Alkali-Activated Brick Aggregates as Industrial Valorized Wastes: Synthesis and Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation and Making Cost
2.2. Chemicals
2.3. Electron Microscopy Analysis
2.4. X-ray Diffraction Analysis
2.5. MAS NMR Analysis
2.6. Acid Leaching Tests
3. Results and discussion
3.1. Synthesis Process
3.2. Microscopic and Crystalline Studies
3.2.1. Microscopic (ESEM/EDS) Analysis
3.2.2. X-ray Diffraction (XRD) Analysis
3.3. Solid MAS MNR Study
3.3.1. 29Si MAS NMR
3.3.2. 1H and 23Na MAS NMR
3.3.3. 27Al MAS NMR
3.3.4. 2D MAS NMR (27Al-{1H} D-HMQC)
3.4. Aqueous Structural Stability and Cationic Immobilization Characteristics
4. Conclusions
5. Future Prospects
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pierrehumbert, R. There is no Plan B for dealing with the climate crisis. Bulletion At. Sci. 2019, 75, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Glasser, F. Application of inorganic cements to the conditioning and immobilisation of radioactive wastes. In Handbook of Advanced Radioactive Waste Conditioning Technologies; Ojovan, M.I., Ed.; Woodhead Publishing: Sawston, UK, 2011; pp. 67–135. [Google Scholar]
- Komljenovića, M.; Tanasijevića, G.; Džunuzovića, N.; Provis, J.L. Immobilization of cesium with alkali-activated blast furnace slag. J. Hazard. Mater. 2020, 388, 121765. [Google Scholar] [CrossRef]
- Li, Q.; Sun, Z.; Tao, D.; Xu, Y.; Li, P.; Cui, H.; Zhai, J. Immobilization of simulated radionuclide 133Cs+ by fly ash-based geopolymer. J. Hazard. Mater. 2013, 262, 325–331. [Google Scholar] [CrossRef]
- Deng, N.; An, H.; Cui, H.; Pan, Y.; Wang, B.; Mao, L.; Zhai, J. Effects of gamma-ray irradiation on leaching of simulated 133Cs+ radionuclides from geopolymer wasteforms. J. Nucl. Mater. 2015, 459, 270–275. [Google Scholar] [CrossRef]
- Kuenzel, C.; Cisneros, J.F.; Neville, T.P.; Vandeperre, L.; Simons, S.J.R.; Bensted, J.; Cheeseman, C.R. Encapsulation of Cs/Sr contaminated clinoptilolite geopolymers produced from metakaolin. J. Nucl. Mater. 2015, 466, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.G.; Park, S.M.; Lee, H.K. Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium. J. Hazard. Mater. 2016, 318, 339–346. [Google Scholar]
- Wagh, A.S.; Sayenko, S.Y.; Shkuropatenko, V.A.; Tarasov, R.V.; Dykiy, M.P.; Svitlychniy, Y.O.; Virych, V.D.; Ulybkina, E.A. Experimental study on cesium immobilization in struvite structures. J. Hazard. Mater. 2016, 302, 241–249. [Google Scholar] [CrossRef]
- Al-Jubouri, S.M.; Curry, N.A.; Holmes, S.M. Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste. J. Hazard. Mater. 2016, 320, 241–251. [Google Scholar] [CrossRef]
- Arbel Haddad, M.; Ofer-Rozovsky, E.; Bar-Nes, G.; Borojovich, E.J.C.; Nikolski, A.; Mogiliansky, D.; Katz, A. Formation of zeolites in metakaolin-based geopolymers and their potential application for Cs immobilization. J. Nucl. Mater. 2017, 493, 168–179. [Google Scholar] [CrossRef]
- El-Naggar, M.R.; Amin, M. Impact of alkali cations on properties of metakaolin and metakaolin/slag geopolymers: Microstructures in relation to sorption of 134Cs radionuclide. J. Hazard. Mater. 2018, 344, 913–924. [Google Scholar] [CrossRef]
- Vandevenne, N.; Iacobescu, R.I.; Pontikes, Y.; Carleer, R.; Thijssen, E.; Gijbels, K.; Schreurs, S.; Schroeyers, W. Incorporating Cs and Sr into blast furnace slag inorganic polymers and their effect on matrix properties. J. Nucl. Mater. 2018, 503, 1–12. [Google Scholar] [CrossRef]
- Tian, Q.; Nakama, S.; Sasaki, K. Immobilization of cesium in fly ash-silica fume based geopolymers with different Si/Al molar ratios. Sci. Total Environ. 2019, 687, 1127–1137. [Google Scholar] [CrossRef]
- Walkley, B.; Ke, X.; Hussein, O.H.; Bernal, S.A.; Provis, J.L. Incorporation of strontium and calcium in geopolymer gels. J. Hazard. Mater. 2020, 382, 121015. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Lee, W.E. Immobilisation of Radioactive Waste in Cement in: An Introduction to Nuclear Waste Immobilisation, 2nd ed.; Elsevier: Oxford, UK, 2014; Chapter 15; pp. 205–232. [Google Scholar]
- Park, B.; Kim, J.; Ghoreishian, S.M.; Rethinasabapathy, M.; Suk Huh, Y.; Kang, S.-M. Generation of multi-functional core-shell adsorbents: Simultaneous adsorption of cesium, strontium and rhodamine B in aqueous solution. J. Ind. Eng. Chem. 2022, 112, 201–209. [Google Scholar] [CrossRef]
- Jiang, C.; Ni, J.; Jin, G.P. Magnetic potassium cobalt hexacyanoferrate nanocomposites for efficient adsorption of rubidium in solution. Sep. Purif. Technol. 2022, 296, 121383. [Google Scholar] [CrossRef]
- Almas Dutt, M.; Asif Hanif, M.; Nadeem, F.; Bhatti, H.N. A review of advances in engineered composite materials popular for wastewater treatment. J. Environ. Chem. Eng. 2020, 8, 104073. [Google Scholar] [CrossRef]
- Roshanfekr Rad, L.; Anbia, M. Zeolite-based composites for the adsorption of toxic matters from water: A review. J. Environ. Chem. Eng. 2021, 9, 106088. [Google Scholar] [CrossRef]
- Li, J.; Xu, Z.; Li, L.; Li, H.; Hu, D.; Xiang, Y.; Han, L.; Yu, Y.; Ning, L.; Peng, X. Short communication on ‘Incorporating radionuclide Sr into geopolymer-zeolite A composites: Geopolymerisation characteristics. J. Nucl. Mater. 2022, 563, 153625. [Google Scholar] [CrossRef]
- Yang, S.; Yang, L.; Gao, M.; Bai, H.; Nagasaka, T. Synthesis of zeolite-geopolymer composites with high zeolite content for Pb (II) removal by a simple two-step method using fly ash and metakaolin. J. Clean. Prod. 2022, 378, 134528. [Google Scholar] [CrossRef]
- Dehou, S.C.; Wartel, M.; Recourt, P.; Revel, B.; Mabingui, J.; Montiel, A.; Boughriet, A. Physicochemical, crystalline and morphological characteristics of bricks used for ground waters purification in Bangui region (Central African Republic). Appl. Clay Sci. 2012, 59, 69–75. [Google Scholar] [CrossRef]
- Poumaye, N.; Allahdin, O.; Tricot, G.; Revel, B.; Billon, G.; Recourt, P.; Wartel, M.; Boughriet, A. MAS NMR investigations on a metakaolinite-rich brick after zeolitization by alkaline treatments. Microporous Mesoporous Mater. 2019, 277, 1–9. [Google Scholar] [CrossRef]
- Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J.-O.; Bujoli, B.; Gan, Z.; Hoatson, G. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 2002, 40, 70–76. [Google Scholar] [CrossRef]
- Gan, Z. 13C/14N heteronuclear multiple-quantum correlation with rotary resonance and REDOR dipolar recoupling. J. Magn. Reson. 2007, 184, 39–43. [Google Scholar] [CrossRef]
- Tricot, G.; Trébosc, J.; Pourpoint, F.; Gauvin, R.; Delevoye, L. The D-HMQC MAS-NMR Technique. In Annual Reports on NMR Spectroscopy; Webb, G.A., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; Volume 81, pp. 145–184. [Google Scholar] [CrossRef]
- Poumaye, N.; Allahdin, O.; Wartel, M.; Boughriet, A. Insights into characterization and adsorptive behaviour of zeolitized brick in water toward cadmium (A very toxic heavy metal to humans). Int. J. Pharm. Pharmaceut. Res. 2018, 13, 1–29. [Google Scholar]
- Poumaye, N.; Allahdin, O.; Lesven, L.; Wartel, M.; Boughriet, A. Adsorption of Iron (II) on Sodic Zeolites─Bearing Brick (In Batch): Insights into Interfacial Chemical Processes and Thermodynamic Equilibria. Int. J. Sci. Res. Methodol. 2019, 11, 88–119. [Google Scholar]
- Boughriet, A.; Allahdin, O.; Poumaye, N.; Tricot, G.; Revel, B.; Lesven, L.; Wartel, M. Micro-Analytical Study of a Zeolites/Geo-Polymers/Quartz Composite, Dielectric Behaviour and Contribution to Brønsted Sites Affinity. Ceramics 2022, 5, 908–927. [Google Scholar] [CrossRef]
- Allahdin, O.; Wartel, M.; Recourt, P.; Revel, B.; Ouddane, B.; Billon, G.; Mabingui, J.; Boughriet, A. Adsorption capacity of iron oxyhydroxide-coated brick for cationic metals and nature of ion surface interactions. Appl. Clay Sci. 2014, 90, 141–149. [Google Scholar] [CrossRef]
- Seliem, M.K.; Komarneni, S. Equilibrium and kinetic studies for dissociation of iron from aqueous solution by synthetic Na-A zeolites: Statistical modelling and optimization. Microporous Mesoporous Mater. 2016, 228, 266–274. [Google Scholar] [CrossRef]
- Tontisirin, S. Synthesis and characterization of co-crystalline zeolite composite of LSX/A. Microporous Mesoporous Mater. 2017, 239, 123–129. [Google Scholar] [CrossRef]
- Sathupunya, M.; Glari, E.; Wongkasemjit, S. ANA and GIS zeolite synthesis directly from alumatrane and silatrane by sol-gel process and microwave technique. J. Eur. Ceram. Soc. 2002, 22, 2305–2314. [Google Scholar] [CrossRef]
- Zubowa, H.-L.; Kosslick, H.; Müller, D.; Richter, M.; Wilde, L.; Fricke, R. Crystallization of phase-pure zeolite NaP from MCM-22-type gel compositions under microwave radiation. Microporous Mesoporous Mater. 2008, 109, 542–548. [Google Scholar] [CrossRef]
- Behin, J.; Kazemian, H.; Rohani, S. Sonochemical synthesis of zeolite NaP from clinoptilolite. Ultrason. Sonochem. 2016, 28, 400–408. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Higgins, J.B. Collection of Simulated XRD Powder Patterns for Zeolites, 5th ed.; Elsevier: New York, NY, USA, 2007; pp. 1–762. [Google Scholar] [CrossRef]
- Gao, X.; Yu, Q.L.; Brouwers, H.J.H. Apply 29Si, 27Al MAS NMR and selective dissolution in identifying the reaction degree of alkali activated slag-fly ash composites. Ceram. Int. 2017, 43, 12408–12419. [Google Scholar] [CrossRef]
- Lippmaa, E.; Mági, M.; Samoson, A.; Tarmak, M.; Engelhardtl, G. Investigation of the structure of zeolites by solid-state high-resolution 29Si NMR spectroscopy. J. Am. Chem. Soc. 1981, 103, 4992–4996. [Google Scholar] [CrossRef]
- Hunger, M.; Anderson, M.W.; Ojo, A.; Pfelfer, H. Study of the geometry and location of the bridging OH groups in aluminosilicate and silicoaluminophosphate type zeolites using 1H MAS NMR sideband analysis and CP/MAS NMR. Microporous Mater. 1993, 1, 17–32. [Google Scholar] [CrossRef]
- Fernandez-Jimenez, A.; Monzo, M.; Vicent, M.; Barba, A.; Palomo, A. Alkaline activation of metakaolin–fly ash mixtures: Obtain of Zeoceramics and Zeocements. Microporous Mesoporous Mater. 2008, 108, 41–49. [Google Scholar] [CrossRef]
- Criado, M.; Fernandez-Jimenez, A.; Palomo, A.; Sobrados, I.; Sanz, J. Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR Survey. Microporous Mesoporous Mater. 2008, 109, 525–534. [Google Scholar] [CrossRef]
- Souayfan, F.; Rozière, E.; Paris, M.; Deneele, D.; Loukili, A.; Justino, C. 29Si and 27Al MAS NMR spectroscopic studies of activated metakaolin-slag mixtures. Constr. Build. Mater. 2022, 322, 126415. [Google Scholar] [CrossRef]
- Engelhardt, G.; Luger, S.; Buhl, J.C.; Felsche, J. 29Si MAS n.m.r, of aluminosilicate sodalites: Correlations between chemical shifts and structure parameters. Zeolites 1989, 9, 182–186. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Separovic, F.; van Deventer, J.S.J. 29Si NMR study of structural ordering in aluminosilicates geopolymer gels. Langmuir 2005, 21, 3028–3036. [Google Scholar] [CrossRef]
- Ortega-Zavala, D.E.; Burciaga-Díaz, O.; Escalante-García, J.I. Chemically bonded ceramic/cementitious materials of alkali activated metakaolin processed by cold pressing. Constr. Build. Mater. 2021, 279, 121365. [Google Scholar] [CrossRef]
- Allahdin, O.; Poumaye, N.; Wartel, M.; Boughriet, A. Correlation analysis between cationic metal characteristics and ion-exchange performance of brick-derived zeolites: A comprehensive mechanistic explanation. Mater. Chem. Phys. 2022, 276, 125353. [Google Scholar] [CrossRef]
- Engelhardt, G.; Michel, D. High-Resolution Solid-State NMR of Silicates and Zeolites; Wiley & Sons: London, UK, 1987; p. 485. ISBN 0471915971. [Google Scholar]
- MacKenzie, K.J.D.; Smith, M.E. Multinuclear Solid-State NMR of Inorganic Materials. Pergamon Mater. Ser. 2002, 6, 727. [Google Scholar]
- Lin, H.; Liu, H.; Li, Y.; Kong, X. Properties and reaction mechanism of phosphoric acid activated metakaolin geopolymer at varied curing temperatures. Cem. Concr. Res. 2021, 144, 106425. [Google Scholar] [CrossRef]
- Engelhardt, G. Multinuclear solid-state NMR in silicate and zeolite chemistry. TrAC Trends Anal. Chem. 1989, 8, 343–347. [Google Scholar] [CrossRef]
- Huang, J.; van Vegten, N.; Jiang, Y.; Hunger, M.; Baiker, A. Increasing the Brønsted acidity of flame-derived silica/alumina up to zeolitic strength. Angew. Chem. 2010, 122, 7942–7947. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, J.; Dai, W.; Hunger, M. Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts. Solid State Nucl. Magn. Reson. 2011, 39, 116–141. [Google Scholar] [CrossRef]
- Wang, C.; Dai, W.; Wu, G.; Guan, N.; Li, L. Application of ammonia probe-assisted solid-state NMR technique in zeolites and catalysis. Magn. Reson. Lett. 2022, 2, 28–37. [Google Scholar] [CrossRef]
- Dyballa, M.; Obenaus, U.; Lang, S.; Gehring, B.; Traa, Y.; Koller, H.; Hunger, M. Brønsted sites and structural stabilization effect of acidic low-silica zeolite A prepared by partial ammonium exchange. Microporous Mesoporous Mater. 2015, 212, 110–116. [Google Scholar] [CrossRef]
- Huang, J.; Jiang, Y.; Reddy Marthala, V.R.; Wang, W.; Sulikowski, B.; Hunger, M. In situ 1H MAS NMR investigations of the H/D exchange of alkylaromatic hydrocarbons on zeolites H-Y, La, Na-Y, and H-ZSM-5. Microporous Mesoporous Mater. 2007, 99, 86–90. [Google Scholar] [CrossRef]
- Ma, D.; Han, X.; Xie, S.; Bao, X.; Hu, H.; Au-Yeung, S.C.F. An investigation of the roles of surface aluminum and acid sites in the zeolite MCM-22. Chem. Eur. J. 2002, 8, 162–170. [Google Scholar] [CrossRef]
- Kanellopoulos, J.; Gottert, C.; Schneider, D.; Knorr, B.; Prager, D.; Ernst, H.; Freude, D. NMR investigation of proton mobility in zeolites. J. Catal. 2008, 255, 68–78. [Google Scholar] [CrossRef]
- Ruiz-Santaquiteria, C.; Skibsted, J.; Fernández-Jiménez, A.; Palomo, A. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates. Cem. Concr. Res. 2012, 42, 1242–1251. [Google Scholar] [CrossRef]
- Glid, M.; Sobrados, I.; Ben Rhaiem, H.; Sanz, J.; Ben Haj Amara, A. Alkaline activation of metakaolinite-silica mixtures: Role of dissolved silica concentration on the formation of geopolymers. Ceram. Int. 2017, 43, 12641–12650. [Google Scholar] [CrossRef]
- Miladinovic, Z.P.; Zakrzewska, J.; Kovacevic, B.T.; Miladinovic, J.M. In situ 27Al NMR kinetic investigation of zeolite A crystallization. Microporous Mesoporous Mater. 2014, 195, 131–142. [Google Scholar] [CrossRef]
- Kulshreshthaa, S.K.; Vijayalakshmia, R.; Sudarsana, V.; Salunkeb, H.G.; Bhargavac, C. Iron oxide nanoparticles in NaA zeolite cages. Solid State Sci. 2013, 21, 44–50. [Google Scholar] [CrossRef]
- Xiao, Y.; Sheng, N.; Chu, Y.; Wang, Y.; Wu, Q.; Liu, X.; Deng, F.; Meng, X.; Feng, Z. Mechanism on solvent-free crystallization of NaA zeolite. Microporous Mesoporous Mater. 2017, 237, 201–209. [Google Scholar] [CrossRef]
- Albert, B.R.; Cheetham, A.K.; Stuart, J.A.; Adams, C.J. Investigations on P zeolites: Synthesis, characterisation, and structure of highly crystalline low-silica NaP. Microporous Mesoporous Mater. 1998, 21, 133–142. [Google Scholar] [CrossRef]
- Nery, J.G.; Mascarenhas, Y.P.; Cheetham, A.K. A study of the highly crystalline, lowsilica, fully hydrated zeolite P ion exchanged with (Mn2+, Cd2+, Pb2+, Sr2+, Ba2+) cations. Microporous Mesoporous Mater. 2003, 57, 229–248. [Google Scholar] [CrossRef]
- Meftah, M.; Oueslati, W.; Chorfi, N.; Ben Haj Amara, A. Effect of the raw material type and the reaction time on the synthesis of halloysite based Zeolite Na-P1. Result Phys. 2017, 7, 1475–1484. [Google Scholar] [CrossRef]
- Fletcher, R.A.; MacKenzie, K.J.D.; Nicholson, C.L.; Shimada, S. The composition range of aluminosilicate geopolymers. J. Eur. Ceram. Soc. 2005, 25, 1471–1477. [Google Scholar] [CrossRef]
- Jacobsen, H.S.; Norby, P.; Bildsce, H.; Jakobsen, H.J. 1:1 Correlation between 27AI and 29Si chemical shifts and correlations with lattice structures for some aluminosilicate sodalites. Zeolites 1989, 9, 491–495. [Google Scholar] [CrossRef]
- Lippmaa, E.; Samoson, A.; Mägi, M. High-resolution 27Al NMR of aluminosilicates. J. Am. Chem. Soc. 1986, 108, 1730–1735. [Google Scholar] [CrossRef]
- Ramdas, S.; Klinowski, J. A simple correlation between isotropic 29Si-NMR chemical shifts and T -0-T angles in zeolite frameworks. Nature 1984, 308, 521–523. [Google Scholar] [CrossRef]
- O’Neil Parker, W., Jr.; SWegner, S. Aluminum in mesoporous silica–alumina. Microporous Mesoporous Mater. 2012, 158, 235–240. [Google Scholar] [CrossRef]
- Limtrakul, J.; Tantanak, D. Cationic, structural, and compositional effects on the surface structure of zeolitic alu minosilicate catalysts. Chem. Phys. 1996, 208, 331–340. [Google Scholar] [CrossRef]
- Jain, S.; Banthia, N.; Troczynski, T. Leaching of immobilized cesium from NaOH-activated fly ash-based geopolymers. Cem. Concr. Compos. 2022, 133, 104679. [Google Scholar] [CrossRef]
29Si MAS NMR (de-Convolution) | Q4(4Al) (in gel) | Q4(4Al)ze and Q4(3Al)gel | Q4(2Al) | Q4(2Al) and/or Q4(1Al) | Q4(0Al) | Q4(0Al) | Q4(0Al) |
---|---|---|---|---|---|---|---|
Alkali-activated brick | |||||||
δiso/ppm | −84.5 | −89.2 | −94.0 | −100.7 | −107.5 | −113.3 | −119.5 |
FWHM/ppm | 2.2 | 5.1 | 6.7 | 8.0 | 4.8 | 8.0 | 9.8 |
Relative intensity(%) | 9.2 | 19.5 | 22 | 16 | 11 | 13 | 9.2 |
Alkali-activated brick (pH 5) | |||||||
δiso/ppm | −84.5 | −88.7 | −93.5 | −100.7 | −107.5 | −113.3 | −120.7 |
FWHM/ppm | 2.2 | 5.0 | 6.7 | 8.2 | 4.8 | 8.0 | 9.8 |
Relative intensity(%) | 11 | 20 | 23 | 14 | 11 | 14 | 7 |
NH4+-loaded alkali-activated brick | |||||||
δiso/ppm | −84.5 | −89.7 | −94.6 | −101.5 | −107.5 | −113.3 | −120.2 |
FWHM/ppm | 2.2 | 4.9 | 6.7 | 8.0 | 4.8 | 8.0 | 9.8 |
Relative intensity(%) | 11 | 21 | 20 | 15 | 12 | 13 | 8 |
ESEM/EDS | O | Na | Mg | Al | Si | K | Ca | Ti | Fe | |
---|---|---|---|---|---|---|---|---|---|---|
Alkali-brick surface (global) a | At. % | 60.98 | 9.08 | 0.37 | 10.97 | 17.29 | 0.56 | 0.07 | 0.18 | 0.50 |
σ | 0.89 | 0.25 | 0.02 | 0.68 | 0.60 | 0.25 | 0.03 | 0.05 | 0.18 | |
Targeted zeolitic zones b | At. % | 53.66 | 9.56 | 0.91 | 14.89 | 18.24 | 1.00 | 0.41 | 0.13 | 0.79 |
σ | 1.71 | 5.35 | 0.22 | 1.75 | 3.33 | 1.39 | 0.55 | 0.03 | 0.53 | |
Zeolite specimens targeted c | At. % | 50.75 | 12.37 | 0.55 | 16.61 | 18.38 | 0.25 | 0.44 | 0.07 | 0.44 |
σ | 6.29 | 2.07 | 0.16 | 2.65 | 1.48 | 0.03 | 0.39 | 0.02 | 0.24 |
Q4(4Al) (in Gel) | Q4(4Al) (in Zeolite) | Q4(3Al) (in Gel) | Q4(2Al) (in Gel) | Q4(1Al) (in Gel) | |
---|---|---|---|---|---|
Alkali-activated brick aggregates | |||||
δ(29Si) | −84.5 | −89.2 | −89.2 | −94.0 | −100.7 |
SiOAl(Si), θ° ( δ(27Al)) | 142.2 (60.9 | 148.8 (57.6) | 140.4 (61.8) | 140.4 (61.8) | 142.0 (61.0) |
NH4+-loaded alkali-brick | |||||
δ(29Si) | −84.5 | −89.7 | −89.7 | −94.6 | −101.5 |
SiOAl(Si), θ° ( δ(27Al)) | ~139 (~62.5) | 147.6 (58.2) | ~139 (~62.5) | ~139 (~62.5) | ~139 (~62.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boughriet, A.; Allahdin, O.; Poumaye, N.; Doyemet, G.; Tricot, G.; Revel, B.; Ouddane, B.; Wartel, M. Alkali-Activated Brick Aggregates as Industrial Valorized Wastes: Synthesis and Properties. Ceramics 2023, 6, 1765-1787. https://doi.org/10.3390/ceramics6030108
Boughriet A, Allahdin O, Poumaye N, Doyemet G, Tricot G, Revel B, Ouddane B, Wartel M. Alkali-Activated Brick Aggregates as Industrial Valorized Wastes: Synthesis and Properties. Ceramics. 2023; 6(3):1765-1787. https://doi.org/10.3390/ceramics6030108
Chicago/Turabian StyleBoughriet, Abdel, Oscar Allahdin, Nicole Poumaye, Gildas Doyemet, Grégory Tricot, Bertrand Revel, Baghdad Ouddane, and Michel Wartel. 2023. "Alkali-Activated Brick Aggregates as Industrial Valorized Wastes: Synthesis and Properties" Ceramics 6, no. 3: 1765-1787. https://doi.org/10.3390/ceramics6030108
APA StyleBoughriet, A., Allahdin, O., Poumaye, N., Doyemet, G., Tricot, G., Revel, B., Ouddane, B., & Wartel, M. (2023). Alkali-Activated Brick Aggregates as Industrial Valorized Wastes: Synthesis and Properties. Ceramics, 6(3), 1765-1787. https://doi.org/10.3390/ceramics6030108