Impact of Europium and Niobium Doping on Hafnium Oxide (HfO2): Comparative Analysis of Sol–Gel and Combustion Synthesis Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.2.1. Sol–Gel Synthesis (SG)
- 1.1
- SG-PC:
- 1.2
- SG-G:
- 1.3
- SG-U:
- 2
- The synthesis in all cases was continued with the following:
2.2.2. Combustion Synthesis (CO)
- 1
- For all samples:
- 1.1
- CO-U:
- 1.2
- CO-H:
- 1.3
- CO-UH:
- 2
- The synthesis in all cases was continued with the following:
- SG—sol–gel synthesis
- SG-PC—sol–gel synthesis—polymerized complex
- SG-G—sol–gel synthesis—glycine
- SG-U—sol–gel synthesis—urea
- CO—combustion synthesis
- CO-U—combustion synthesis—urea
- CO-H—combustion synthesis—hexamine
- CO-UH—combustion synthesis—urea and hexamine
2.3. Characterization
3. Results and Discussion
3.1. XRD and EDX
3.2. FTIR
3.3. SEM
3.4. Photoluminescence
3.5. XPS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
XRD | X-ray diffraction |
EDX | Energy Dispersive X-ray Spectroscopy |
FTIR | Fourier Transform Infrared Spectroscopy |
PL | Photoluminescence |
XPS | X-ray Photoelectron Spectroscopy |
BE | Binding energy |
SG | Sol–gel synthesis |
SG-PC | Sol–gel synthesis—polymerized complex |
SG-G | Sol–gel synthesis—glycine |
SG-U | Sol–gel synthesis—urea |
CO | Combustion synthesis |
CO-U | Combustion synthesis—urea |
CO-H | Combustion synthesis—hexamine |
CO-UH | Combustion synthesis—urea and hexamine |
Appendix A
SG-PC | Peak position, eV area, a.u. | 18.18, 19.88 26,687, 20,015 | 16.67, 18.37 32,354, 24,266 |
width coefficient | 1.66 | 2.00 | |
SG-PC:Eu | Peak position, eV area, a.u. | 16.93, 18.63 27,435, 576 | 15.53, 17.23 4269, 3201 |
width coefficient | 1.98 | 1.46 | |
SG-PC:Eu,Nb | Peak position, eV area, a.u. | 16.80, 18.50 51,130, 38,347 | 15.66, 17.36 6154, 4616 |
width coefficient | 1.88 | 1.20 | |
SG-G | Peak position, eV area, a.u. | 17.94, 19.64 34,183, 25,637 | 16.40, 18.10 42,236, 31,677 |
width coefficient | 1.59 | 2.00 | |
SG-G:Eu | Peak position, eV area, a.u. | 17.24, 18.94 26,597, 19,947 | 16.22, 17.92 37,766, 28,324 |
width coefficient | 1.35 | 1.46 | |
SG-G:Eu,Nb | Peak position, eV area, a.u. | 16.67, 18.37 50,984, 38,238 | 15.59, 17.29 20,897, 15,673 |
width coefficient | 1.54 | 1.27 | |
SG-U | Peak position, eV area, a.u. | 17.16, 18.86 40,717, 30,538 | 15.87, 17.57 23,084, 17,313 |
width coefficient | 1.52 | 1.60 | |
SG-U:Eu | Peak position, eV area, a.u. | 16.15, 17.85 28,348, 21,261 | 15.10, 16.80 6904, 5178 |
width coefficient | 1.69 | 1.18 | |
SG-U:Eu,Nb | Peak position, eV area, a.u. | 17.75, 19.45 19,962, 14,971 | 16.17, 17.87 21,515, 16,136 |
width coefficient | 1.41 | 1.97 | |
CO-U | Peak position, eV area, a.u. | 16.33, 18.03 30,368, 22,776 | 15.20, 16.90 10,752, 8064 |
width coefficient | 1.66 | 1.07 | |
CO-U:Eu | Peak position, eV area, a.u. | 17.94, 19.64 16,899, 12,674 | 16.15, 17.85 20,209, 15,156 |
width coefficient | 1.67 | 2.00 | |
CO-U:Eu,Nb | Peak position, eV area, a.u. | 17.54, 19.24 26,959, 11,886 | 16.10, 17.80 22,091, 16,568 |
width coefficient | 1.59 | 1.73 | |
CO-H | Peak position, eV area, a.u. | 17.14, 18.84 9476, 7107 | 15.97, 17.67 33,798, 25,348 |
width coefficient | 1.48 | 1.69 | |
CO-H:Eu | Peak position, eV area, a.u. | 16.54, 18.24 33,211, 24,908 | 15.45, 17.15 9002, 6751 |
width coefficient | 2.00 | 1.46 | |
CO-H:Eu,Nb | Peak position, eV area, a.u. | 17.02, 18.72 4578, 3433 | 16.00, 17.70 30,324, 22,743 |
width coefficient | 1.34 | 1.49 | |
CO-UH | Peak position, eV area, a.u. | 17.14, 18.84 44,377, 33,283 | 15.83, 17.53 19,270, 14,453 |
width coefficient | 1.68 | 1.71 | |
CO-UH:Eu | Peak position, eV area, a.u. | 17.64, 19.34 27,483, 20,612 | 16.15, 17.85 34,975, 26,231 |
width coefficient | 1.49 | 2.00 | |
CO-UH:Eu,Nb | Peak position, eV area, a.u. | 17.64, 19.34 24,742, 18,556 | 16.18, 17.88 30,263, 22,697 |
width coefficient | 1.43 | 1.65 |
References
- Kumar, N.; George, B.P.A.; Abrahamse, H.; Parashar, V.; Ray, S.S.; Ngila, J.C. A Novel Approach to Low-Temperature Synthesis of Cubic HfO2 Nanostructures and Their Cytotoxicity. Sci. Rep. 2017, 7, 9351. [Google Scholar] [CrossRef] [PubMed]
- Lange, S.; Kiisk, V.; Aarik, J.; Kirm, M.; Sildos, I. Luminescence of ZrO2 and HfO2 Thin Films Implanted with Eu and Er Ions. Phys. Status Solidi C 2007, 4, 938–941. [Google Scholar] [CrossRef]
- Puust, L.; Kiisk, V.; Eltermann, M.; Mändar, H.; Saar, R.; Lange, S.; Sildos, I.; Dolgov, L.; Matisen, L.; Jaaniso, R. Effect of Ambient Oxygen on the Photoluminescence of Sol–Gel-Derived Nanocrystalline ZrO2:Eu,Nb. J. Phys. D Appl. Phys. 2017, 50, 215303. [Google Scholar] [CrossRef]
- Cheynet, M.C.; Pokrant, S.; Tichelaar, F.D.; Rouvière, J.-L. Crystal Structure and Band Gap Determination of HfO2 Thin Films. J. Appl. Phys. 2007, 101, 054101. [Google Scholar] [CrossRef]
- Gier, C.; Ben Yaala, M.; Wiseman, C.; MacFoy, S.; Chicoine, M.; Schiettekatte, F.; Hough, J.; Rowan, S.; Martin, I.; MacKay, P.; et al. Controlling the Optical Properties of Hafnium Dioxide Thin Films Deposited with Electron Cyclotron Resonance Ion Beam Deposition. Thin Solid Film. 2023, 771, 139781. [Google Scholar] [CrossRef]
- Wilk, G.D.; Wallace, R.M.; Anthony, J.M. High-κ Gate Dielectrics: Current Status and Materials Properties Considerations. J. Appl. Phys. 2001, 89, 5243–5275. [Google Scholar] [CrossRef]
- Robertson, J. High Dielectric Constant Gate Oxides for Metal Oxide Si Transistors. Rep. Prog. Phys. 2006, 69, 327–396. [Google Scholar] [CrossRef]
- Meng, J.; Jiang, D.Y.; Li, Q. Luminescent Properties of Eu3+-Doped HfO2 Powders Prepared by Combustion. Key Eng. Mater. 2010, 434–435, 805–807. [Google Scholar] [CrossRef]
- Sekar, N. Dosimetric Characterization for Optimum Concentration in Rare Earth Doped Hafnium Oxide Nanophosphors for Medical Radiotherapy Applications. Radiat. Phys. Chem. 2023, 203, 110649. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, J.; Kumar, R.; Kumar, A.; Sharma, A.; Won, S.O.; Chae, K.H.; Singh, M.; Vij, A. Monoclinic to Cubic Structural Transformation, Local Electronic Structure, and Luminescence Properties of Eu-Doped HfO2. Appl. Phys. A 2023, 129, 712. [Google Scholar] [CrossRef]
- Villanueva-Ibañez, M.; Le Luyer, C.; Marty, O.; Mugnier, J. Annealing and Doping Effects on the Structure of Europium-Doped HfO2 Sol–Gel Material. Opt. Mater. 2003, 24, 51–57. [Google Scholar] [CrossRef]
- Lauria, A.; Villa, I.; Fasoli, M.; Niederberger, M.; Vedda, A. Multifunctional Role of Rare Earth Doping in Optical Materials: Nonaqueous Sol–Gel Synthesis of Stabilized Cubic HfO2 Luminescent Nanoparticles. ACS Nano 2013, 7, 7041–7052. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Dehury, T.; Rath, C. Stabilization of Cubic Phase at Room Temperature and Photoluminescence Properties of Dy and Sm Co-Doped HfO2 Nanoparticles. ECS J. Solid. State Sci. Technol. 2021, 10, 081009. [Google Scholar] [CrossRef]
- Banerjee, D.; Sewak, R.; Dey, C.C.; Toprek, D.; Pujari, P.K. Orthorhombic Phases in Bulk Pure HfO2: Experimental Observation from Perturbed Angular Correlation Spectroscopy. Mater. Today Commun. 2021, 26, 101827. [Google Scholar] [CrossRef]
- Quintero-García, J.S.; Puente-Urbina, B.A.; García-Cerda, L.A.; Rodríguez-Fernández, O.S.; Mendoza-Mendoza, E. A “Green Methodology” Approach to the Synthesis of HfO2 Nanoparticles. Mater. Lett. 2015, 159, 520–524. [Google Scholar] [CrossRef]
- Nandi, S.K.; Venkatachalam, D.K.; Ruffell, S.; England, J.; Grande, P.L.; Vos, M.; Elliman, R.G. Room Temperature Synthesis of HfO2/HfOx Structures by Ion-Implantation. Nanotechnology 2018, 29, 425601. [Google Scholar] [CrossRef]
- Rauwel, P.; Rauwel, E.; Persson, C.; Sunding, M.F.; Galeckas, A. One Step Synthesis of Pure Cubic and Monoclinic HfO2 Nanoparticles: Correlating the Structure to the Electronic Properties of the Two Polymorphs. J. Appl. Phys. 2012, 112, 104107. [Google Scholar] [CrossRef]
- Wang, S.; Shen, J.; Luo, A.; Liu, C. Preparation of High Refractive Index HfO2 Thin Films by Hydrothermal Synthesis. Tongji Daxue Xuebao/J. Tongji Univ. 2007, 35, 1666–1669. [Google Scholar]
- De Roo, J.; De Keukeleere, K.; Feys, J.; Lommens, P.; Hens, Z.; Van Driessche, I. Fast, Microwave-Assisted Synthesis of Monodisperse HfO2 Nanoparticles. J. Nanoparticle Res. 2013, 15, 1778. [Google Scholar] [CrossRef]
- Suzuki, K.; Kato, K. Sol–Gel Synthesis of High-k HfO2 Thin Films. J. Am. Ceram. Soc. 2009, 92, S162–S164. [Google Scholar] [CrossRef]
- Tang, J.; Fabbri, J.; Robinson, R.D.; Zhu, Y.; Herman, I.P.; Steigerwald, M.L.; Brus, L.E. Solid-Solution Nanoparticles: Use of a Nonhydrolytic Sol−Gel Synthesis to Prepare HfO2 and HfxZr1−xO2 Nanocrystals. Chem. Mater. 2004, 16, 1336–1342. [Google Scholar] [CrossRef]
- Bite, I.; Laganovska, K.; Vanags, E.; Vitola, V. Synthesis and Characterization of Translucent Hafnia Ceramics. Materialia 2023, 32, 101887. [Google Scholar] [CrossRef]
- Laganovska, K.; Bite, I.; Zolotarjovs, A.; Einbergs, E.; Vitola, V.; Dile, M.; Smits, K. Thermostimulated luminescence analysis of oxygen vacancies in HfO2 nanoparticles. Mater. Res. Bull. 2023, 167, 112409. [Google Scholar] [CrossRef]
- Chuang, S.-H.; Lin, H.-C.; Chen, C.-H. Oxygen Vacancy Relationship to Photoluminescence and Heat Treatment Methods in Hafnium Oxide Powders. J. Alloys Compd. 2012, 534, 42–46. [Google Scholar] [CrossRef]
- Smits, K.; Olsteins, D.; Zolotarjovs, A.; Laganovska, K.; Millers, D.; Ignatans, R.; Grabis, J. Doped Zirconia Phase and Luminescence Dependence on the Nature of Charge Compensation. Sci. Rep. 2017, 7, 44453. [Google Scholar] [CrossRef]
- Laganovska, K.; Bite, I.; Zolotarjovs, A.; Smits, K. Niobium Enhanced Europium Ion Luminescence in Hafnia Nanocrystals. J. Lumin. 2018, 203, 358–363. [Google Scholar] [CrossRef]
- Mahendran, N.; Jeyakumar, S.J.; Jothibas, M.; Muthuvel, A. Structural, Morphological, Optical and Photoluminescence Properties of Hafnium Oxide Nanoparticles Synthesized by Sol-Gel Method. Asian J. Chem. 2019, 31, 453–459. [Google Scholar] [CrossRef]
- Salinas Domínguez, R.A.; Orduña-Díaz, A.; Cerón, S.; Dominguez, M.A. Analysis and Study of Characteristic FTIR Absorption Peaks in Hafnium Oxide Thin Films Deposited at Low-Temperature. Trans. Electr. Electron. Mater. 2020, 21, 68–73. [Google Scholar] [CrossRef]
- Aygun, G.; Yildiz, I. Interfacial and Structural Properties of Sputtered HfO2 Layers. J. Appl. Phys. 2009, 106, 014312. [Google Scholar] [CrossRef]
- Hackley, J.C.; Gougousi, T. Properties of Atomic Layer Deposited HfO2 Thin Films. Thin Solid Film. 2009, 517, 6576–6583. [Google Scholar] [CrossRef]
- Ramadoss, A.; Kim, S.J. Synthesis and Characterization of HfO2 Nanoparticles by Sonochemical Approach. J. Alloys Compd. 2012, 544, 115–119. [Google Scholar] [CrossRef]
- Perevalov, T.V.; Aliev, V.S.; Gritsenko, V.A.; Saraev, A.A.; Kaichev, V.V. Electronic Structure of Oxygen Vacancies in Hafnium Oxide. Microelectron. Eng. 2013, 109, 21–23. [Google Scholar] [CrossRef]
- Gangqiang, Z.; Sanqi, T.; Tingting, T. Electronic Structure and Optical Properties of Monoclinic HfO2 with Oxygen Vacancy. Rare Met. Mater. Eng. 2013, 42, 1576–1580. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.K.; Yang, Q.; Jiang, J.; Fan, P.; Liao, M.; Zhou, Y.C. The Effects of Oxygen Vacancies on Ferroelectric Phase Transition of HfO2-Based Thin Film from First-Principle. Comput. Mater. Sci. 2019, 167, 143–150. [Google Scholar] [CrossRef]
- Stojadinović, S.; Tadić, N.; Ćirić, A.; Vasilić, R. Photoluminescence Properties of Eu3+ Doped HfO2 Coatings Formed by Plasma Electrolytic Oxidation of Hafnium. Opt. Mater. 2018, 77, 19–24. [Google Scholar] [CrossRef]
- Choi, B.; Kim, H.-U.; Jeon, N. Uniformity of HfO2 Thin Films Prepared on Trench Structures via Plasma-Enhanced Atomic Layer Deposition. Nanomaterials 2022, 13, 161. [Google Scholar] [CrossRef] [PubMed]
- Do, H.-B.; Luc, Q.-H.; Pham, P.V.; Phan-Gia, A.-V.; Nguyen, T.-S.; Le, H.-M.; De Souza, M.M. Metal-Induced Trap States: The Roles of Interface and Border Traps in HfO2/InGaAs. Micromachines 2023, 14, 1606. [Google Scholar] [CrossRef]
- Kaiser, N.; Vogel, T.; Zintler, A.; Petzold, S.; Arzumanov, A.; Piros, E.; Eilhardt, R.; Molina-Luna, L.; Alff, L. Defect-Stabilized Substoichiometric Polymorphs of Hafnium Oxide with Semiconducting Properties. ACS Appl. Mater. Interfaces 2022, 14, 1290–1303. [Google Scholar] [CrossRef]
- Kaiser, N.; Song, Y.-J.; Vogel, T.; Piros, E.; Kim, T.; Schreyer, P.; Petzold, S.; Valentí, R.; Alff, L. Crystal and Electronic Structure of Oxygen Vacancy Stabilized Rhombohedral Hafnium Oxide. ACS Appl. Electron. Mater. 2023, 5, 754–763. [Google Scholar] [CrossRef]
- Vogel, T.; Kaiser, N.; Petzold, S.; Piros, E.; Guillaume, N.; Lefevre, G.; Charpin-Nicolle, C.; David, S.; Vallee, C.; Nowak, E.; et al. Defect-Induced Phase Transition in Hafnium Oxide Thin Films: Comparing Heavy Ion Irradiation and Oxygen-Engineering Effects. IEEE Trans. Nucl. Sci. 2021, 68, 1542–1547. [Google Scholar] [CrossRef]
- Sharath, S.U.; Bertaud, T.; Kurian, J.; Hildebrandt, E.; Walczyk, C.; Calka, P.; Zaumseil, P.; Sowinska, M.; Walczyk, D.; Gloskovskii, A.; et al. Towards Forming-Free Resistive Switching in Oxygen Engineered HfO2−x. Appl. Phys. Lett. 2014, 104, 063502. [Google Scholar] [CrossRef]
- Kim, Y.S.; Chung, H.; Kwon, S.; Kim, J.; Jo, W. Grain Boundary Passivation via Balancing Feedback of Hole Barrier Modulation in HfO2−x for Nanoscale Flexible Electronics. Nano Converg. 2022, 9, 43. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Li, Y.; Yang, H.; Liang, Y.; He, K.; Sun, W.; Lin, H.-H.; Yao, S.; Lu, X.; Wan, L.; et al. Investigation of HfO2 Thin Films on Si by X-Ray Photoelectron Spectroscopy, Rutherford Backscattering, Grazing Incidence X-Ray Diffraction and Variable Angle Spectroscopic Ellipsometry. Crystals 2018, 8, 248. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. X-ray Photoelectron Spectroscopy: Towards Reliable Binding Energy Referencing. Prog. Mater. Sci. 2020, 107, 100591. [Google Scholar] [CrossRef]
- Vitola, V.; Laganovska, K.; Bite, I.; Einbergs, E.; Millers, D. The Role of Boric Acid in Optical Information Storage Properties in Eu Doped BaSi2O5. J. Lumin. 2022, 243, 118682. [Google Scholar] [CrossRef]
Crystallite Size, nm | % of T Phase | at. % of Eu | at. % of Eu | at. % of Nb | |||||
---|---|---|---|---|---|---|---|---|---|
Sample | HfO2 | HfO2:Eu | HfO2:Eu, Nb | HfO2 | HfO2:Eu | HfO2:Eu, Nb | HfO2:Eu | HfO2:Eu, Nb | HfO2:Eu, Nb |
SG-PC | 18.6 | 22.6 | 28.0 | 0.0 | 8.1 | 0.7 | 4.7 | 4.5 | 6.5 |
SG-G | 22.8 | 26.2 | 30.0 | 0.5 | 6.0 | 1.1 | 4.7 | 4.6 | 2.1 |
SG-U | 24.1 | 32.4 | 42.5 | 0.3 | 6.5 | 4.4 | 7.0 | 3.7 | 5.5 |
CO-U | 37.3 | 28.0 | 31.2 | 0.5 | 7.5 | 1.1 | 4.4 | 4.5 | 6.5 |
CO-H | 17.3 | 23.9 | 26.2 | 2.1 | 8.7 | 1.2 | 4.3 | 4.8 | 6.5 |
CO-UH | 25.4 | 27.0 | 32.4 | 0.7 | 9.1 | 2.2 | 4.3 | 4.4 | 6.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laganovska, K.; Vitola, V.; Einbergs, E.; Bite, I.; Zolotarjovs, A.; Leimane, M.; Tunens, G.; Smits, K. Impact of Europium and Niobium Doping on Hafnium Oxide (HfO2): Comparative Analysis of Sol–Gel and Combustion Synthesis Methods. Ceramics 2024, 7, 15-28. https://doi.org/10.3390/ceramics7010002
Laganovska K, Vitola V, Einbergs E, Bite I, Zolotarjovs A, Leimane M, Tunens G, Smits K. Impact of Europium and Niobium Doping on Hafnium Oxide (HfO2): Comparative Analysis of Sol–Gel and Combustion Synthesis Methods. Ceramics. 2024; 7(1):15-28. https://doi.org/10.3390/ceramics7010002
Chicago/Turabian StyleLaganovska, Katrina, Virginija Vitola, Ernests Einbergs, Ivita Bite, Aleksejs Zolotarjovs, Madara Leimane, Gatis Tunens, and Krisjanis Smits. 2024. "Impact of Europium and Niobium Doping on Hafnium Oxide (HfO2): Comparative Analysis of Sol–Gel and Combustion Synthesis Methods" Ceramics 7, no. 1: 15-28. https://doi.org/10.3390/ceramics7010002
APA StyleLaganovska, K., Vitola, V., Einbergs, E., Bite, I., Zolotarjovs, A., Leimane, M., Tunens, G., & Smits, K. (2024). Impact of Europium and Niobium Doping on Hafnium Oxide (HfO2): Comparative Analysis of Sol–Gel and Combustion Synthesis Methods. Ceramics, 7(1), 15-28. https://doi.org/10.3390/ceramics7010002