Comparative Study of Physicochemical Properties of Finely Dispersed Powders and Ceramics in the Systems CeO2–Sm2O3 and CeO2–Nd2O3 as Electrolyte Materials for Medium Temperature Fuel Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of (CeO2)1−x(Sm2O3)x (x = 0.05; 0.10; 0.20) and (CeO2)1−x(Nd2O3)x (x = 0.05; 0.10; 0.15; 0.20; 0.25) Powders by Co-Precipitation of Hydroxides
2.2. Characterization Methods
3. Results and Discussion
3.1. Study of the Thermolysis of the Synthesized Xerogels
3.2. Characterization of the CeO2–Sm2O3 and CeO2–Nd2O3 Powders Microstructure
3.3. Density and Open Porosity of CeO2–Nd2O3 Ceramics Synthesized Using Different Sintering Additives
3.4. Crystal Structure Characterization of Solid Solutions in the Systems (CeO2)1−x(Sm2O3)x (x = 0.05, 0.10, 0.20) and (CeO2)1−x(Nd2O3)x (x = 0.05, 0.10, 0.15, 0.20, 0.25)
3.5. Characterization of the Surface Acid-Base Properties by Dynamic pH-Metry of Aqueous Suspensions
3.6. Electrophysical Properties of (CeO2)1−x (Sm2O3)x (x = 0.05, 0.10, 0.20) and (CeO2)1−x(Nd2O3)x (x = 0.05, 0.10, 0.15, 0.20, 0.25)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maric, R.; Mirshekari, G. Solid Oxide Fuel Cells, From Fundamental Principles to Complete Systems; CRC Press: Boca Raton, FL, USA, 2021; p. 256. [Google Scholar]
- Ponomareva, A.A.; Ivanova, A.G.; Shilova, O.A.; Kruchinina, I.Y. Current state and prospects of manufacturing and operation of methane-based fuel cells. Glass Phys. Chem. 2016, 42, 1–19. [Google Scholar] [CrossRef]
- Ponomareva, A.; Babushok, V.; Simonenko, E.; Simonenko, N.; Sevast’janov, V.; Shilova, O.; Kruchinina, I. Influence of pH of solution on phase composition of samariumstrontium cobaltite powders synthesized by wet chemical technique. Sol. Gel Sci. Technol. 2018, 87, 74–82. [Google Scholar] [CrossRef]
- Danilevich, Y.B.; Zhabrev, V.A.; Goncharov, V.D.; Kruchinina, I.; Mironov, B.N.; Tsvetkova, I.N.; Khamova, T.; Shilova, O. Development of the technology for preparing and storing hydrogen with the use of nanostructured materials for an autonomous integrated wind power plant. Glas. Phys. Chem. 2009, 35, 491–503. [Google Scholar] [CrossRef]
- Korovin, N.V. Elektrohimicheskaya Energetika (Electrochemical Power Generation); Enegroatomizdat Publishers: Moscow, Russia, 1991; 264p. (In Russian) [Google Scholar]
- Bernal, S. Catalysis by Ceria and Related Materials. In Catalytic Science Series; Trovarelli, A., Ed.; Imperial College Press: London, UK, 2002; Volume 2.2. [Google Scholar]
- Kuznetsova, T.G.; Sadykov, V.A. Osobennosti defektnoy struktury metastabilnykh nanodispersnykh dioksidov tseriya i tsirkoniya i materialov na ikh osnove [Features of the Defective Structure of Metastable Nanodispersed Cerium and Zirconium Dioxides and Materials Based on Them]. Kinet. I Katal. (Kinet. Catal.) 2008, 9, 886–905. [Google Scholar]
- Jud, E.; Gauckler, L.-J. The effect of cobalt oxide addition on the conductivity of Ce 0.9 Gd 0.1 O 1.95. J. Electroceram. 2005, 15, 159. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Alvarez, P.; Villafuerte-Castrejón, M.E.; González, G.; Cassir, M.; Flores-Morales, C.; Chávez-Carvayar, J.A. Ceria-based electrolytes with high surface area and improved conductivity for intermediate temperature solid oxide fuel cells. J. Mater. Sci. 2017, 52, 519–532. [Google Scholar] [CrossRef]
- Egorova, T.L.; Kalinina, M.V.; Simonenko, E.P.; Simonenko, N.P.; Shilova, O.A.; Sevastyanov, V.G.; Kuznetsov, N.T. Liquid-Phase Synthesis and Physicochemical Properties of Xerogels, Nanopowders and Thin Films of the CeO2–Y2O3 System. Russ. J. Inorg. Chem. 2016, 61, 1061–1069. [Google Scholar] [CrossRef]
- Surdu, V.-A.; Andronescu, E. Phase Formation in Heterovalent Equimolar Quinary Oxide Systems of ZrO2-HfO2-CeO2-Nb2O5-Re2O3 Type (RE = Y, Yb, Nd, Gd). Ceramics 2021, 3, 476–485. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, C.; Zhu, D.; Jia, X.; Zhang, Y.; Yu, J.; Li, X.; Yang, M. High Performance Low-Temperature Solid Oxide Fuel Cells Based on Nanostructured Ceria-Based Electrolyte. Nanomaterials 2021, 9, 2231. [Google Scholar] [CrossRef]
- Carabineiro, S.A.C.; Konsolakis, M.; Marnellos, G.E.-N.; Asad, M.F.; Soares, O.S.G.P.; Tavares, P.B.; Pereira, M.F.R.; de Melo Órfão, J.J.; Figueiredo, J.L. Ethtyl Acetate Abatement on Copper Catalysts Supported on Ceria Doped with Rare Earth Oxides. Molecules 2016, 5, 644. [Google Scholar] [CrossRef] [Green Version]
- Sal’nikov, V.V.; Pikalova, E.Y. Raman and impedance spectroscopic studies of the specific features of the transport properties of electrolytes based on CeO2. Phys. Solid State 2015, 57, 1944. [Google Scholar] [CrossRef]
- Tian, C.; Chan, S.-W. Ionic Conductivities, Sintering Temperatures and Microstructures of Bulk Ceramic CeO2 Doped with Y2O3. Solid State Ion. 2000, 134, 89–102. [Google Scholar] [CrossRef]
- Moghadasi, M.; Du, W.; Li, M.; Pei, Z.; Ma, C. Ceramic binder jetting additive manufacturing: Effects of particle size on feedstock powder and final part properties. Ceram. Int. 2020, 46, 16966–16972. [Google Scholar] [CrossRef]
- Fathy, A.; Wagih, A.; Abu-Oqail, A. Effect of ZrO2 content on properties of Cu-ZrO2 nanocomposites synthesized by optimized high energy ball milling. Ceram. Int. 2019, 45, 2319–2329. [Google Scholar] [CrossRef]
- Li, Z.; He, Q.; Xia, L.; Xu, Q.; Cheng, C.; Wang, J.; Ni, M. Effects of cathode thickness and microstructural properties on the performance of protonic ceramic fuel cell (PCFC): A 3D modelling study. Int. J. Hydrog. Energy 2022, 47, 4047–4061. [Google Scholar] [CrossRef]
- Kaneko, K.; Inoke, K.; Freitag, B.; Hungria, A.B.; Midgley, P.A.; Hansen, T.W.; Zhang, J.; Ohara, S.; Adschiri, T. Structural and morphological characterization of cerium oxide nanocrystals prepared by hydrothermal synthesis. Nano Lett. 2007, 7, 421–425. [Google Scholar] [CrossRef]
- Prasad, D.H.; Son, J.-W.; Kim, B.-K.; Lee, H.-W.; Lee, J.-H. Synthesis of nano-crystalline Ce0.9Gd0.1O1.95 electrolyte by novel sol–gel thermolysis process for IT-SOFCs. J. Eur. Ceram. Soc. 2008, 28, 3107–3112. [Google Scholar] [CrossRef]
- Kalinina, M.V.; Morozova, L.V.; Egorova, T.L.; Arsent’ev, M.Y.; Drozdova, I.A.; Shilova, O.A. Synthesis and Physicochemical Properties of a Solid Oxide Nanocomposite Based on a ZrO2-Y2O3-Gd2O3-MgO System. Glass Phys. Chem. 2016, 42, 505–511. [Google Scholar] [CrossRef]
- Egorova, T.; Kalinina, M.; Simonenko, E.; Kopitsa, G.; Glumov, O.; Mel’nikova, N.; Murin, I.; Almásy, L.; Shilova, O. Study of the effect of methods for liquid-phase synthesis of nanopowders on the structure and physicochemical properties of ceramics in the CeO2–Y2O3 system. Russ. J. Inorg. Chem. 2017, 62, 1275–1285. [Google Scholar] [CrossRef]
- Arsent’ev, M.Y.; Tikhonov, P.A.; Kalinina, M.V.; Zvetkova, I.N.; Shilova, O.A. Sintez i fiziko-khimicheskie svoystva elektrodnykh i elektrolitnykh nanokompozitov dlya superkondensatorov [Synthesis and physico-chemical properties of electrode and electrolyte nanocomposites for supercapacitors]. Fiz. I Khimiya Stekla (Phys. Chem. Glass) 2012, 38, 653–664. [Google Scholar]
- Duran, P.; Villegas, M.; Capel, F.; Recio, P.; Moure, C. Low temperature sintering and microstructural development of nano scale Y-TZP ceramics. J. Eur. Ceram. Soc. 1996, 16, 945. [Google Scholar] [CrossRef]
- GOST 473.4-81; Izdeliya Himicheski Stoikie i Termostoikie Keramicheskie. Metod Opredeleniya Kajuscheisya Plotnosti i Kajuscheisya Poristosti. [Products Chemically Resistant and Heat-Resistant Ceramic. Method for Determining Apparent Density and Apparent Porosity] Gosudarstvennyj Standart SSSR [State Standard of the USSR]. Standards Publishing House: Moscow, Russia, 1981; 32p.
- Mjakin, S.V.; Sychov, M.M.; Vasiljeva, I.V. Electron Beam Modification of Dolids: Mechanisms, Common Features and Promising Applications; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2009; ISBN 978-1-60741-780-4. [Google Scholar]
- Fedorenko, N.Y.; Mjakin, S.V.; Khamova, T.V.; Kalinina, M.V.; Shilova, O.A. Relationship among the composition, synthesis conditions, and surface acid-basic properties of xerogel particles based on zirconium dioxide. Ceram. Int. 2021, 48, 6245–6249. [Google Scholar] [CrossRef]
- Shilova, O.A.; Antipov, V.N.; Tikhonov, P.A.; Kruchinina, I.Y.; Arsent’ev, M.Y.; Panova, T.I.; Morozova, L.V.; Moskovskaya, V.V.; Kalinina, M.V.; Tsvetkova, I.N. Ceramic nanocomposites based on oxides of transition metals for ionistors. Glas. Phys. Chem. 2013, 39, 570–578. [Google Scholar] [CrossRef]
- Pivovarova, A.P.; Strakhov, V.I.; Popov, V.P. On the mechanism of electron conductivity in lanthanum metaniobate. Technol. Phys. Lett. 2002, 28, 815–817. [Google Scholar] [CrossRef]
Composition | Specific Surface Area Ss, m2/g | Average Pore Diameter Dpor, nm | Specific Pore Volume Vpor, cm3/g |
---|---|---|---|
Co-precipitation | |||
(CeO2)0.95(Sm2O3)0.05 | 50 | 3.6 | 0.080 |
(CeO2)0.90(Sm2O3)0.10 | 78 | 2.5 | 0.086 |
(CeO2)0.80(Sm2O3)0.20 | 83 | 1.5 | 0.092 |
Co-precipitation (after drying at 120 °C) | |||
(CeO2)0.95(Nd2O3)0.05 | 119 | 3.5 | 0.111 |
(CeO2)0.90(Nd 2O3)0.10 | 57 | 3.6 | 0.048 |
(CeO2)0.85(Nd 2O3)0.15 | 70 | 3.7 | 0.086 |
(CeO2)0.80(Nd2O3)0.20 | 27 | 3.8 | 0.076 |
(CeO2)0.75(Nd2O3)0.25 | 41 | 3.7 | 0.093 |
Composition | No Sintering Additives | 3% SiO2 | 3% ZnO | |||
---|---|---|---|---|---|---|
Apparent Density ρapp, g/cm3 | P, % | Apparent Density ρapp, g/cm3 | P, % | Apparent Density ρapp, g/cm3 | P, % | |
(CeO2)0.95(Nd2O3)0.05 | 5.47 | 23.9 | 5.57 | 23.5 | 6.41 | 0.6 |
(CeO2)0.90(Nd2O3)0.10 | 4.67 | 29.9 | 4.30 | 32.9 | 7.02 | 3.4 |
(CeO2)0.85(Nd2O3)0.15 | 4.74 | 29.4 | 4.53 | 23.8 | 6.62 | 6.5 |
(CeO2)0.80(Nd2O3)0.20 | 6.16 | 16.2 | 4.13 | 29.6 | 6.54 | 0.6 |
(CeO2)0.75(Nd2O3)0.25 | 5.11 | 21.8 | 4.69 | 25.6 | 6.52 | 1.0 |
Composition | Theoretical Density ρteor, g/cm3 | Apparent Density ρapp, g/cm3 | Relative Density ρrel, % | CSR, nm (1300 °C) | Open Porosity P, % |
---|---|---|---|---|---|
CeO2–Sm2O3 | |||||
(CeO2)0.95(Sm2O3)0.05 | 7.23 | 6.55 | 91 | 69 | 2.0 |
(CeO2)0.90(Sm2O3)0.10 | 6.98 | 6.33 | 91 | 68 | 3.8 |
(CeO2)0.80(Sm2O3)0.20 | 6.90 | 6.25 | 91 | 65 | 6.2 |
CeO2–Nd2O3 (with 3% ZnO sintering additive) | |||||
(CeO2)0.95(Nd2O3)0.05 | 6.82 | 6.41 | 94 | 88 | 0.6 |
(CeO2)0.90(Nd2O3)0.10 | 7.57 | 7.02 | 93 | 75 | 3.4 |
(CeO2)0.85(Nd2O3)0.15 | 7.15 | 6.62 | 93 | 73 | 1.5 |
(CeO2)0.80(Nd2O3)0.20 | 6.98 | 6.54 | 94 | 69 | 0.5 |
(CeO2)0.75(Nd2O3)0.25 | 6.96 | 6.52 | 94 | 66 | 1.0 |
Composition | Specific Conductivity σ·10−2, S∙cm−1 (700 °C) | Activation Energy Ea, eV |
---|---|---|
CeO2–Sm2O3 | ||
(CeO2)0.95(Sm2O3)0.05 | 1.2 | 1.35 |
(CeO2)0.90(Sm2O3)0.10 | 2.7 | 1.31 |
(CeO2)0.80(Sm2O3)0.20 | 3.3 | 1.29 |
CeO2–Nd2O3 (with 3% ZnO sintering additive) | ||
(CeO2)0.95(Nd2O3)0.05 | 0.14 | 1.30 |
(CeO2)0.90(Nd2O3)0.10 | 0.36 | 1.07 |
(CeO2)0.85(Nd2O3)0.15 | 0.48 | 1.05 |
(CeO2)0.80(Nd2O3)0.20 | 0.18 | 1.01 |
(CeO2)0.75(Nd2O3)0.25 | 0.22 | 0.98 |
T, °C | ti | te |
---|---|---|
300 | 0.85 | 0.15 |
400 | 0.80 | 0.20 |
500 | 0.78 | 0.22 |
600 | 0.75 | 0.25 |
700 | 0.73 | 0.27 |
Composition | T, °C | ti | te |
---|---|---|---|
(CeO2)0.95(Nd2O3)0.05 | 400 | 0.85 | 0.15 |
700 | 0.83 | 0.18 | |
(CeO2)0.90(Nd2O3)0.10 | 400 | 0.93 | 0.07 |
700 | 0.85 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalinina, M.V.; Dyuskina, D.A.; Mjakin, S.V.; Kruchinina, I.Y.; Shilova, O.A. Comparative Study of Physicochemical Properties of Finely Dispersed Powders and Ceramics in the Systems CeO2–Sm2O3 and CeO2–Nd2O3 as Electrolyte Materials for Medium Temperature Fuel Cells. Ceramics 2023, 6, 1210-1226. https://doi.org/10.3390/ceramics6020073
Kalinina MV, Dyuskina DA, Mjakin SV, Kruchinina IY, Shilova OA. Comparative Study of Physicochemical Properties of Finely Dispersed Powders and Ceramics in the Systems CeO2–Sm2O3 and CeO2–Nd2O3 as Electrolyte Materials for Medium Temperature Fuel Cells. Ceramics. 2023; 6(2):1210-1226. https://doi.org/10.3390/ceramics6020073
Chicago/Turabian StyleKalinina, Marina V., Daria A. Dyuskina, Sergey V. Mjakin, Irina Yu. Kruchinina, and Olga A. Shilova. 2023. "Comparative Study of Physicochemical Properties of Finely Dispersed Powders and Ceramics in the Systems CeO2–Sm2O3 and CeO2–Nd2O3 as Electrolyte Materials for Medium Temperature Fuel Cells" Ceramics 6, no. 2: 1210-1226. https://doi.org/10.3390/ceramics6020073
APA StyleKalinina, M. V., Dyuskina, D. A., Mjakin, S. V., Kruchinina, I. Y., & Shilova, O. A. (2023). Comparative Study of Physicochemical Properties of Finely Dispersed Powders and Ceramics in the Systems CeO2–Sm2O3 and CeO2–Nd2O3 as Electrolyte Materials for Medium Temperature Fuel Cells. Ceramics, 6(2), 1210-1226. https://doi.org/10.3390/ceramics6020073