Evolution of CO2 Uptake Degree of Ordinary Portland Cement During Accelerated Aqueous Mineralisation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cement Characterisation
2.2. Aqueous CO2 Mineralisation
3. Results and Discussion
3.1. Mineral Composition
3.2. CO2 Uptake
4. Comparison with Other Cement-Based Materials Carbonated in Aqueous Conditions
5. Conclusions
- -
- The XRD pattern analysis indicates that the intensity of peaks associated with calcium silicates diminishes as a consequence of the hydration and carbonation processes. Conversely, a significant increase in the intensity of calcium carbonate peaks with the carbonation time is observed.
- -
- From both the TG-DTA and XRD analysis, the presence of portlandite at a carbonation time of 5 min is observed, while it is not shown from 10 min upward. This may indicate that the rate of CO2 dissolution from the gas is the limiting factor of the carbonation process during the initial minutes. Conversely, at longer durations of the process, with C3S (alite) almost fully reacted, and with C2S (belite) characterised by a slower reaction rate, silicate dissolution represents the limiting factor of the process.
- -
- The thermal decomposition in a muffle furnace and TG-DTA emerge as valuable methods for the assessment of CO2 content in carbonated materials, with comparable results. The TG-DTA results to be more appropriate when portlandite is present in the material.
- -
- The CO2 uptake increases with the time of carbonation, following a trend of asymptotic behaviour. The trendline prediction curve indicates that CO2 uptake, with a value of 19.1%, reaches approximately 70% of the maximum achievable value at 40 min.
- -
- The comparison with the literature emphasises the attainment of significant CO2 uptake values despite the use of mild and less energy-demanding operational parameters. Furthermore, it highlights the enhanced carbonation capacity of raw OPC in comparison to hydrated cement pastes, including those derived from construction and demolition waste materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coppola, L.; Bellezze, T.; Belli, A.; Bianco, A.; Blasi, E.; Cappello, M.; Caputo, D.; Chougan, M.; Coffetti, D.; Coppola, B.; et al. New materials and technologies for durability and conservation of building heritage. Materials 2023, 16, 1190. [Google Scholar] [CrossRef]
- Busch, P.; Kendall, A.; Murphy, C.W.; Miller, S.A. Literature review on policies to mitigate GHG emissions for cement and concrete. Resour. Conserv. Recycl. 2022, 182, 106278. [Google Scholar] [CrossRef]
- CEMBUREAU. The European Cement Association 2021. In Cementing the European Green Deal: Reaching Climate Neutrality Along the Cement and Concrete Value Chain by 2050; CEMBUREAU: Brussels, Belgium, 2021. [Google Scholar]
- Ferrara, G.; Martinelli, E. Tensile behaviour of Textile Reinforced Mortar composite systems with flax fibres. In Proceedings of the 12th Fib International PhD Symposium in Civil Engineering 2018, Prague, Czech Republic, 29–31 August 2018; pp. 863–869. [Google Scholar]
- Pepe, M.; Lombardi, R.; Ferrara, G.; Agnetti, S.; Martinelli, E. Experimental Characterisation of Lime-Based Textile-Reinforced Mortar Systems Made of Either Jute or Flax Fabrics. Materials 2023, 16, 709. [Google Scholar] [CrossRef]
- Reboul, N.; Saidi, M.; Mualla, S.; Homoro, O.; Amziane, S. Bond behaviour of Fibre Reinforced Polymers applied on masonry substrate: Analysis based on acoustic emission, digital image correlation and analytical modelling. Constr. Build. Mater. 2023, 403, 132921. [Google Scholar] [CrossRef]
- Ferrara, G.; Michel, L.; Ferrier, E. Flexural behaviour of timber-concrete composite floor systems linearly supported at two edges. Eng. Struct. 2023, 281, 115782. [Google Scholar] [CrossRef]
- Bolden, J.; Abu-Lebdeh, T.; Fini, E. Utilization of recycled and waste materials in various construction applications. Am. J. Env. Sci. 2013, 9, 14–24. [Google Scholar] [CrossRef]
- Pan, S.Y.; Chang, E.E.; Chiang, P.C. CO2 capture by accelerated carbonation of alkaline wastes: A review on its principles and applications. AAQR 2012, 12, 770–791. [Google Scholar] [CrossRef]
- Ferrara, G.; Belli, A.; Keulen, A.; Razo, D.A.S.; Tulliani, J.; Palmero, P. Carbon sequestration in Steel Slag-based mortar: Investigation on chemical composition and mechanical properties. In Proceedings of the 2nd Fib Italy YMG Symposium on Concrete and Concrete Structures 2021, Rome, Italy, 18–19 November 2021; pp. 220–227. [Google Scholar]
- Mahoutian, M.; Shao, Y. Production of cement-free construction blocks from industry wastes. J. Clean. Prod. 2016, 137, 1339–1346. [Google Scholar] [CrossRef]
- Bonfante, F.; Ferrara, G.; Humbert, P.; Garufi, D.; Tulliani, J.M.C.; Palmero, P. CO2 Sequestration Through Aqueous Carbonation of Electric Arc Furnace Slag. JACT 2024, 22, 207–218. [Google Scholar] [CrossRef]
- Polettini, A.; Pomi, R.; Stramazzo, A. CO2 sequestration through aqueous accelerated carbonation of BOF slag: A factorial study of parameters effects. J. Environ. Manag. 2016, 167, 185–195. [Google Scholar] [CrossRef]
- Bonfante, F.; Humbert, P.; Tulliani, J.M.; Palmero, P.; Ferrara, G. CO2 uptake of cement by-pass dust via direct aqueous carbonation: An experimental design for time and temperature optimisation. Mater. Struct. 2024, 57, 181. [Google Scholar] [CrossRef]
- Ma, M.; Mehdizadeh, H.; Guo, M.Z.; Ling, T.C. Effect of direct carbonation routes of basic oxygen furnace slag (BOFS) on strength and hydration of blended cement paste. Constr. Build. Mater. 2021, 304, 124628. [Google Scholar] [CrossRef]
- Fang, Y.; Su, W.; Zhang, Y.; Zhang, M.; Ding, X.; Wang, Q. Effect of accelerated precarbonation on hydration activity and volume stability of steel slag as a supplementary cementitious material. J. Therm. Anal. Calorim. 2022, 147, 6181–6191. [Google Scholar] [CrossRef]
- Lippiatt, N.; Ling, T.C.; Eggermont, S. Combining hydration and carbonation of cement using super-saturated aqueous CO2 solution. Constr. Build. Mater. 2019, 229, 116825. [Google Scholar] [CrossRef]
- Monkman, S.; MacDonald, M.; Hooton, R.D.; Sandberg, P. Properties and durability of concrete produced using CO2 as an accelerating admixture. Cem. Concr. Compos. 2016, 74, 218–224. [Google Scholar] [CrossRef]
- Matschei, T.; Lothenbach, B.; Glasser, F.P. The role of calcium carbonate in cement hydration. Cem. Concr. Res. 2007, 37, 551–558. [Google Scholar] [CrossRef]
- Fu, X.; Guerini, A.; Zampini, D.; Rotta Loria, A.F. Storing CO2 while strengthening concrete by carbonating its cement in suspension. Commun. Mater. 2024, 5, 109. [Google Scholar] [CrossRef]
- Zajac, M.; Lechevallier, A.; Durdzinski, P.; Bullerjahn, F.; Skibsted, J.; Haha, M.B. CO2 mineralisation of Portland cement: Towards understanding the mechanisms of enforced carbonation. J. CO2 Util. 2020, 38, 398–415. [Google Scholar] [CrossRef]
- Huntzinger, D.N.; Gierke, J.S.; Kawatra, S.K.; Eisele, T.C.; Sutter, L.L. Carbon dioxide sequestration in cement kiln dust through mineral carbonation. Environ. Sci. Technol. 2009, 43, 1986–1992. [Google Scholar] [CrossRef]
- Ferrara, G.; Belli, A.; Keulen, A.; Tulliani, J.M.; Palmero, P. Testing procedures for CO2 uptake assessment of accelerated carbonation products: Experimental application on basic oxygen furnace steel slag samples. Constr. Build. Mater. 2023, 406, 133384. [Google Scholar] [CrossRef]
- Librandi, P.; Nielsen, P.; Costa, G.; Snellings, R.; Quaghebeur, M.; Baciocchi, R. Mechanical and environmental properties of carbonated steel slag compacts as a function of mineralogy and CO2 uptake. J. CO2 Util. 2019, 33, 201–214. [Google Scholar] [CrossRef]
- RILEM Technical Committee 309-MCP: Accelerated Mineral Carbonation for the Production of Construction Materials 2022. Chair: Snellings, R. Available online: https://www.rilem.net/groupe/309-mcp-accelerated-mineral-carbonation-for-the-production-of-construction-materials-442 (accessed on 27 October 2024).
- Teune, I.E.; Schollbach, K.; Florea, M.V.A.; Brouwers, H.J.H. Carbonation of hydrated cement: The impact of carbonation conditions on CO2 sequestration, phase formation, and reactivity. J. Build. Eng. 2023, 79, 107785. [Google Scholar] [CrossRef]
- Ho, H.J.; Iizuka, A.; Shibata, E.; Tomita, H.; Takano, K.; Endo, T. Utilization of CO2 in direct aqueous carbonation of concrete fines generated from aggregate recycling: Influences of the solid-liquid ratio and CO2 concentration. J. Clean. Prod. 2021, 312, 127832. [Google Scholar] [CrossRef]
- Pasquier, L.C.; Kemache, N.; Mocellin, J.; Blais, J.F.; Mercier, G. Waste concrete valorization; aggregates and mineral carbonation feedstock production. Geosciences 2018, 8, 342. [Google Scholar] [CrossRef]
- Kong, Y.; Song, Y.; Weng, Y.; Kurumisawa, K.; Yan, D.; Zhou, X.; Wang, S.; Ruan, S. Influences of CO2-cured cement powders on hydration of cement paste. Greenh. Gases 2022, 12, 249–262. [Google Scholar] [CrossRef]
- Hernandez-Rodriguez, A.; Orlando, A.; Montegrossi, G.; Huet, B.; Virgili, G.; Vaselli, O. Experimental analysis on the carbonation rate of Portland cement at room temperature and CO2 partial pressure from 1 to 51 bar. Cem. Concr. Compos. 2021, 124, 104271. [Google Scholar] [CrossRef]
- Xi, F.; Davis, S.J.; Ciais, P.; Crawford-Brown, D.; Guan, D.; Pade, C.; Shi, T.; Syddall, M.; Lv, J.; Ji, L. Substantial global carbon uptake by cement carbonation. Nat. Geosci. 2016, 9, 880–883. [Google Scholar] [CrossRef]
- Ashraf, W. Carbonation of cement-based materials: Challenges and opportunities. Constr. Build. Mater. 2016, 120, 558–570. [Google Scholar] [CrossRef]
- Mo, L.; Zhang, F.; Deng, M. Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing. Cem. Concr. Res. 2016, 88, 217–226. [Google Scholar] [CrossRef]
- Moon, E.J.; Choi, Y.C. Development of carbon-capture binder using stainless steel argon oxygen decarburization slag activated by carbonation. J. Clean. Prod. 2018, 180, 642–654. [Google Scholar] [CrossRef]
- Liu, G.; Schollbach, K.; van der Laan, S.; Tang, P.; Florea, M.V.; Brouwers, H.J.H. Recycling and utilization of high volume converter steel slag into CO2 activated mortars–The role of slag particle size. Resour. Conserv. Recycl. 2020, 160, 104883. [Google Scholar] [CrossRef]
- de Sena Costa, B.L.; de Oliveira Freitas, J.C.; Santos, P.H.S.; de Araújo Melo, D.M.; de Oliveira, Y.H. Effects of carbon dioxide in Portland cement: A relation between static sedimentation and carbonation. Constr. Build. Mater. 2017, 150, 450–458. [Google Scholar] [CrossRef]
- Lothenbach, B.; Durdzinski, P.; De Weerdt, K. Thermogravimetric Analysis. A Practical Guide to Microstructural Analysis of Cementitious Materials; Crc Press: Boca Raton, FL, USA, 2016; Volume 1, pp. 177–211. [Google Scholar]
- Zhang, D.; Wang, Y.; Ma, M.; Guo, X.; Zhao, S.; Zhang, S.; Yang, Q. Effect of equal volume replacement of fine aggregate with fly ash on carbonation resistance of concrete. Materials 2022, 15, 1550. [Google Scholar] [CrossRef]
CaO | SiO2 | SO3 | Al2O3 | Fe2O3 | MgO | K2O | Na2O | TiO2 | P2O5 | SrO | MnO | LOI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
64.5 | 17.9 | 4.3 | 4.2 | 3.5 | 1.3 | 0.9 | 0.4 | 0.4 | 0.1 | 0.1 | 0.1 | 2.1 |
CO2,content [%] | St. Dev. [%] | |||
---|---|---|---|---|
I | II | III | ||
Cem as-received | 1.6 | 1.6 | 1.6 | 0.01 |
5 min | 7.8 | 7.9 | 7.9 | 0.04 |
10 min | 10.2 | 10.1 | 10.1 | 0.04 |
20 min | 13.5 | 13.6 | 13.6 | 0.08 |
30 min | 16.0 | 16.1 | 16.2 | 0.08 |
40 min | 16.8 | 16.6 | 16.6 | 0.14 |
Th. Dec. | TG-DTA | |
---|---|---|
CO2,uptake | CO2,uptake | |
[%] | [%] | |
5 min | 6.8 | 5.7 |
10 min | 9.5 | 9.6 |
20 min | 13.8 | 16.1 |
30 min | 17.3 | 18.1 |
40 min | 18.1 | 20.1 |
Study | Material | Liquid-to-Solid Ratio | CO2 Conc. | CO2 Flow | Pressure | Temperature | Time | CO2 Uptake | |
---|---|---|---|---|---|---|---|---|---|
This study | cement powder | ambient | ambient | 5 m | 6.3% | ||||
10 m | 9.5% | ||||||||
3 | 100% | 200 L/h | 20 m | 15.0% | |||||
30 m | 17.7% | ||||||||
40 m | 19.1% | ||||||||
cement powder | 2 | 100% | 10 m | 3.6% | |||||
[20] | Fu et al., 2024 | 12 L/h | ambient | ambient | 20 m | 5.3% | |||
40 m | 8.2% | ||||||||
[26] | Teune et al., 2023 | hydrated cement paste | 10 | 15% | 10 L/h | ambient | ambient | 5 h ÷ 6 h | 20% ÷ 32% |
[27] | Ho et al., 2021 | cement concrete waste | 100 | 14% | 240 L/h | - | ambient | 1.5 h | 4% ÷ 13% |
[28] | Pasquier et al., 2018 | cement concrete waste | 10 | 18% | - | 10.2 bar | ambient | 15 min | 7% ÷ 11% |
[29] | Kong et al., 2022 | hydrated cement paste * | 2.5 | 100% | - | 10 bar | 60 °C | 24 h | 20.7% |
20 bar | 20.8% | ||||||||
25 bar | 24.3% | ||||||||
[30] | ** Hernandez-Rodriguez et al., 2021 | hydrated cement paste | 15 | 100% | 11 bar | 1 h | 14% | ||
3 h | 22% | ||||||||
6 h | 24% | ||||||||
- | ambient | 21 h | 23% | ||||||
67 h | 29% | ||||||||
97 h | 21% | ||||||||
120 h | 30% | ||||||||
hydrated cement paste | 15 | 100% | 1 bar | ambient | 6 h | 29% | |||
- | 11 bar | 28% | |||||||
31 bar | 29% | ||||||||
51 bar | 28% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrara, G.; Humbert, P.; Garufi, D.; Palmero, P. Evolution of CO2 Uptake Degree of Ordinary Portland Cement During Accelerated Aqueous Mineralisation. Ceramics 2024, 7, 1711-1726. https://doi.org/10.3390/ceramics7040109
Ferrara G, Humbert P, Garufi D, Palmero P. Evolution of CO2 Uptake Degree of Ordinary Portland Cement During Accelerated Aqueous Mineralisation. Ceramics. 2024; 7(4):1711-1726. https://doi.org/10.3390/ceramics7040109
Chicago/Turabian StyleFerrara, Giuseppe, Pedro Humbert, Davide Garufi, and Paola Palmero. 2024. "Evolution of CO2 Uptake Degree of Ordinary Portland Cement During Accelerated Aqueous Mineralisation" Ceramics 7, no. 4: 1711-1726. https://doi.org/10.3390/ceramics7040109
APA StyleFerrara, G., Humbert, P., Garufi, D., & Palmero, P. (2024). Evolution of CO2 Uptake Degree of Ordinary Portland Cement During Accelerated Aqueous Mineralisation. Ceramics, 7(4), 1711-1726. https://doi.org/10.3390/ceramics7040109