, H.; Liu, J. Fabrication and compressive properties of closed-cell alumina ceramics by binding hollow alumina spheres with high-temperature binder. Ceram. Int. 2016, 42, 16071–16076. [Google Scholar] [CrossRef]
- Mummareddy, B.; Burden, E.; Carrillo, J.G.; Myers, K.; MacDonald, E.; Cortes, P. Mechanical performance of lightweight ceramic structures via binder jetting of microspheres. SN Appl. Sci. 2021, 3, 402. [Google Scholar] [CrossRef]
- Xia, B.; Wang, Z.; Gou, L.; Zhang, M.; Guo, M. Porous mullite ceramics with enhanced compressive strength from fly ash-based ceramic microspheres: Facile synthesis, structure, and performance. Ceram. Int. 2022, 48, 10472–10479. [Google Scholar] [CrossRef]
- Vakalova, T.V.; Revva, I.B. Highly porous building ceramics based on «clay-ash microspheres» and «zeolite-ash microspheres» mixtures. J. Con. Build. Mat. 2022, 317, 125922. [Google Scholar] [CrossRef]
- Yan, W.; Chen, Q.; Lin, X.; Li, N. Pore characteristics and phase compositions of porous corundum-mullite ceramics prepared from kaolinite gangue and Al(OH)3 with different amount of CaCO3 addition. J. Ceram. Soc. Jpn. 2015, 123, 897–902. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Li, J.; Man, Y.; Peng, Z.; Zhang, X.; Luo, X. A novel hollow alumina sphere-based ceramic bonded by in situ mullite whisker framework. Mater. Des. 2020, 186, 108334. [Google Scholar] [CrossRef]
- Mahnicka, L.; Svinka, R.; Svinka, V. Influence of kaolin and firing temperature on the mullite formation in porous mullite-corudum materials. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Riga, Latvija, 23–25 May 2011. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Z.; Xu, M.; Wang, S.; Yang, J. A review of 3D printed porous ceramics. J. Eur. Ceram. Soc. 2022, 42, 3351–3373. [Google Scholar] [CrossRef]
- Medvedovski, E.; Peltsman, M. Low pressure injection moulding mass production technology of complex shape advanced ceramic components. Adv. Appl. Ceram. 2012, 111, 333–344. [Google Scholar] [CrossRef]
- Krasnyi, B.L.; Tarasovskii, V.P.; Krasnyi, A.B.; Uss, A.M. Effect of electromelted corundum crystal size and shape on the microstructure and permeability of porous ceramic. Refract. Ind. Ceram. 2009, 50, 451–455. [Google Scholar] [CrossRef]
- Belyakov, A.V.; Oo, Z.Y.M.; Popova, N.A.; Min, Y.A. Effect of Electrocorundum Powder Grain Size Composition with a Porcelain Binder on Porous Ceramic Gas Permeability and Strength. Refract. Ind. Ceram. 2017, 58, 390–394. [Google Scholar] [CrossRef]
- Belyakov, A.V.; Oo, Z.Y.M.; Popova, N.A.; Min, Y.A. Permeable ceramic filled with trifractional electrofused corundum and porcelain bond. Novye Ogneup. (New Refract.) 2018, 8, 24–27. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Tarasovskii, V.P.; Krasnyi, B.L.; Koshkin, V.I.; Borovin, Y.M.; Vasin, A.A.; Smirnov, A.D.; Kudryash, M.N. Quantitative analysis of the structure of permeable ceramics made from a powder of narrowfractionated electrocorundum and hollow corundum microspheres. Novye Ogneup. New Refract. 2016, 6, 49–52. (In Russian) [Google Scholar]
- Krasnyi, B.L.; Tarasovskii, V.P.; Koshkin, V.I.; Vasin, A.A.; Kormilitsin, M.N.; Novoselov, R.A.; Smirnov, A.D. Quantitative analysis of the structure of permeable ceramics from narrowfractionated electrocorundum powders of various dispersions. Novye Ogneup. New Refract. 2015, 11, 58–62. (In Russian) [Google Scholar]
- Szafran, M.; Wiśniewski, P. Effect of the bonding ceramic material on the size of pores in porous ceramic materials. Colloids Surfaces A Physicochem. Eng. Asp. 2001, 179, 201–208. [Google Scholar] [CrossRef]
- Rao, P.N. Manufacturing Technology: Foundry, Forming, and Welding, 2nd ed.; Hill Publishing Company Ltd.: New Delhi, India, 1998; pp. 193–200. [Google Scholar]
- Wan, D.; Bao, Y.; Liu, X.; Zhao, H.; Tian, L. Evaluation of elastic modulus and strength of glass and brittle ceramic materials by compressing a notched ring specimen. Adv. Mater. Res. 2010, 177, 114–117. [Google Scholar] [CrossRef]
- Fu, L.; Engqvist, H.; Xia, W. Glass-ceramics in dentistry: A review. Materials 2020, 13, 1049. [Google Scholar] [CrossRef] [Green Version]
- Bogdanov, S.P.; Kozlov, V.V.; Shevchik, A.P.; Dolgin, A.S. Young’s Modulus of Corundum Ceramics Sintered from Powders with a Core-Shell Structure Synthesized by Iodine Transport. Refract. Ind. Ceram. 2019, 60, 405–408. [Google Scholar] [CrossRef]
- Richerson, D.W. Modern Ceramic Egineering: Properties, Processing and Use in Design, 3rd ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: New York, NY, USA, 2006; pp. 235–268. [Google Scholar]
- Lee, W.D.; Rainforth, W.M. Ceramic Microstructures: Property Control by Processing, 1st ed.; Chapman & Hall: London, UK, 1994; pp. 110–111. [Google Scholar]
- Kholodkova, A.A.; Danchevskaya, M.N.; Ivakin, Y.D.; Muravieva, G.P.; Smirnov, A.D.; Tarasovskii, V.P.; Ponomarev, S.G.; Fionov, A.S.; Kolesov, V.V. Properties of barium titanate ceramics based on powder synthesized in supercritical water. Ceram. Int. 2018, 44, 13129–13138. [Google Scholar] [CrossRef]
- Klimosh, Y.A.; Levitskii, I.A. Rheological properties of slips based on polymineral clays with the addition of electrolytes. Glass Ceram. 2004, 61, 375–378. [Google Scholar] [CrossRef]
- Fierro, J.L.G. (Ed.) Metal Oxides: Chemistry and Applications; Taylor & Francis Gruop, LLC: Boca-Raton, FL, USA, 2006. [Google Scholar]
- Károly, Z.; Szépvölgyi, J. Hollow alumina microspheres prepared by RF thermal plasma. Powder Technol. 2003, 132, 211–215. [Google Scholar] [CrossRef]
- Hu, Y.; Li, C.; Gu, F.; Ma, J. Preparation and formation mechanism of alumina hollow nanospheres via high-speed jet flame combustion. Ind. Eng. Chem. Res. 2007, 46, 8004–8008. [Google Scholar] [CrossRef]
Molding Technique | Filler | Binder | Porosity (%) | Pore Size (μm) | Tensile Strength (MPa) | Flexible Strength (MPa) | Reference |
---|---|---|---|---|---|---|---|
Pressing | Electrocorundum | Porcelain | 17–26 | 1.2–4.1 | n/a | 0.5–15.1 | [44] |
Electrocorundum | Porcelain | 44 | n/a * | n/a | 14.6 | [45] | |
Corundum | Rice husk, sugar cane cake | 44–67 | 70–178 | 1.5–20.4 | n/a | [13] | |
Corundum | Kyanite, white clay | 42 | 248.8 | n/a | n/a | [10] | |
Corundum | Quartz, calcite, microcline | 66.1 | 1.32 | n/a | 23.8 | [7] | |
Electrocorundum | Bentonite | 40.0–40.7 | n/a | n/a | 58.1 | this study | |
HAM ** | CaSiO3, Na2SiO3 | 78–81 | n/a | n/a | n/a | [31] | |
HAM | SiO2 | 61.9 | n/a | n/a | n/a | [34] | |
HAM | Bentonite | 36.6–36.8 | n/a | n/a | 37.8 | this study | |
Gel casting | Corundum | mCaO·nAl2O3 | 76–83 | 1–1700 | n/a | n/a | [24] |
Corundum | Kaolinite | 45.0–47.9 | 1.28–2.55 | n/a | n/a | [23] | |
Slip casting | Corundum | mCaO·nAl2O3 | 73.7 | 348 | n/a | n/a | [18] |
α+γ Al2O3 | SiO2 | 56–64 | ~1–1000 | n/a | 3.2–11.0 | [20] | |
Electrocorundum | Bentonite | 48.1 | n/a | n/a | 32.4 | this study | |
Direct casting | HAM | Bentonite | 44.3 | n/a | n/a | 32.1 | this study |
Electrocorundum | Bentonite | 42.3 | n/a | n/aa | 50.7 | this study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smirnov, A.D.; Kholodkova, A.A.; Rybalchenko, V.V.; Tarasovskii, V.P. Porous Alumina-Bentonite Ceramics: Effects of Fillers and Molding Technique. Ceramics 2023, 6, 132-145. https://doi.org/10.3390/ceramics6010009
Smirnov AD, Kholodkova AA, Rybalchenko VV, Tarasovskii VP. Porous Alumina-Bentonite Ceramics: Effects of Fillers and Molding Technique. Ceramics. 2023; 6(1):132-145. https://doi.org/10.3390/ceramics6010009
Chicago/Turabian StyleSmirnov, Aleksey D., Anastasia A. Kholodkova, Viktor V. Rybalchenko, and Vadim P. Tarasovskii. 2023. "Porous Alumina-Bentonite Ceramics: Effects of Fillers and Molding Technique" Ceramics 6, no. 1: 132-145. https://doi.org/10.3390/ceramics6010009
APA StyleSmirnov, A. D., Kholodkova, A. A., Rybalchenko, V. V., & Tarasovskii, V. P. (2023). Porous Alumina-Bentonite Ceramics: Effects of Fillers and Molding Technique. Ceramics, 6(1), 132-145. https://doi.org/10.3390/ceramics6010009